JPS5932276B2 - industrial robot hand - Google Patents

industrial robot hand

Info

Publication number
JPS5932276B2
JPS5932276B2 JP10035676A JP10035676A JPS5932276B2 JP S5932276 B2 JPS5932276 B2 JP S5932276B2 JP 10035676 A JP10035676 A JP 10035676A JP 10035676 A JP10035676 A JP 10035676A JP S5932276 B2 JPS5932276 B2 JP S5932276B2
Authority
JP
Japan
Prior art keywords
pressure
robot
sensitive resistor
robot hand
industrial robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10035676A
Other languages
Japanese (ja)
Other versions
JPS5326060A (en
Inventor
聡 松本
田久二 天瀬
司臣 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP10035676A priority Critical patent/JPS5932276B2/en
Publication of JPS5326060A publication Critical patent/JPS5326060A/en
Publication of JPS5932276B2 publication Critical patent/JPS5932276B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は工業用ロボットハンドの構造に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an industrial robot hand.

さらに詳しくは導電性金属粒子と高分子弾性体からなる
感圧抵抗体をロボットの指全体にとりつけるとともに、
一定間隔で接点を配列したロボットハンドに関するもの
である。一般の工業用ロボットは生産の自動化、省力化
に向つて極めて重要な技術であるばかりでなく、放射線
中危険物、毒物などの取扱の上で不可欠な機器である。
More specifically, a pressure-sensitive resistor made of conductive metal particles and an elastic polymer material is attached to the entire finger of the robot, and
This relates to a robot hand with contact points arranged at regular intervals. General industrial robots are not only an extremely important technology for automating production and saving labor, but are also essential equipment for handling radioactive and toxic substances.

しかしながら従来の工業用ロボットは知覚能力を持たな
いため、熔接作業などでは充分にその威力を発揮するも
のの、組み立て作業のような複雑な作業になるとうまく
操作出来ないという欠点を有していた。即ち作業に対す
る対応能力の不足から作業範囲が限定され、例えば人間
ならば何でもないはめ合せ等の基本的作業も出来ないと
いう不器用なものでしかなかつた。そこで最近機械自身
に視覚、触覚などの感覚を持たせようとする研究が盛ん
になつて来た。即ち、知覚された認識結果に応じて外界
の変化に対応できる知能ロボットの出現が望まれている
。知能ロボットにおいては、外界からの情報がまず第1
に正確に把握されるか、さらにそれに対応していかにす
ばやく作業修正を行なうかという問題がある。
However, since conventional industrial robots do not have sensory abilities, they have the disadvantage that, although they are effective in welding and other tasks, they cannot be operated properly when it comes to complex tasks such as assembly. In other words, the scope of work was limited due to a lack of ability to cope with the work, and for example, they were clumsy and unable to perform basic tasks such as fitting, which would be trivial for a human. Recently, there has been an increasing amount of research into giving machines their own senses, such as vision and touch. That is, there is a desire for the emergence of intelligent robots that can respond to changes in the external world according to perceived recognition results. For intelligent robots, information from the outside world comes first.
The problem is whether the process can be accurately grasped, and how quickly the work can be corrected in response.

そのためには部品の状況を作業実行中に正確に把握する
ことが必要であり、視覚、触覚あるいは聴覚のような感
覚をロボットにあたえることである。視覚の認識方法と
してはテレビカメラを視覚として利用する方法が開発さ
れている。
To do this, it is necessary to accurately grasp the condition of the parts while performing the work, and it is necessary to provide the robot with senses such as sight, touch, and hearing. As a visual recognition method, a method has been developed that uses a television camera as a visual.

即ち、テレビ画像を計算機に導いてその形状や位置関係
を認識させることによつて、作業手順への対応を図るも
のである。また作業対象に存在する「汚れ」 「「きず
」などを認識させ品質チェックを行なつたりするような
システムが開発されている。触覚の認識手段としては、
各種の歪ゲージ、感圧トランジスタ、ピエゾ素子、マイ
クロスイッチ等が触覚素子として応用されることが提案
されており、ロボットが部品をつかんだかどうかの確認
についてはマイクロスイッチのON10FFで伴走した
りしている。
That is, by introducing the television image to a computer and having it recognize its shape and positional relationship, it is possible to correspond to the work procedure. Additionally, systems have been developed that allow quality checks to be performed by recognizing dirt, scratches, etc. that exist on work objects. As a means of tactile recognition,
Various strain gauges, pressure-sensitive transistors, piezo elements, microswitches, etc. have been proposed to be used as tactile elements, and to confirm whether the robot has grasped a part, it can be accompanied by turning the microswitch ON10FF. There is.

しかしながら触覚の本質的性格である外部変形を受けて
その圧力を初めて感覚として認識するという性質を満足
させ得るものはなかつた。ロボットでの作業においてま
ず第1の段階は部品の供給のために部品をつかむという
作業が必要であり、従来の技術では前述したようにロボ
ットの手のひらに付けたマイクロスイッチがON10F
Fの判定をするのが通常であつた。
However, none of them has been able to satisfy the essential characteristic of the sense of touch, which is that pressure is recognized as a sensation only after receiving external deformation. When working with a robot, the first step is to grasp the parts in order to supply them, and in conventional technology, as mentioned above, a microswitch attached to the robot's palm is turned ON10F.
It was normal to get an F rating.

しかしながらマイクロスイッチは1つの点のON10F
Fを確認するには充分な威力を発揮するが、ロボツトの
手の指、全体がどういう形で部品をつかんでいるか判定
するためには複数個のマイクロスイツチを取付ける必要
があつた。しかしながらマイクロスイツチにはその実装
密度を上げるとロボツトの手のひらの仕様が複雑になり
実用面では大きな問題となつていた。さらに部品を正確
に把んだとしても、把み部分が金属などの硬い面で覆れ
ているため、硬い金属製の部品などをつかむ場合にはそ
れほど問題にはならないものの軟いものあるいは壊れや
すい部品をつかむ場合には、マイクロスイツチ部にダイ
ヤフラム等を取り付け手のひらを軟い材料で覆うなどの
特殊な加工も必要であつた。このような欠点を解消する
べく、特開昭49一92757が提案されており、この
発明は、一対の可動部材の少くとも一方の把持面を導電
性の弾性体からなる共通電極となし、該共通電極と相対
して多数の線状または点状電極を配列し、両電極間に抵
抗粉末、例えばSi粉末を充填してなるロボツト用ハン
ド部である。しかし、この発明のロボツト用・・ンド部
は、電極の一方を共通電極とし、両電極間には粉末状の
抵抗体が充填されているため、感度が鈍く、くり返し変
形時に、ヒステリシスが生じ易く、それを防ぐために予
め抵抗体粉末を加圧しておく手段が必要であるなどの欠
点があつた。本発明は、上記従来技術の欠点を解決すべ
く、ロボツトの指の把持面に、シリコンゴム中に導電性
微粒子を分散混合した感圧抵抗体を配設するとともに、
該感圧抵抗体の両面の互いに対応する位?にそれぞれ複
数の接点を配設する.ことにより、被把握物の形状認識
を行ない得、被把握物の破壊防止および把握力の制御を
可能とする工業用ロボツトハンドを提供することを目的
とする。
However, the microswitch is ON10F at one point.
Although it exerts enough power to confirm F, it was necessary to install multiple microswitches in order to determine how the fingers of the robot's hand as a whole were grasping the parts. However, increasing the packaging density of microswitches would complicate the specifications of the robot's palm, creating a major problem in practical use. Furthermore, even if the part is grasped accurately, the part to be grasped is covered with a hard surface such as metal, so while this is not a problem when grasping hard metal parts, it is difficult to grasp soft or easily broken parts. When grasping parts, special processing was required, such as attaching a diaphragm to the microswitch and covering the palm with a soft material. In order to eliminate such drawbacks, Japanese Patent Application Laid-Open No. 49-92757 has been proposed, and this invention uses a gripping surface of at least one of a pair of movable members as a common electrode made of a conductive elastic material. This hand part for a robot is formed by arranging a large number of linear or dotted electrodes facing a common electrode and filling the space between the two electrodes with a resistive powder, for example, Si powder. However, in the robot arm of the present invention, one of the electrodes is used as a common electrode, and a powdered resistor is filled between the two electrodes, so the sensitivity is low and hysteresis is likely to occur during repeated deformation. However, in order to prevent this, a method was required to pressurize the resistor powder in advance. In order to solve the above-mentioned drawbacks of the prior art, the present invention disposes a pressure sensitive resistor in which conductive fine particles are dispersed and mixed in silicone rubber on the gripping surface of the robot's fingers.
Where do both sides of the pressure-sensitive resistor correspond to each other? Multiple contacts are arranged for each. Therefore, it is an object of the present invention to provide an industrial robot hand that can recognize the shape of an object to be grasped, prevent destruction of the object, and control the grasping force.

以下、図示の実施例を参照しながら本発明を詳細に説明
する。
Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図は、工業用ロボツトにおけるロボツトハンドの構
造の概要を示したものである。
FIG. 1 shows an outline of the structure of a robot hand in an industrial robot.

1はアームを示し、その一端にベース2が取付られてい
て、このベースに指3,4,5が取付けられている。
1 indicates an arm, a base 2 is attached to one end of the arm, and fingers 3, 4, and 5 are attached to this base.

指3,4,5はそれぞれ連結された駆動装置によつて矢
印方向に駆動され、部品等を把む作業を行なう。第2図
は指4を拡大した図である。
The fingers 3, 4, and 5 are each driven in the direction of the arrow by a connected drive device, and perform the work of grasping parts and the like. FIG. 2 is an enlarged view of the finger 4.

指3,5についても同様の構造を有するのでここでは省
略する。指4の構造はベース6、それに貼合せてなるプ
リント基板7、感圧抵抗体8、可撓性プリント基板9、
可撓性絶縁性シート10からなる。プリント基板7には
金属接点(A−1)が図のように配列されている。同様
に可撓性プリント基板9には接点A−1に対向する位置
に金属接点N−Vが配列されている。感圧抵抗体8は圧
力によつて第3図のような抵抗値の減少を示すものであ
る。本発明に用いる感圧抵抗体8はシリコンゴム、SB
R,NBR,EPDMIR,アクリルゴム等の高分子弾
性体中に、Fe,Ni,Cr,Ag,Au.Cu等の導
電性金属微粒子を体積分率で10〜40%程度分散混合
することにより容易に得ることができる。本感圧抵抗体
8は印加圧力によつて弾性変形するとともに、電気抵抗
が変化するという特性を有する材料である。ロボツト用
の触覚素子としては、くり返し変形に対する耐久性が良
好であり圧縮永久歪等が少なく、かつ耐熱性、耐薬品性
等に関してすぐれた特性を有しているのがのぞましく、
これらの点から高分子弾性体としてはシリコンゴムを使
用したものが望ましい。
Fingers 3 and 5 also have a similar structure, so a description thereof will be omitted here. The structure of the finger 4 includes a base 6, a printed circuit board 7 bonded to the base, a pressure sensitive resistor 8, a flexible printed circuit board 9,
It consists of a flexible insulating sheet 10. Metal contacts (A-1) are arranged on the printed circuit board 7 as shown in the figure. Similarly, metal contacts NV are arranged on the flexible printed circuit board 9 at positions facing the contacts A-1. The pressure sensitive resistor 8 exhibits a decrease in resistance value as shown in FIG. 3 depending on pressure. The pressure sensitive resistor 8 used in the present invention is made of silicone rubber, SB
Fe, Ni, Cr, Ag, Au. It can be easily obtained by dispersing and mixing conductive metal fine particles such as Cu at a volume fraction of about 10 to 40%. The pressure-sensitive resistor 8 is made of a material that is elastically deformed by applied pressure and has a characteristic that electrical resistance changes. As a tactile element for robots, it is desirable to have good durability against repeated deformation, low compression set, etc., and excellent properties in terms of heat resistance, chemical resistance, etc.
From these points of view, it is desirable to use silicone rubber as the polymeric elastic material.

しかして、上記本発明の工業用ロボツトハンドによれば
、まず、図示しないある部品を把んだ場合の電流のパタ
ーンを第4図に示すと、この部品を把んだ場合、まず接
点F,F/に点線のように電流が流れ(この場合下限の
認識電流を10mAに設定する。
According to the industrial robot hand of the present invention, FIG. 4 shows the current pattern when gripping a certain part (not shown). A current flows through F/ as shown by the dotted line (in this case, the lower limit recognition current is set to 10 mA).

)部品の位置が正確であることを示す。また部品を間違
つた位置で把んでいる場合、接点FF′以外の例えば接
点DD′、またはGG′などに電流が流れれば部品の位
置が違つていることを示す。さらに指3,4,5が確実
に部品を把んでいくと接点AA′ ,BB′ ,EE′
,FF′GG′に電流が流れ、部品を確実に把握して
いることを示す。このパターン以外のたとえば接点CC
′に電流が流れた場合には部品の形状が違つていること
になる。例えば接点BB′に電流が流れない場合には部
品に欠損があることになる。指3,4,5がしだいに圧
力を増していくと感圧抵抗体8は第3図のように抵抗値
を徐々に減少してくるので、電流値は接点FF′部が極
端に大きくなる。電流値がある一定限度(この場合40
mAに設定。)を越えると指3,4,5の5駆動は停止
し、それ以上の圧力は把んでいる部品にかかることはな
い。そのために部品は完全に保護された形で次工程へ供
給できることになる。以上のように本発明によれば、ス
イツチ部の高密度化が可能なことから各点の0N/0F
Fによつて品物の形状を正確に把握することができる。
) indicates that the part position is accurate. Furthermore, if the part is held in the wrong position, if current flows through a contact other than the contact FF', such as a contact DD' or GG', this indicates that the part is in a wrong position. Furthermore, as fingers 3, 4, and 5 firmly grasp the part, the contacts AA', BB', EE'
, FF'GG' indicates that the parts are securely grasped. For example, contact CC other than this pattern
If a current flows through ′, the shapes of the parts are different. For example, if no current flows through contact BB', there is a defect in the component. As the pressure on the fingers 3, 4, and 5 gradually increases, the resistance value of the pressure-sensitive resistor 8 gradually decreases as shown in Figure 3, so the current value becomes extremely large at the contact point FF'. . The current value is within a certain limit (in this case 40
Set to mA. ), the fingers 3, 4, and 5 stop driving, and no further pressure is applied to the gripped parts. Therefore, the parts can be supplied to the next process in a completely protected form. As described above, according to the present invention, since it is possible to increase the density of the switch portion, 0N/0F of each point
F allows the shape of the item to be accurately grasped.

また把握物に対する上限電流を検出することによつて、
適切な圧力を検出し、これによつて材料の破壊を防止で
きる。さらに圧力によつて抵抗値が減少する性質を利用
して一定値以上の電流が流れると指の,駆動を停止させ
ることによつて部品への過剰圧力の印加を防止すること
が出来る。またさらに従来のマイクロスイッチを使用し
たロボツトハンドでは考えられなかつた新しい機能をロ
ポツトに付与することが出来るようになり、組み立て作
業の自動化、精密化を可能にできる。とくに、本発明で
は、可動接点と固定接点間に導電性微粒子を分散混合し
た感圧抵抗体を用いるので、くり返し変形に対する耐久
性が大であり、圧縮永久歪が少く、耐熱性、耐薬品性に
すぐれ、該感圧抵抗体の両面の互いに対応する位置にそ
れぞれ複数の接点を配設したことと相俟つて、精緻にか
つ高感度に被把持物の形状認識、破壊防止、把握力の制
御を行うことができる。
Also, by detecting the upper limit current for the grasped object,
Appropriate pressure can be detected, thereby preventing material destruction. Furthermore, by utilizing the property that the resistance value decreases with pressure, the application of excessive pressure to the parts can be prevented by stopping the finger drive when a current exceeding a certain value flows. Furthermore, new functions that could not be considered with robot hands using conventional microswitches can be added to the robot, making it possible to automate and improve the precision of assembly work. In particular, the present invention uses a pressure-sensitive resistor in which conductive fine particles are dispersed and mixed between the movable contact and the fixed contact, so it has high durability against repeated deformation, low compression set, and high heat resistance and chemical resistance. Combined with the fact that a plurality of contacts are arranged at mutually corresponding positions on both sides of the pressure-sensitive resistor, it is possible to precisely and highly sensitively recognize the shape of the object to be grasped, prevent destruction, and control the grasping force. It can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による工業用ロボツトハンド
を示す概念図、第2図は第1図の指の一部を拡大して示
す図、第3図は感圧抵抗体における圧力に対する抵抗値
の特性を示す特性図、第4図は部品を把んだ場合の指の
各部の電流値を示す図である。 1・・・アーム、2,6・・・ベース、3,4,5・・
・指、7,9・・・プリント基板、8・・・感圧抵抗体
、10・・・絶縁性シート、A−1,A′〜F・・・金
属接点。
FIG. 1 is a conceptual diagram showing an industrial robot hand according to an embodiment of the present invention, FIG. 2 is an enlarged view of a part of the finger in FIG. 1, and FIG. FIG. 4 is a characteristic diagram showing resistance value characteristics, and is a diagram showing current values at various parts of the fingers when gripping a component. 1... Arm, 2, 6... Base, 3, 4, 5...
- Finger, 7, 9... Printed circuit board, 8... Pressure sensitive resistor, 10... Insulating sheet, A-1, A' to F... Metal contact.

Claims (1)

【特許請求の範囲】[Claims] 1 ロボットの指の把持面に、シリコンゴム中に導電性
微粒子を分散混合した感圧抵抗体を配設するとともに、
該感圧抵抗体の両面の互いに対応する位置にそれぞれ複
数の接点を配設したことを特徴とする工業用ロボットハ
ンド。
1 A pressure-sensitive resistor made of conductive particles dispersed in silicone rubber is placed on the gripping surface of the robot's fingers, and
An industrial robot hand characterized in that a plurality of contacts are arranged at mutually corresponding positions on both sides of the pressure-sensitive resistor.
JP10035676A 1976-08-23 1976-08-23 industrial robot hand Expired JPS5932276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10035676A JPS5932276B2 (en) 1976-08-23 1976-08-23 industrial robot hand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10035676A JPS5932276B2 (en) 1976-08-23 1976-08-23 industrial robot hand

Publications (2)

Publication Number Publication Date
JPS5326060A JPS5326060A (en) 1978-03-10
JPS5932276B2 true JPS5932276B2 (en) 1984-08-07

Family

ID=14271803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10035676A Expired JPS5932276B2 (en) 1976-08-23 1976-08-23 industrial robot hand

Country Status (1)

Country Link
JP (1) JPS5932276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264380A (en) * 1988-08-31 1990-03-05 Matsushita Refrig Co Ltd Refrigerator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953179A (en) * 1982-09-21 1984-03-27 富士写真光機株式会社 Method and device for controlling grasping power in manipulator
JP2019038098A (en) * 2017-08-24 2019-03-14 セイコーエプソン株式会社 Jig for robot hand and robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264380A (en) * 1988-08-31 1990-03-05 Matsushita Refrig Co Ltd Refrigerator

Also Published As

Publication number Publication date
JPS5326060A (en) 1978-03-10

Similar Documents

Publication Publication Date Title
JPH0353315Y2 (en)
US5311779A (en) Pressure-sensitive sensor
US6331849B1 (en) Integrated surface-mount pointing device
US4492949A (en) Tactile sensors for robotic gripper and the like
KR100954377B1 (en) Tactile sensor and tactile sensor application apparatus
CN101258389B (en) Touch feeling sensor and touch feeling sensor application apparatus
JPS5933070Y2 (en) input device
JP3994013B2 (en) Input device
JPS5932276B2 (en) industrial robot hand
WO2020246007A1 (en) Tactile sensor, robot hand, and robot
TWI223298B (en) Sheet-type input device and the electronic machine having the same
JP2008128940A (en) Tactile sensor
JP2012161876A (en) Holding device
JP2007285784A (en) Pressure distribution information detection system and pressure distribution information detection method
EP0503186A2 (en) Keypad asssembly and instrument using same
CN114536387A (en) Soft pneumatic gripper with touch perception
CN109060200B (en) Planar array type shear force touch sensor and shear force parameter detection method
JPH0658269B2 (en) Tactile sensor
JP2615738B2 (en) Angle sensor
JPS6132601B2 (en)
CN100517375C (en) Input device and method for detecting contact position
JPH0426134B2 (en)
JPS59110595A (en) Tactile device
JPH0454422A (en) Tactile sensor
CN218211722U (en) Flexible touch sensor electrode and flexible pulse detection sensor electrode