JPS5932651B2 - Exhaust purification device for engine with cylinder number control - Google Patents

Exhaust purification device for engine with cylinder number control

Info

Publication number
JPS5932651B2
JPS5932651B2 JP53111475A JP11147578A JPS5932651B2 JP S5932651 B2 JPS5932651 B2 JP S5932651B2 JP 53111475 A JP53111475 A JP 53111475A JP 11147578 A JP11147578 A JP 11147578A JP S5932651 B2 JPS5932651 B2 JP S5932651B2
Authority
JP
Japan
Prior art keywords
cylinder
group
exhaust
cylinders
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53111475A
Other languages
Japanese (ja)
Other versions
JPS5537580A (en
Inventor
深 菅沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP53111475A priority Critical patent/JPS5932651B2/en
Publication of JPS5537580A publication Critical patent/JPS5537580A/en
Publication of JPS5932651B2 publication Critical patent/JPS5932651B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は主としてエンジン軽負荷時に一部気筒グループ
に対する燃料供給を停止する気筒数制御エンジンにおい
て、一部気筒運転中に休止気筒から排出される空気によ
って排気系に設置した触媒装置の温度が低下するのを防
止するようにした装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to a cylinder number control engine that stops fuel supply to some groups of cylinders when the engine is lightly loaded. The present invention relates to a device that prevents the temperature of a catalyst device from decreasing.

一般に、エンジンを高い負荷状態で運転すると燃費率が
良好になる傾向があり、このため多気筒エンジンにおい
て、エンジン負荷の小さいときに、一部気筒グループへ
の燃料供給をカットして作動を休止させ、この分だけ残
りの稼動気筒の負荷を相対的に高め、全体として低負荷
領域の燃費を改善するようにした気筒数制御エンジンが
考えられた。
In general, fuel efficiency tends to improve when an engine is operated under a high load.For this reason, in a multi-cylinder engine, fuel supply to some groups of cylinders is cut to stop operation when the engine load is low. An engine with a controlled number of cylinders was devised that relatively increases the load on the remaining operating cylinders by this amount, thereby improving overall fuel efficiency in the low load range.

この場合、排気系に未燃有害成分の酸化を目的として触
媒を設置しであると、一部気筒運転中に休止気筒グルー
プからの排気(新気)は他の稼動気筒グループの排気と
混流して触媒に流れ込む。
In this case, if a catalyst is installed in the exhaust system for the purpose of oxidizing unburned harmful components, the exhaust (fresh air) from the idle cylinder group will mix with the exhaust from other operating cylinder groups while some cylinders are in operation. and flows into the catalyst.

所定の活性温度領域でのみ高い排気浄1ヒ効率を発揮す
る触媒に、このように新気と混合して温度が低下した排
気が流入すると、次第に触媒温度が低下して浄化効率も
下がる。
When exhaust gas whose temperature has been lowered by mixing with fresh air flows into a catalyst that exhibits high exhaust gas purification efficiency only in a predetermined active temperature range, the catalyst temperature gradually decreases and the purification efficiency also decreases.

おそれがある。とくに一部気筒運転が長時間にわたり継
続的に行われる場合に、二のような傾向が見られる。
There is a risk. Particularly when partial cylinder operation is performed continuously for a long period of time, the following tendency is observed.

休止気筒からの排出空気を触媒に流入させないために、
例えば、休止気筒の吸気マニホールドに空気遮断弁を設
け、一部気筒運転中にこの遮断弁を閉じることにより、
休止気筒内への空気の吸入を防止し、したがって排気通
路に新気を排出させない方式が考えられるが、この場合
には遮断された空気による吸入行程時のエネルギーロス
を生じる問題がある。
To prevent exhaust air from idle cylinders from flowing into the catalyst,
For example, by installing an air cutoff valve in the intake manifold of the idle cylinder and closing this cutoff valve while some cylinders are in operation,
A possible method is to prevent air from being sucked into the idle cylinders, thereby preventing fresh air from being discharged into the exhaust passage, but in this case, there is a problem in that the blocked air causes energy loss during the intake stroke.

また、休止気筒の吸排気弁を強制的に閉じてしまう方式
もあるが、この場合には遮断された空気による吸入行程
時のエネルギーロスに加えて、遮断された空気による排
気行程時のエネルギーロスが生じる問題がある。
There is also a method that forcibly closes the intake and exhaust valves of idle cylinders, but in this case, in addition to the energy loss during the intake stroke due to the blocked air, there is also the energy loss during the exhaust stroke due to the blocked air. There is a problem that arises.

これらはいずれも排気系に一切空気を排出させない方式
であるが、例えば休止気筒の排気通路と連通して触媒を
バイパスする通路を設け、このバイパス通路の入口部に
切換弁を設けて、全気筒運転中は全ての排気を触媒に流
入させるが、一部気筒運転時は切換弁を介してバイパス
通路へ休止気筒の排出空気を流すことにより、触媒温度
の低下を防止する方式もある。
All of these methods do not discharge any air into the exhaust system, but for example, a passage is provided that communicates with the exhaust passage of the idle cylinder to bypass the catalyst, and a switching valve is installed at the entrance of this bypass passage to ensure that all cylinders There is also a method in which all exhaust gas is allowed to flow into the catalyst during operation, but when some cylinders are in operation, exhaust air from the idle cylinders is allowed to flow through a switching valve to a bypass passage to prevent a drop in catalyst temperature.

しかし、この場合は、切換弁の作動タイミングを非常に
精度よく制御しないと、一部気筒運転への切換時に排気
がそのままバイパス通路から外部へ流出する可能性があ
り、排気対策上好ましくないのと、吸気ポートに燃料噴
射弁を設置している場合、噴射燃料の一部が休止気筒の
吸気ポートに回り込んで、そのまま休止気筒に吸入され
た後、バイパス通路へと流れるという問題もある。
However, in this case, unless the operating timing of the switching valve is controlled very accurately, there is a possibility that the exhaust gas will directly flow out from the bypass passage when switching to partial cylinder operation, which is not desirable in terms of exhaust emissions. When a fuel injection valve is installed in an intake port, there is also a problem in that part of the injected fuel goes around to the intake port of the idle cylinder, is taken into the idle cylinder as it is, and then flows to the bypass passage.

ところで、排気系にHC,COの酸化を目的として触媒
装置を設置した場合は、とくにNOx対策として、排気
還流装置(EGR装置)を併設し、燃料最高温度を抑制
してNOxの生成を低減するようにしているものが多い
By the way, when a catalyst device is installed in the exhaust system for the purpose of oxidizing HC and CO, an exhaust gas recirculation device (EGR device) is also installed as a measure against NOx to suppress the maximum fuel temperature and reduce the generation of NOx. There are many things that do this.

このEGR装置について着目してみると、排気の一部で
はあるが吸気系に循環させる作用があるため、休止気筒
からの排出空気なEGR装置を介して循環させるとすれ
ば、前述した触媒温度の低下を幾分かでも防ぐことがで
きる。
If you pay attention to this EGR device, it has the effect of circulating a part of the exhaust gas into the intake system, so if the exhaust air from the idle cylinders is circulated through the EGR device, the catalyst temperature as mentioned above will change. The decline can be prevented to some extent.

一方、気筒数制御エンジンにおいては、エンジン回転数
が一定の低回転数(一例として1300r、 p、 m
、 )に達すると、エンジン振動が大きくなってくるた
め強制的に全気筒運転に戻すようにしであるのが普通で
ある。
On the other hand, in a cylinder number controlled engine, the engine speed is a constant low rotational speed (for example, 1300r, p, m
, ), engine vibration increases, so it is normal to force the engine to return to full cylinder operation.

しかしながら、エンジン減速運転中のように、負荷が極
めて軽微のときは、全気筒運転への復帰回転数の設定値
を、さらに下げても振動の影響はほとんど問題とならな
いことが確認されている。
However, it has been confirmed that when the load is extremely light, such as during engine deceleration operation, the influence of vibration poses almost no problem even if the set value of the rotation speed for returning to all-cylinder operation is further lowered.

それにもかかわらず、従来のように、一律的に復帰点(
回転数)を決めていることは、燃費対策上むしろ問題が
あるとも考えられるのであるが、上述したように、排気
対策の観点から、軽負荷時にさらに一部気筒運転の下限
回転数を低下させることなど、触媒温度のなお一層の低
下を招くおそれがあって、全く好ましくないものである
とされていた。
Nevertheless, as in the past, the return point (
However, as mentioned above, from the perspective of reducing exhaust emissions, the lower limit of rotation speed for some cylinders is further lowered during light loads. This was considered to be completely undesirable because it may cause a further decrease in the catalyst temperature.

本発明はかかる点に鑑み、エンジン振動の影響がほとん
ど問題とならない極軽負荷運転時は、全気筒運転への強
制復帰回転数の設定値を通常に比べてさらに低回転側へ
と移行する一方、排気の一部を全気筒の吸気中に還流さ
せる排気還流装置により、このような極軽負荷状態では
、還流量が最大となるように制御弁をセットし、休止気
筒の排出空気をほとんどそのまま吸気系に循環させるよ
うにして触媒に流入する冷気量を減じ、もって燃費特性
の一層の改善をはかりつつ、気筒数制御時の触媒浄化効
率を良好に保つようにした気筒数制御エンジンを提供す
るものである。
In view of this, the present invention shifts the set value of the rotation speed for forced return to all-cylinder operation to a lower rotation side than normal during extremely light load operation where the influence of engine vibration is hardly a problem. The exhaust recirculation system recirculates a portion of the exhaust gas into the intake air of all cylinders. Under extremely light load conditions, the control valve is set to maximize the amount of recirculation, and the exhaust air from the idle cylinders is recirculated almost as is. To provide a cylinder number control engine which reduces the amount of cold air flowing into a catalyst by circulating it through an intake system, thereby further improving fuel efficiency characteristics, and maintaining good catalyst purification efficiency when controlling the number of cylinders. It is something.

以下、図面に示した実施例について詳しく説明する。The embodiments shown in the drawings will be described in detail below.

1は6気筒のエンジン本体、41=1〜≠3と+4〜4
I=6は、軽負荷状態によって選択的に燃料供給が停止
される気筒グループ。
1 is the 6-cylinder engine body, 41 = 1~≠3 and +4~4
I=6 is a cylinder group to which fuel supply is selectively stopped due to light load conditions.

2a〜2fは燃料噴射弁、3は吸気管、4はスロットル
バルブ、6a。
2a to 2f are fuel injection valves, 3 is an intake pipe, 4 is a throttle valve, and 6a.

6bは気筒グループ、41=1〜+3と+4〜+6に対
応して区画された排気管、Tは合流排気管6に設置され
排気中の酸素濃度を検出する酸素センサ、8はこの酸素
センサ7の出力を理論空燃比に相当する基準値と比較し
て基準値との偏差信号として検出し、これを波形成形し
て燃料噴射制御回路(以下EGI回路と称する)9に空
燃比の補正信号として出力する空燃比コントロール回路
で、空燃比がほぼ理論空燃比となるようにフィードバッ
ク制御するのであり、これにより、触媒装置としての三
元触媒19の転換効率を最良点に保持する。
6b is a cylinder group, exhaust pipes are divided corresponding to 41=1 to +3 and +4 to +6, T is an oxygen sensor installed in the combined exhaust pipe 6 and detects the oxygen concentration in the exhaust, and 8 is this oxygen sensor 7. The output of is compared with a reference value corresponding to the stoichiometric air-fuel ratio to detect it as a deviation signal from the reference value, which is shaped into a waveform and sent to the fuel injection control circuit (hereinafter referred to as EGI circuit) 9 as an air-fuel ratio correction signal. The output air-fuel ratio control circuit performs feedback control so that the air-fuel ratio becomes approximately the stoichiometric air-fuel ratio, thereby maintaining the conversion efficiency of the three-way catalyst 19 as a catalyst device at the optimum point.

EGI回路9は原則として吸入空気量センサ5と回転数
センサ10の出力に基づいて、吸入空気量に対応したパ
ルス14.゛をもち、かつ回転数に同期した燃料噴射パ
ルス信号を、後述する気筒数制御回路(以下708回路
と称する)20を介して燃料噴射弁2a〜2fに供給す
る。
As a general rule, the EGI circuit 9 generates pulses 14 . . . corresponding to the intake air amount based on the outputs of the intake air amount sensor 5 and the rotation speed sensor 10 . A fuel injection pulse signal having a rotation speed and synchronized with the rotation speed is supplied to the fuel injection valves 2a to 2f via a cylinder number control circuit (hereinafter referred to as 708 circuit) 20, which will be described later.

11は極軽負荷時を除いて常時稼動側となる気筒グルー
プ4F4〜+6の排気管6bを流れる排気の吸気側への
還流量をコントロールする還流制御弁で、その負圧作動
室11aへは三方電磁弁12によ1l)EGR制御用負
圧発生装置13、またはバキュームタンク14を介して
の吸気管3の負圧が選択的に供給されるようになってい
る。
Reference numeral 11 designates a recirculation control valve that controls the recirculation amount of exhaust gas flowing through the exhaust pipes 6b of cylinder groups 4F4 to +6, which are always on the operating side except under extremely light load conditions, to the intake side. The electromagnetic valve 12 is selectively supplied with the negative pressure of the intake pipe 3 via the EGR control negative pressure generator 13 or the vacuum tank 14.

EGR制御によりNOxを除去するのであるが、運転状
態に応じて還流制御弁11の開度を制御するように、既
に公知のEGR制御用負圧が極軽負荷時を除いて供給さ
れる。
NOx is removed by EGR control, and a well-known negative pressure for EGR control is supplied so as to control the opening of the recirculation control valve 11 according to the operating state, except when the load is extremely light.

これに対して還流制御弁11の負圧作動室11aが、三
方電磁弁12の切換えでバキュームタンク14とチェッ
クバルブ15を介して連通ずる吸気管3に接続されると
、この強負圧を受けて最大開度に達し、単なる新気の還
流弁として後述するように、このとき休止気筒となって
いる気筒≠4〜≠6の排出空気の大部分を吸気系に循環
させるようになる。
On the other hand, when the negative pressure working chamber 11a of the reflux control valve 11 is connected to the intake pipe 3 communicating with the vacuum tank 14 via the check valve 15 by switching the three-way solenoid valve 12, it receives this strong negative pressure. The valve reaches its maximum opening degree, and as will be described later as a mere fresh air recirculation valve, most of the exhaust air from the cylinders ≠4 to ≠6, which are inactive at this time, is circulated to the intake system.

16は排気を吸気側に還流する排気還流通路で、17は
通孔18を介して吸気管3のブランチ部に連通ずる排気
導入ポートである。
16 is an exhaust gas recirculation passage for recirculating exhaust gas to the intake side, and 17 is an exhaust gas introduction port communicating with a branch portion of the intake pipe 3 via a through hole 18.

前記vC8回路20は原則としてスロットルバルブ4が
全閉(θ−〇)となる極軽負荷と、全閉以外(θN0)
の単なる軽負荷とを判別し、単なる軽負荷時は、気筒1
1〜≠3への燃料をカットし、極軽負荷時は逆に気筒−
1P4〜≠6の燃料をカットして休止気筒状態にするも
のである。
As a general rule, the vC8 circuit 20 operates under extremely light loads where the throttle valve 4 is fully closed (θ-〇) and when the throttle valve 4 is not fully closed (θN0).
When the load is simply light, cylinder 1 is
Cut fuel to 1 to ≠ 3, and conversely reduce fuel to cylinders - during extremely light loads.
This is to cut the fuel from 1P4 to ≠6 to put the cylinders in a deactivated state.

このvC8回路20について第2図に基いて説明すると
、21はスロットルバルブ4の開度状態信号(スロット
ル開度でレベル111“の信号)力印加される入力端子
、22は反転器、23は気筒−!/P1〜≠3側の常閉
リレー24を開閉するAND回路、25は気筒+4〜+
6側の常閉リレー26を開閉するAND回路、27.2
8はパルス幅比較器、29.30はそれぞれ低負荷と高
負荷に対応した基準値■普2wL、を出力するパルス幅
設定器、31はエンジン回転数比較器、32は回転位基
準値No とN、を軽負荷状態によって選択的に出力す
る回転数設定器、33はOR回路、34はAND回路、
35はOR回路33をセット入力に、AND回路34を
リセット入力に、それぞれ接続されたフリップフロップ
回路である。
This vC8 circuit 20 will be explained based on FIG. 2. 21 is an input terminal to which the opening state signal of the throttle valve 4 (a signal with a level of 111" at the throttle opening) is applied, 22 is an inverter, and 23 is a cylinder cylinder. -!/AND circuit that opens and closes the normally closed relay 24 on the P1~≠3 side, 25 is the cylinder +4~+
AND circuit that opens and closes the normally closed relay 26 on the 6 side, 27.2
8 is a pulse width comparator, 29.30 is a pulse width setter that outputs the reference value ■normal 2wL corresponding to low load and high load, respectively, 31 is an engine rotation speed comparator, and 32 is a rotation position reference value No. a rotation speed setting device that selectively outputs N depending on the light load state; 33 is an OR circuit; 34 is an AND circuit;
35 is a flip-flop circuit connected to the OR circuit 33 as a set input and the AND circuit 34 as a reset input.

このフリップフロップ回路35の出力レベルが110“
06気筒運転領域(第4図参照)のときは、両AND回
路23.25の出力レベルが常にIT □ //である
ため両常閉リレー24,26は励磁されず、固気筒グル
ープ+−1〜+3と=#=4〜≠6を稼動状態に保つ。
The output level of this flip-flop circuit 35 is 110"
In the 06 cylinder operating region (see Figure 4), the output level of both AND circuits 23 and 25 is always IT □ //, so both normally closed relays 24 and 26 are not energized, and the solid cylinder group +-1 ~+3 and =#=4~≠6 are kept in operation.

ここでいま、軽負荷状態なθ=0の極軽負荷とθN0の
単なる軽負荷に判別しての気筒数制御パターンは第4図
a、 bの如く分けることができる。
Here, the cylinder number control patterns can be divided into a very light load state of θ=0, which is a light load state, and a simple light load state of θN0, as shown in FIGS. 4a and 4b.

スロットル開度が全閉でないθキOのときは、エンジン
回転数Nが設定値N、(たぞし設定値N。
When the throttle opening is θ, which is not fully closed, the engine speed N is the set value N.

よりも大)より小さくなると振動が悪化するために、こ
の設定値N1以下の回転範囲を6気筒領域にしているが
、スロットル全閉のθ=00ときは、極軽負荷のため振
動増大も問題にならないため、N、よりも小さいN。
Since the vibration worsens as the engine becomes smaller (greater than 1), the rotation range below this set value N1 is set to the 6-cylinder range, but when the throttle is fully closed and θ = 00, vibration increases due to the extremely light load. Since it does not become, N is smaller than N.

となる低回転まで3気筒領域ヲ拡げている。The three-cylinder range has been expanded to low rotations.

そこでθキ00軽負荷状態を考えると、入力端子21に
印加されるスロットル全閉以外のレベル110“の信号
で、回転数設定器32は基準値をN1に選択し、第4図
すの制御パターンを採用する。
Therefore, considering the light load state of θ key 00, the rotation speed setting device 32 selects the reference value to N1 with a signal of level 110'' applied to the input terminal 21 other than the throttle fully closed, and the control shown in FIG. Adopt a pattern.

同時に反転器22を介して出力を受けるAND回路23
のみが気筒数制御信号It 1“を条件として常閉リレ
ー24を励磁しうる状態になる。
AND circuit 23 which simultaneously receives output via inverter 22
Only the normally closed relay 24 can be energized under the condition of the cylinder number control signal It1''.

この状態(スロットル全閉以外)ではAND回路25は
常にゲートを閉じているため、気筒グループ+4〜+6
は稼動状態を維持する。
In this state (other than fully closed throttle), the AND circuit 25 always closes the gate, so cylinder groups +4 to +6
remains operational.

上記フリップフロップ35の出力レベルは、パルス信号
幅Wが基準値痴以上か、又は回転数Nが基準値N1以下
の場合(第4図すの6気筒領域)にはII O“になり
、パルス幅Wが基準値W1以下でかつ回転数Nが基準値
N1以上の場合(第4図すの3気筒領域)には111“
になる。
The output level of the flip-flop 35 becomes II O" when the pulse signal width W is greater than or equal to the reference value, or when the rotational speed N is less than or equal to the reference value N1 (in the 6-cylinder region in Figure 4), and the pulse When the width W is less than the reference value W1 and the rotation speed N is more than the reference value N1 (in the 3-cylinder region shown in Figure 4), 111"
become.

なお、フリップフロップ35のセット入力をOR回路3
3に、リセット入力をAND回路34に接続したために
気筒数維持領域が形成される。
Note that the set input of the flip-flop 35 is connected to the OR circuit 3.
3, since the reset input is connected to the AND circuit 34, a cylinder number maintenance region is formed.

したがって、パルス幅Wと回転数Nが6気筒領域にあれ
ば、AND回路23もゲートを閉じて全気筒グループ+
1〜41=6を稼動状態に維持するが、3気筒領域に入
れば、常閉リレー24が励磁されて接点を開き、EGI
回路9からの燃料噴射パルス信号がカットされるため気
筒≠1〜=ll=3は休止状態になる。
Therefore, if the pulse width W and the rotational speed N are in the 6 cylinder region, the AND circuit 23 also closes the gate and all cylinder groups +
1 to 41 = 6 is maintained in the operating state, but when the cylinder enters the 3 cylinder region, the normally closed relay 24 is energized and opens the contact, and the EGI
Since the fuel injection pulse signal from the circuit 9 is cut off, the cylinders≠1 to =ll=3 are in a rest state.

この一部気筒作動体止の場合には、酸素センサ7が休止
気筒≠1〜41=3からの排気中の酸素により、実際の
燃焼気筒+4〜+6の空燃比と異った状態を検出するた
め空燃比コントロール回路8を介してのフィードバック
制御を停止しく1回転あたりの吸入空気量と噴射パルス
幅との比例定数を変え、燃料噴射量を多くした状態でフ
ィードバック値をクランプする)、併せて三方電磁弁1
2を第1図の状態に維持して、還流制御弁11にEGR
制御用の負圧を供給し、例えば吸入空気量に応じて排気
還流を行いNOxの低減をはかる。
In this case, the oxygen sensor 7 detects a state different from the actual air-fuel ratio of the combustion cylinders +4 to +6 due to oxygen in the exhaust gas from the deactivated cylinders≠1 to 41=3. Therefore, in order to stop the feedback control via the air-fuel ratio control circuit 8, the proportional constant between the intake air amount per rotation and the injection pulse width is changed, and the feedback value is clamped with the fuel injection amount increased). Three-way solenoid valve 1
2 in the state shown in FIG.
Negative pressure for control is supplied, and exhaust gas recirculation is performed depending on the amount of intake air, for example, to reduce NOx.

なおこの状態では排気熱量が比較的大きくて、排気温度
の極端な低下はみられないため、三元触媒19の温度は
反応状態に維持され、このため排気中のHC,COを酸
化させることができる。
Note that in this state, the amount of exhaust heat is relatively large and no extreme drop in exhaust temperature is observed, so the temperature of the three-way catalyst 19 is maintained in a reaction state, which prevents oxidation of HC and CO in the exhaust. can.

(なおNOxの還元は難しくなるが、EGRで低減する
ので問題はない。
(It will be difficult to reduce NOx, but it will be reduced by EGR, so there is no problem.

)次にスロットル全閉となるθ=0の極軽負荷時には、
入力端子21にはレベルII 1 //が印加され、回
転数設定器32を基準値N。
) Next, at the very light load of θ=0 when the throttle is fully closed,
A level II 1 // is applied to the input terminal 21, and the rotation speed setting device 32 is set to the reference value N.

に切り換えて気筒数制御パターンを第4図aに移転する
Then, the cylinder number control pattern is transferred to FIG. 4a.

同時に今度はAND回路25が気筒数制御信号1!1“
を条件として常閉リレー26を励磁しうる状態になり、
他方の常閉リレー24はこの制御信号に関係なく常に接
点閉状態を維持し、気筒グループ≠1〜=#=3を稼動
状態に保つ。
At the same time, the AND circuit 25 outputs a cylinder number control signal 1!1"
Under the condition that the normally closed relay 26 can be excited,
The other normally closed relay 24 always maintains its contacts closed regardless of this control signal, and keeps cylinder groups ≠1 to #=3 in operation.

そして運転状態が第4図aの3気筒領域に入ると、AN
D回路25が開いて常閉リレー26を励磁し、気筒41
=4〜41=6を休止状態にする。
When the operating state enters the 3-cylinder region shown in Figure 4a, AN
D circuit 25 opens, energizes normally closed relay 26, and cylinder 41
=4-41=6 is put into hibernation state.

これにより空燃比コントロール回路8のフィードバック
制御を停止するとともに、三方電磁弁12をバキューム
タンク14側に切り換え、高負圧を還流制御弁11の作
動室11aに導入して全開状態にする。
This stops the feedback control of the air-fuel ratio control circuit 8, switches the three-way solenoid valve 12 to the vacuum tank 14 side, and introduces high negative pressure into the working chamber 11a of the recirculation control valve 11, making it fully open.

この結果、休止気筒となっている41=4〜+6の排気
管6bを通過する排気(新気)の大部分が吸気管3側へ
還流する。
As a result, most of the exhaust gas (fresh air) passing through the exhaust pipes 6b of 41=4 to +6, which are inactive cylinders, is recirculated to the intake pipe 3 side.

このため冷気(≠4〜+−6の排出空気)は三元触媒1
9にほとんど流入せずに吸気系へと循環し、かつ循環し
ているうちに次第に暖められ、このため従来このような
極軽負荷時に著しかった触媒流入排気温度の低下を阻止
することができる。
Therefore, the cold air (≠4 to +-6 exhaust air) is transferred to the three-way catalyst 1.
The catalyst is circulated to the intake system without almost flowing into the exhaust gas 9, and is gradually warmed up while being circulated. Therefore, it is possible to prevent the temperature of the exhaust gas flowing into the catalyst from decreasing, which was conventionally remarkable at the time of such a light load.

なお、このような極軽負荷時には燃焼排気を還流するか
わりに、空気を還流してもNOxの発生がもともと少な
いので問題はない。
Note that, at the time of such a very light load, there is no problem even if air is recirculated instead of the combustion exhaust gas because NOx generation is originally small.

一方、エンジンブレーキの効き具合を考慮シて、気筒−
=[〜=#=6が休止しているとき、バキュームタンク
14の負圧値を制御し、空気の還流量を調節してもよく
、また還流した気筒グループ+−4〜+、6の排気(新
気)が稼動気筒≠1〜+3に流入して空燃比制御を混乱
させる(薄くする)のを防ぐため、このときは燃料の噴
射量を多くするか、あるいは稼動気筒+1〜+3側に別
個の酸素センサを設けて空燃比をフィードバック制御し
ても良い。
On the other hand, considering the effectiveness of the engine brake, the cylinder
= [~= #= When 6 is at rest, the negative pressure value of the vacuum tank 14 may be controlled to adjust the amount of air recirculation, and the recirculated cylinder group +-4 to +, 6 exhaust gas In order to prevent (fresh air) from flowing into the active cylinders ≠ 1 to +3 and disrupting (thinning) the air-fuel ratio control, in this case, either increase the amount of fuel injected or move the air to the active cylinders +1 to +3. A separate oxygen sensor may be provided to provide feedback control of the air/fuel ratio.

なお、三元触媒190代りに、酸化触媒を設置してもよ
く、このときは空燃比のフィードバック制御装置を備え
なくともよい。
Note that an oxidation catalyst may be installed instead of the three-way catalyst 190, and in this case, the air-fuel ratio feedback control device may not be provided.

以上のように本発明によれば、軽負荷状態を極軽負荷と
これ以外の軽負荷に区別し、極軽負荷を除いて常時稼動
状態にある気筒グループの排気を吸気系へと還流する還
流制御弁を、極軽負荷時には全開させると同時にとの気
筒グループを休止状態にし、還流制御弁を介して排出空
気のほとんどを吸気系に還流させるので、従来のEGR
制御装置をそっくり利用する簡単な構成で、極軽負荷時
に最も問題となる触媒流入排気温度の低下を効果的に阻
止でき、触媒を有効的に働かせることができる。
As described above, according to the present invention, light load states are distinguished into extremely light loads and other light loads, and exhaust gas from cylinder groups that are constantly in operation except for extremely light loads is recirculated to the intake system. At very light loads, the control valve is fully opened, and at the same time, the cylinder group is put into a rest state, and most of the exhaust air is returned to the intake system via the recirculation control valve, so conventional EGR
With a simple configuration that utilizes the entire control device, it is possible to effectively prevent a drop in catalyst inflow exhaust gas temperature, which is the most problematic during extremely light loads, and to make the catalyst work effectively.

また、軽負荷な極軽負荷とこれ以外の軽負荷に分けて気
筒数制御パターンを形成したため、極軽負荷時の3気筒
領域をなお一層低速回転まで拡張でき、気筒数制御効果
をさらに高めて、燃費の改善をはかることができる。
In addition, because the cylinder number control pattern is divided into light loads (very light loads) and other light loads, the three-cylinder range during extremely light loads can be extended to even lower speeds, further increasing the effectiveness of cylinder number control. , it is possible to improve fuel efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は概略構成
、第2図は気筒数制御回路のブロック図、第3図は吸気
管の断面図、第4図a、bは気筒数制御パターンの説明
図である。 +1〜4!P6・・・気筒、2a〜2f・・・燃料噴射
弁、8・・・空燃比コントロール回路、9・・・燃料噴
射制御、11・・・還流制御弁、12・・・三方電磁弁
、20・・・気筒数制御回路。
The drawings show an embodiment of the present invention; FIG. 1 is a schematic configuration, FIG. 2 is a block diagram of a cylinder number control circuit, FIG. 3 is a sectional view of an intake pipe, and FIGS. 4 a and b show the number of cylinders. FIG. 3 is an explanatory diagram of a control pattern. +1~4! P6...Cylinder, 2a-2f...Fuel injection valve, 8...Air-fuel ratio control circuit, 9...Fuel injection control, 11...Recirculation control valve, 12...Three-way solenoid valve, 20 ...Cylinder number control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 燃料供給量を制御する燃料供給装置と、前記燃料供
給装置からの所定の休止気筒グループへの燃料供給信号
をエンジン負荷に応じて遮断する気筒数制御回路とを備
えた多気筒エンジンに於いて、休止気筒グループとこの
グループへの燃料供給を遮断している時に稼動する稼動
気筒グループごとに設けた排気管と、前記排気管のそれ
ぞれのグループの排気が合流する通路に設けた触媒と、
稼動気筒グループの上記排気管と吸気管とを接続する通
路に設けられ、該グループの排気の一部を還流するよう
に制御する還流制御弁と、エンジン減速状態を検出した
時に、上記気筒数制御回路に休止気筒グループへの燃料
供給を行わせるとともに稼動気筒グループへの燃料供給
を遮断させ、同時に上記還流制御弁を全開にさせる手段
とを備えたことを特徴とする気筒数制御エンジンの排気
浄化装置。
1. In a multi-cylinder engine equipped with a fuel supply device that controls the amount of fuel supplied, and a cylinder number control circuit that cuts off a fuel supply signal from the fuel supply device to a predetermined group of idle cylinders according to the engine load. , an exhaust pipe provided for each inactive cylinder group and each active cylinder group that operates when fuel supply to this group is cut off, and a catalyst provided in a passage where exhaust gas from each group of the exhaust pipes joins;
a recirculation control valve that is provided in a passage connecting the exhaust pipe and intake pipe of an operating cylinder group and controls to recirculate a part of the exhaust gas of the group; and a recirculation control valve that controls the number of cylinders when an engine deceleration state is detected. Exhaust purification for an engine with cylinder number control, characterized by comprising means for causing a circuit to supply fuel to a group of dormant cylinders, cutting off fuel supply to a group of active cylinders, and at the same time fully opening the recirculation control valve. Device.
JP53111475A 1978-09-11 1978-09-11 Exhaust purification device for engine with cylinder number control Expired JPS5932651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53111475A JPS5932651B2 (en) 1978-09-11 1978-09-11 Exhaust purification device for engine with cylinder number control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53111475A JPS5932651B2 (en) 1978-09-11 1978-09-11 Exhaust purification device for engine with cylinder number control

Publications (2)

Publication Number Publication Date
JPS5537580A JPS5537580A (en) 1980-03-15
JPS5932651B2 true JPS5932651B2 (en) 1984-08-10

Family

ID=14562186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53111475A Expired JPS5932651B2 (en) 1978-09-11 1978-09-11 Exhaust purification device for engine with cylinder number control

Country Status (1)

Country Link
JP (1) JPS5932651B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205945U (en) * 1985-06-13 1986-12-26

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108246U (en) * 1982-01-19 1983-07-23 三菱自動車工業株式会社 Exhaust gas recirculation deactivated engine
JPS5919087A (en) * 1982-07-24 1984-01-31 Inoue Japax Res Inc Production of carbon and metal composite material
EP2764224B1 (en) 2011-10-03 2019-04-17 Volvo Truck Corporation Internal combustion engine system and method for increasing the temperature in at least one part of the internal combustion engine system
JP6498628B2 (en) * 2016-04-01 2019-04-10 ボルボ テクノロジー コーポレイション Method for raising the temperature of an exhaust gas aftertreatment system that is at least part of an internal combustion engine system, as well as a vehicle comprising an internal combustion engine system performing such a method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205945U (en) * 1985-06-13 1986-12-26

Also Published As

Publication number Publication date
JPS5537580A (en) 1980-03-15

Similar Documents

Publication Publication Date Title
US6560960B2 (en) Fuel control apparatus for an engine
JPS6030450Y2 (en) Exhaust pipe of engine with cylinder number control
JPS5951667B2 (en) cylinder number control engine
US6725650B2 (en) Exhaust gas purifying system for engine
US20060201137A1 (en) Engine control equipment
WO2007091370A1 (en) Method of engine control and engine control system
JPS5853180B2 (en) cylinder number control engine
KR19980018959A (en) Suction air quantity controll appartus of the poor combustion engine
JPS5932651B2 (en) Exhaust purification device for engine with cylinder number control
JP4635974B2 (en) Diesel engine control device
US7634906B2 (en) Exhaust gas after-treatment apparatus
JP2007332799A (en) Exhaust emission control device for internal combustion engine
JP3371520B2 (en) Engine exhaust recirculation control device
JP2007309147A (en) Exhaust emission control device of diesel engine
JPH0532570B2 (en)
JP2001159311A (en) Exhaust emission control device for engine
JP2002188524A (en) Egr control device for engine with turbocharger
JPS6121557Y2 (en)
JP3570125B2 (en) In-cylinder injection internal combustion engine
JPS627943A (en) Exhaust reflux device of diesel engine
JP4057984B2 (en) Fuel injection control device for internal combustion engine
JP2001090595A (en) Control device for diesel engine
JPS5920856B2 (en) Exhaust purification device for engine with cylinder number control
JP5839187B2 (en) Internal combustion engine
JP2013122188A (en) Internal combustion engine