JP2008128940A - Tactile sensor - Google Patents
Tactile sensor Download PDFInfo
- Publication number
- JP2008128940A JP2008128940A JP2006316876A JP2006316876A JP2008128940A JP 2008128940 A JP2008128940 A JP 2008128940A JP 2006316876 A JP2006316876 A JP 2006316876A JP 2006316876 A JP2006316876 A JP 2006316876A JP 2008128940 A JP2008128940 A JP 2008128940A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- sensitive conductive
- conductive member
- tactile sensor
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
Description
本発明は、対象物との接触圧及び接触位置を検出するとともに滑りをも併せて検出できる接触センサに関し、産業用ロボットや次世代ロボットのハンドに好適な触覚センサ、更には足型やベッド上での姿勢等の分布型圧力を検出するために好適な触覚センサに関する。 The present invention relates to a contact sensor that can detect a contact pressure and a contact position with an object as well as slip, and is suitable for industrial robots and hands of next-generation robots, as well as a foot shape and a bed. The present invention relates to a tactile sensor suitable for detecting a distributed pressure such as a posture at a head.
従来、触覚センサに適用可能な技術として、特許文献1に示すように、貫通孔部がマトリクス状に穿設された絶縁性支持体の一側面に被覆された弾性体電極部と、各貫通孔部に対応して他側面に設けられた複数の第二電極部とを備え、押圧により弾性体部と第二電極部の間を流れる電流により物体に加わる圧力の強さを推定し、押圧された位置を検出する圧力検出装置や、特許文献2に示すように、感圧導電性部材を用いて押圧位置を検出する圧力センサシート等が提案されている。 Conventionally, as a technique that can be applied to a tactile sensor, as shown in Patent Document 1, an elastic electrode portion that is covered on one side of an insulating support body in which through holes are formed in a matrix shape, and each through hole A plurality of second electrode parts provided on the other side corresponding to the part, and the pressure applied to the object is estimated by the current flowing between the elastic body part and the second electrode part by pressing, and pressed. For example, a pressure detection device that detects a pressed position, a pressure sensor sheet that detects a pressed position using a pressure-sensitive conductive member, and the like have been proposed.
感圧導電性部材を用いた触覚センサは、図18に示すように、互いに平行な複数本の電極パターン20a,20bが形成された一対の電極シート20を、その電極パターンが直交するように配置し、加えられる圧力により電気抵抗値が変化するシート状の感圧導電性部材30を両電極シートの間に挿入してそれぞれ接着することにより構成されていた。 As shown in FIG. 18, a tactile sensor using a pressure-sensitive conductive member has a pair of electrode sheets 20 on which a plurality of parallel electrode patterns 20a and 20b are formed so that the electrode patterns are orthogonal to each other. However, the sheet-like pressure-sensitive conductive member 30 whose electric resistance value is changed by the applied pressure is inserted between the electrode sheets and bonded to each other.
しかし、シート状の感圧導電性部材を挟み込んで接着するサンドウィッチ構造を採用していたため、加えられる圧力の検出位置を精度良く求めるためには感圧導電性部材に対する両電極シートの位置関係を厳密に設定しなければならず、製造上の困難さがあるばかりでなく、そのような接触センサを長期に亘り使用すると電極シートと感圧導電性部材の接着が弱まり、剥離やずれが発生して検出精度が低下するという問題があった。 However, since the sandwich structure that sandwiches and adheres the sheet-like pressure-sensitive conductive member is adopted, the positional relationship between the two electrode sheets with respect to the pressure-sensitive conductive member is strictly determined in order to accurately obtain the detection position of the applied pressure. In addition to manufacturing difficulties, using such a contact sensor for a long time weakens the adhesion between the electrode sheet and the pressure-sensitive conductive member, resulting in peeling or misalignment. There was a problem that the detection accuracy was lowered.
そこで、本願出願人らは、長期に亘り検出精度が低下することなく、高分解能であっても十分な感度で検出できる触覚センサ及び触覚センサの感度調節方法を提供することを目的として、押圧により抵抗値が変化するシート状の感圧導電性部材と、前記感圧導電性部材の一側面に配置され、前記感圧導電性部材のインピーダンスを検出する電圧印加電極と電圧検出電極でなる電極セルの複数がマトリクス状に配列された電極シートを備えた接触センサを提案している(特願2005−165374号) Therefore, the applicants of the present application are intended to provide a tactile sensor that can be detected with sufficient sensitivity even at high resolution without degrading detection accuracy over a long period of time, and a sensitivity adjustment method for the tactile sensor. An electrode cell comprising a sheet-like pressure-sensitive conductive member whose resistance value changes, and a voltage application electrode and a voltage detection electrode which are arranged on one side surface of the pressure-sensitive conductive member and detect the impedance of the pressure-sensitive conductive member Has been proposed (Japanese Patent Application No. 2005-165374).
一方、特許文献3には、斜め方向や左右前後の加圧方向の判別が可能な触覚センサとして、押圧面が形成された面形成体と該面形成体に突設された接触用凸部とを有する剛体でなる接触子と、該接触子の押圧面からの圧力が作用する感圧導電性エラストマー部材と、該感圧導電性エラストマー部材の前記押圧面と対向する表面とは反対側の表面に沿って配置されたプリント基板と、該プリント基板上に前記感圧導電性エラストマー部材と当接するように配置された電極とを具備してなり、前記接触子の接触用凸部を前記感圧導電性エラストマー部材の表面より外方に突出させると共に、前記電極が前記押圧面の大略中心に対応する位置に設けた共通電極と、前記押圧面の周縁部に対応させて前記共通電極の周囲に配置した複数の外方電極からなることを特徴とする触覚センサが提案されている。
上述した特許文献3に記載された従来の触覚センサによれば、感圧導電性エラストマー部材の表面を絶縁性外皮で覆うと共に、接触子の面形成体を前記絶縁性外皮より内方に位置させ、且つ該接触子の接触用凸部を前記絶縁性外皮の表面より外方に突出させるように構成されたものであり、そのような触覚センサをロボットハンドに実装したときには、剛体である接触用凸部の先端部が把持対象物と直接接触するため、硬度によっては把持対象物が破損したり、逆に接触用凸部が破損する虞があり、更には把持対象物と接触用凸部が滑って円滑に把持できないという問題があった。また、このような触覚センサを用いて対象物の滑り加重及び方向を検出する際に、対象物が平坦な剛体である場合等には接触用凸部との接触位置で剛体が滑ってしまい、接線方向の成分を検出できないという問題もあった。 According to the conventional tactile sensor described in Patent Document 3 described above, the surface of the pressure-sensitive conductive elastomer member is covered with the insulating outer skin, and the surface forming body of the contact is positioned inward from the insulating outer skin. And the contact convex portion of the contact is projected outward from the surface of the insulating skin, and when such a tactile sensor is mounted on a robot hand, the contact is a rigid body. Since the tip of the convex portion is in direct contact with the object to be gripped, there is a risk that the object to be gripped may be damaged or the convex portion for contact may be damaged depending on the hardness. There was a problem that it could not be gripped smoothly. In addition, when detecting the sliding load and direction of the object using such a tactile sensor, the rigid body slips at the contact position with the contact convex portion when the object is a flat rigid body, etc. There was also a problem that a tangential component could not be detected.
このような種々の問題により対象物の正確な圧力分布が検出できず、延いては対象物の形状を精度良く検出できないという問題があり、一層の改良が望まれていた。 Due to such various problems, there is a problem that an accurate pressure distribution of the object cannot be detected, and further, the shape of the object cannot be detected with high accuracy, and further improvement has been desired.
本発明の目的は、上述の従来の問題点に鑑み、法線方向のみならず接線方向の圧力も精度良く検出できる信頼性の高い触覚センサを提供する点にある。 In view of the above-described conventional problems, an object of the present invention is to provide a highly reliable tactile sensor that can accurately detect not only the normal direction but also the pressure in the tangential direction.
上述の目的を達成するため、本発明による触覚センサの第一の特徴構成は、特許請求の範囲の書類の請求項1に記載の通り、押圧により抵抗値が変化するシート状の感圧導電性部材と、前記感圧導電性部材の一側面に配置され、前記感圧導電性部材のインピーダンスを検出する複数の電極セルが所定方向に配列された電極シートと、前記感圧導電性部材を挟んで隣接する電極セル間に跨るように対向配置され、前記感圧導電性部材を加圧する複数の圧力伝達部材と、前記圧力伝達部材を被覆する弾性被覆層とを備え、前記弾性被覆層により前記圧力伝達部材が感圧導電性部材の法線方向及び接線方向に変位自在に支持されている点にある。 In order to achieve the above-mentioned object, the first characteristic configuration of the tactile sensor according to the present invention is a sheet-like pressure-sensitive conductivity whose resistance value is changed by pressing as described in claim 1 of the claims. A member, an electrode sheet disposed on one side surface of the pressure-sensitive conductive member, and a plurality of electrode cells for detecting impedance of the pressure-sensitive conductive member arranged in a predetermined direction, and the pressure-sensitive conductive member sandwiched between And a plurality of pressure transmission members that pressurize the pressure-sensitive conductive member, and an elastic coating layer that covers the pressure transmission member, and the elastic coating layer The pressure transmission member is supported so as to be displaceable in the normal direction and the tangential direction of the pressure-sensitive conductive member.
上述の構成によれば、対象物からの圧力を受けて感圧導電性部材の法線方向に変位しまたは接線方向に傾斜した圧力伝達部材により感圧導電性部材が加圧されるようになり、圧力伝達部材に対向配置された電極セルの夫々で検出されるインピーダンス値に基づいて付与された圧力の方向及び大きさが検出されるようになる。このとき、対象物からの圧力が弾性被覆層を介して圧力伝達部材に付与されるので、対象物の破損を招くことなく、さらには弾性被覆層との摩擦力の作用で対象物の法線方向への滑りも効果的に回避される。従って、法線方向の圧力のみならず接線方向の圧力をも精度良く検出することができるようになる。また、油分や水分による湿潤環境下や塵埃の飛散する厳しい環境下でも、弾性被覆層により水分や塵埃等の電極シートへの浸入が防止されるようになり、当該触覚センサの劣化を回避することも可能になる。 According to the above configuration, the pressure-sensitive conductive member is pressurized by the pressure transmission member that is displaced in the normal direction of the pressure-sensitive conductive member or inclined in the tangential direction in response to the pressure from the object. The direction and the magnitude of the applied pressure are detected based on the impedance value detected in each of the electrode cells arranged to face the pressure transmission member. At this time, since the pressure from the object is applied to the pressure transmission member through the elastic coating layer, the normal line of the object is not affected by the frictional force with the elastic coating layer without causing damage to the object. Sliding in the direction is also effectively avoided. Therefore, not only the pressure in the normal direction but also the pressure in the tangential direction can be detected with high accuracy. In addition, the elastic coating layer prevents moisture and dust from entering the electrode sheet even in a wet environment due to oil or moisture, or in a harsh environment where dust is scattered, and avoids deterioration of the tactile sensor. Is also possible.
同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、前記弾性被覆層のヤング率が前記感圧導電性部材のヤング率の50%から400%の範囲に設定されている点にある。 In the second characteristic configuration, as described in claim 2, in addition to the first characteristic configuration described above, the Young's modulus of the elastic coating layer is from 50% to 400 of the Young's modulus of the pressure-sensitive conductive member. It is in the point set in the range of%.
弾性被覆層のヤング率が小さ過ぎる場合には、対象物からの圧力を圧力伝達部材に伝えることが困難となるばかりか、僅かな圧力でも対象物と圧力伝達部材間で剪断破断される虞がある。逆にヤング率が大き過ぎる場合には、対象物からの圧力が伝達されるべき圧力伝達部材のみならず周辺の圧力伝達部材にも分散して伝達されるようになり、圧力検出精度及び分解能が低下する虞がある。上述の構成によれば、弾性被覆層のヤング率が前記感圧導電性部材のヤング率の前後の範囲に設定されているため、対象物から付与される想定範囲内の圧力で剪断破断されることなく、対象物からの圧力が伝達されるべき圧力伝達部材に対して良好に圧力を伝達することができるとともに、周辺の圧力伝達部材への影響が極力低減され、良好な圧力検出精度及び分解能を実現することができるようになる。 If the Young's modulus of the elastic coating layer is too small, not only is it difficult to transmit the pressure from the object to the pressure transmission member, but even a slight pressure may cause shear fracture between the object and the pressure transmission member. is there. On the other hand, when the Young's modulus is too large, the pressure from the object is distributed and transmitted not only to the pressure transmitting member to be transmitted but also to the surrounding pressure transmitting members, and the pressure detection accuracy and resolution are reduced. May decrease. According to the above-described configuration, since the Young's modulus of the elastic coating layer is set in a range before and after the Young's modulus of the pressure-sensitive conductive member, the material is sheared and fractured at a pressure within an assumed range applied from the object. Therefore, the pressure can be transmitted to the pressure transmission member to which the pressure from the object is to be transmitted, and the influence on the surrounding pressure transmission member is reduced as much as possible, and the pressure detection accuracy and resolution are excellent. Can be realized.
同第三の特徴構成は、同請求項3に記載した通り、上述の第一または第二の特徴構成に加えて、前記圧力伝達部材は、前記感圧導電性部材に面接触する接触部と、前記接触部から前記法線方向に延出形成され前記弾性被覆層を介して付与される外力を前記接触部に伝達する伝達部を備えた剛体で構成され、前記接触部は前記電極セルとの対向領域のうち前記電極セルの配列方向に沿う最大長さが各電極セルの配列方向長さの40%から80%の範囲に設定され、前記対向領域の面積が少なくとも前記電極セルの面積の15%から65%の範囲に設定されている点にある。 In the third characteristic configuration, as described in the third aspect, in addition to the first or second characteristic configuration described above, the pressure transmission member includes a contact portion in surface contact with the pressure-sensitive conductive member. A rigid body including a transmission portion that extends from the contact portion in the normal direction and transmits an external force applied through the elastic coating layer to the contact portion, and the contact portion is connected to the electrode cell. The maximum length along the arrangement direction of the electrode cells is set in a range of 40% to 80% of the arrangement direction length of each electrode cell, and the area of the counter region is at least the area of the electrode cell. This is in the range of 15% to 65%.
対象物から受ける感圧導電性部材の法線方向または接線方向の圧力成分が伝達部に伝達されることにより、伝達部とともに剛体を形成する接触部が法線方向に変位しまたは接線方向に傾斜した姿勢で感圧導電性部材が加圧され、接触部に対向配置された隣接電極セルにより夫々のインピーダンスが検出される。つまり圧力伝達部材は法線方向の圧力により法線方向に位置が変位し、接線方向の圧力により生じるモーメントにより法線方向に対して傾斜することにより接線方向の圧力を法線方向の圧力に変換されるのである。一般的に接触部と電極セルの対向面が平行であるときには、接触部と電極の対向領域の面積が大きいほど法線方向圧力の検出感度が大きくなるため、接触部と電極セルの対向面が平行でないときであっても同様に想定されていたが、本願発明者らの解析の結果、接触部の電極セルへの対向面積が大きいときには、傾斜する圧力伝達部材と隣接する圧力伝達部材との間に介在する弾性被覆層の応力によりモーメントが弱められて検出感度が低下するということが判明した。また接触部の電極セルへの対向面積が小さいときには、弾性被覆層の応力による影響は少ないのであるが感圧導電性部材への圧力が小さくなり検出感度が低下する。そこで、鋭意研究の結果、上述の構成を採用することにより、電極セルによる接線方向の圧力に対する検出感度を良好に設定できることが明らかになった。 When the pressure component in the normal or tangential direction of the pressure-sensitive conductive member received from the object is transmitted to the transmission part, the contact part that forms a rigid body with the transmission part is displaced in the normal direction or inclined in the tangential direction. In this posture, the pressure-sensitive conductive member is pressurized, and the respective impedances are detected by the adjacent electrode cells arranged opposite to the contact portion. In other words, the position of the pressure transmission member is displaced in the normal direction due to the pressure in the normal direction, and the tangential pressure is converted to the normal pressure by being inclined with respect to the normal direction due to the moment generated by the tangential pressure. It is done. In general, when the contact portion and the facing surface of the electrode cell are parallel, the larger the area of the contact region and the facing region of the electrode, the greater the detection sensitivity of the normal direction pressure. Although it was similarly assumed even when not parallel, as a result of analysis by the inventors of the present application, when the facing area of the contact portion to the electrode cell is large, the inclined pressure transmission member and the adjacent pressure transmission member It was found that the detection sensitivity was lowered because the moment was weakened by the stress of the elastic coating layer interposed between them. When the contact area of the contact portion facing the electrode cell is small, the influence of the stress on the elastic coating layer is small, but the pressure on the pressure-sensitive conductive member is reduced and the detection sensitivity is lowered. As a result of intensive research, it has been clarified that the detection sensitivity to the pressure in the tangential direction by the electrode cell can be set satisfactorily by adopting the above-described configuration.
同第四の特徴構成は、同請求項4に記載した通り、上述の第三の特徴構成に加えて、前記圧力伝達部材は、前記伝達部が前記接触部の最大径より小径で前記接触部の面中心から前記法線方向に延出形成されるとともに、前記圧力伝達部材の前記法線方向高さが前記接触部の最大径の40%から100%の範囲に設定されている点にある。 In the fourth feature configuration, as described in claim 4, in addition to the third feature configuration described above, the pressure transmission member includes the contact portion having a diameter smaller than a maximum diameter of the contact portion. The height in the normal direction of the pressure transmission member is set in the range of 40% to 100% of the maximum diameter of the contact portion. .
図8に基づけば、圧力伝達部材の伝達部に付与された接線方向の圧力をFyとして、Fyにより生じる接触部中心G周りのモーメントにより接触部の端部作用する法線方向の圧力Fzに変換するyz二次元単純モデルを〔数1〕で表すことができる。ここで、z1は接触部の法線方向の長さであり、z2は伝達部の法線方向の長さであり、y1は伝達部の接線方向の長さであり、y2は接触部の接線方向の長さである。
〔数1〕によれば、圧力伝達部材の法線方向高さ(z1+z2)が接触部の幅y2の50%となるときに、接線方向の圧力に対する法線方向への圧力変換効率が100%となり、法線方向高さ(z1+z2)を大きくするほど検出感度が上昇する。しかし、上述したように、傾斜する圧力伝達部材と隣接する圧力伝達部材との間に介在する弾性被覆層の応力によりモーメントが弱められて検出感度が却って低下することになる。また、法線方向高さ(z1+z2)を大きくするほど接触センサの肉厚も厚くなるという問題も生じる。そこで、圧力伝達部材の法線方向高さを上述の範囲に設定することにより、接線方向成分の検出感度を適正に確保視ながらも薄型の触覚センサを得ることができるようになる。 According to [Equation 1], when the height (z1 + z2) of the pressure transmission member is 50% of the width y2 of the contact portion, the pressure conversion efficiency in the normal direction with respect to the pressure in the tangential direction is 100%. Thus, the detection sensitivity increases as the height in the normal direction (z1 + z2) is increased. However, as described above, the moment is weakened by the stress of the elastic coating layer interposed between the inclined pressure transmission member and the adjacent pressure transmission member, and the detection sensitivity is lowered. Further, there is a problem that the thickness of the contact sensor increases as the height in the normal direction (z1 + z2) increases. Therefore, by setting the height in the normal direction of the pressure transmission member in the above-described range, it is possible to obtain a thin tactile sensor while ensuring adequate detection sensitivity of the tangential direction component.
同第五の特徴構成は、同請求項5に記載した通り、上述の第四の特徴構成に加えて、前記圧力伝達部材は、前記伝達部の径が前記接触部の最大径の20%から60%の範囲に設定されている点にある。 In the fifth feature configuration, as described in claim 5, in addition to the fourth feature configuration described above, the pressure transmission member has a diameter of the transmission portion from 20% of the maximum diameter of the contact portion. This is in the range of 60%.
伝達部の径を接触部の径と同径にすると、接線方向の圧力成分により生じるモーメントにより圧力伝達部材が傾斜する際に、接触部の傾斜方向に沿った一方の端部を中心に傾斜して他方の端部が浮き上がるという不都合が生じる虞がある。さらに、傾斜する圧力伝達部材と隣接する圧力伝達部材との間に介在する弾性被覆層の応力によりモーメントが弱められて検出感度が却って低下するという問題もある。一方、伝達部の径を接触部の径よりも小さくすると強度不足による破損する虞もある。そこで、伝達部の径を上述の範囲に設定することにより、上述の不都合を解消して適正に接線方向成分を検出することができる触覚センサを得ることができる。 If the diameter of the transmission part is the same as the diameter of the contact part, when the pressure transmission member is inclined by the moment generated by the pressure component in the tangential direction, it is inclined about one end along the inclination direction of the contact part. There is a risk that the other end will be lifted. Further, there is a problem that the detection sensitivity is lowered due to the moment being weakened by the stress of the elastic coating layer interposed between the inclined pressure transmission member and the adjacent pressure transmission member. On the other hand, if the diameter of the transmission part is made smaller than the diameter of the contact part, there is a risk of damage due to insufficient strength. Therefore, by setting the diameter of the transmission portion within the above range, it is possible to obtain a tactile sensor that can eliminate the above-described disadvantages and appropriately detect the tangential direction component.
同第六の特徴構成は、同請求項6に記載した通り、上述の第四または第五の特徴構成に加えて、前記圧力伝達部材は、前記伝達部の前記法線方向に沿った高さが前記圧力伝達部材の高さの60%から90%の範囲に設定されている点にある。 In the sixth feature configuration, in addition to the above-described fourth or fifth feature configuration, the pressure transmission member has a height along the normal direction of the transmission portion. Is set in the range of 60% to 90% of the height of the pressure transmission member.
傾斜する圧力伝達部材と隣接する圧力伝達部材との間に介在する弾性被覆層の応力によりモーメントが弱められて検出感度が却って低下するという問題に対処するためには、接触部の肉厚を薄くすることが好ましいが、逆に強度不足による破損を招く。そこで、伝達部の前記法線方向に沿った高さを上述の範囲に設定することにより、強度を確保しながらも、接線方向の圧力成分に対する検出感度が良好な触覚センサを得ることができる。 In order to cope with the problem that the moment is weakened by the stress of the elastic coating layer interposed between the inclined pressure transmission member and the adjacent pressure transmission member and the detection sensitivity is lowered, the thickness of the contact portion is reduced. Although it is preferable to do so, conversely, damage due to insufficient strength is caused. Therefore, by setting the height of the transmission portion along the normal direction in the above-described range, it is possible to obtain a tactile sensor with good detection sensitivity for a pressure component in the tangential direction while ensuring strength.
同第七の特徴構成は、同請求項7に記載した通り、上述の第一から第六の何れかの特徴構成に加えて、各圧力伝達部材に対向配置された隣接する電極セル群で検出されるインピーダンスに基づいて、付与される圧力の法線方向成分及び接線方向成分を算出し、各電極セル群について算出された法線方向成分及び接線方向成分の圧力分布パターンに基づいて対象物の形状または動きを算出する演算処理部を備えている点にある。 The seventh feature configuration is detected by an adjacent electrode cell group disposed opposite to each pressure transmission member in addition to any of the first to sixth feature configurations described above. The normal direction component and the tangential direction component of the applied pressure are calculated based on the impedance to be applied, and based on the pressure distribution pattern of the normal direction component and the tangential direction component calculated for each electrode cell group It is in the point provided with the arithmetic processing part which calculates a shape or a motion.
各圧力伝達部材に対向配置された隣接する電極セル群で検出されるインピーダンスは、各圧力伝達部材に付与された外力の法線方向成分と接線方向成分が含まれている。そこで、演算処理部により電極セル群で検出されたインピーダンスに基づいて外力の法線方向成分と接線方向成分を夫々算出し、複数の電極セル群に対して算出された圧力分布パターンに基づいて対象物の形状または動きを算出するのである。 The impedance detected by the adjacent electrode cell group disposed opposite to each pressure transmission member includes a normal direction component and a tangential direction component of the external force applied to each pressure transmission member. Therefore, the normal direction component and the tangential direction component of the external force are calculated based on the impedance detected in the electrode cell group by the arithmetic processing unit, and the target is based on the pressure distribution pattern calculated for the plurality of electrode cell groups. The shape or movement of an object is calculated.
以上説明した通り、本発明によれば、法線方向のみならず接線方向の圧力も精度良く検出できる信頼性の高い触覚センサを提供することができるようになった。 As described above, according to the present invention, it is possible to provide a highly reliable tactile sensor capable of accurately detecting not only the normal direction but also the tangential pressure.
以下に本発明による触覚センサをロボットハンドに用いた実施の形態を説明する。ロボットハンド20は、図1及び図2に示すように、掌となる基体10と、前記基体10に支持された五本のフィンガーユニット(以下、「指体」と記す。)1,2,3,4,5とから構成されている。 An embodiment in which the tactile sensor according to the present invention is used for a robot hand will be described below. As shown in FIGS. 1 and 2, the robot hand 20 includes a base body 10 serving as a palm and five finger units (hereinafter referred to as “finger bodies”) 1, 2, and 3 supported by the base body 10. , 4 and 5.
前記指体1,2,3,4,5は、夫々人間の手の母指(第一指)、示指(第二指)、中指(第三指)、薬指(第四指)、小指(第五指)に対応し、各指体は、第一、第二、第三、第四の四本のリンク部材L1,L2,L3,L4をその軸心P方向と直交する方向の軸心P1,P2,P3,P4周りに回転する四つの関節部材J1,J2,J3,J4を介して連結した関節装置で構成される。 The finger bodies 1, 2, 3, 4, and 5 are a thumb (first finger), an indicating finger (second finger), a middle finger (third finger), a ring finger (fourth finger), and a little finger (human finger), respectively. Corresponding to the fifth finger), each finger body has four first, second, third, and fourth link members L1, L2, L3, and L4 in the direction perpendicular to the axis P direction. It is composed of joint devices connected via four joint members J1, J2, J3, and J4 that rotate around P1, P2, P3, and P4.
前記指体2,3,4,5は、互いに平行配置され、基端側から順に第一軸心P1周りに回転可能な第一関節部材J1と、前記第一軸心P1と直交する第二軸心P2周りに回転可能な第二関節部材J2と、前記第二軸心P2に平行な第三軸心P3周りに回転可能な第三関節部材J3と、前記第二軸心P2に平行な第四軸心P4周りに回転可能な第四関節部材J4を備え、前記第一関節部材J1の回転により互いの指体の間隔が広がりまたは狭まるように変位し、前記第二関節部材J2から前記第四関節部材J4の回転により対象物を把持しまたは開放するように変位可能に構成されている。 The fingers 2, 3, 4, and 5 are arranged in parallel to each other, and a first joint member J1 that is rotatable around the first axis P1 in order from the base end side, and a second that is orthogonal to the first axis P1. A second joint member J2 rotatable about the axis P2, a third joint member J3 rotatable about the third axis P3 parallel to the second axis P2, and parallel to the second axis P2. A fourth joint member J4 that is rotatable about the fourth axis P4, and the first joint member J1 is displaced so that the distance between the fingers is widened or narrowed by the rotation of the first joint member J1; The fourth joint member J4 is configured to be displaceable so as to grip or release the object by the rotation of the fourth joint member J4.
各指体1,2,3,4,5は基本的に同一構造であるので、以下、代表として指体2について説明する。図2及び図3に示すように、前記指体2の各関節部材J1,J2,J3,J4には、ハーモニックドライブ(登録商標)減速機構が組み込まれ、前記基体10、及び、前記リンク部材L1,L2の中空部に前記軸心Pと直交する方向に回転軸を有するエンコーダ内蔵のモータが内装され、前記モータを一方向に回転駆動することにより、前記関節部材J1,J2,J3の夫々が前記軸心P1,P2,P3周りで対象物に対して把持方向に揺動駆動され、前記モータを逆方向に回転駆動することにより、前記関節部材J1,J2,J3の夫々が前記軸心P1,P2,P3周りで開放方向に揺動駆動されるように構成されている。 Since each finger 1, 2, 3, 4, 5 has basically the same structure, the finger 2 will be described below as a representative. As shown in FIGS. 2 and 3, each joint member J1, J2, J3, J4 of the finger body 2 incorporates a harmonic drive (registered trademark) reduction mechanism, and the base 10 and the link member L1. , L2 includes a motor with a built-in encoder having a rotation shaft in a direction orthogonal to the axis P, and the joint members J1, J2, J3 are respectively driven by rotating the motor in one direction. The joint members J1, J2, and J3 are driven to swing around the shaft centers P1, P2, and P3 in the gripping direction with respect to the object, and the motor is rotated in the reverse direction. , P2, and P3 are configured to be driven to swing in the opening direction.
各関節部材J1,J2,J3,J4の近傍には夫々力覚センサ(図示せず)が設けられ、前記リンク部材L2,L3,L4の腹部には、図1から図3に示すように、夫々触覚センサAが配置されている。 A force sensor (not shown) is provided in the vicinity of each joint member J1, J2, J3, J4, and the abdomen of the link members L2, L3, L4, as shown in FIGS. A tactile sensor A is arranged for each.
図1に示すように、上述のユニバーサルロボットハンド20に設けられた各触覚センサAの出力が圧力分布情報検出装置C1に入力されるとともに、各エンコーダの出力及び各力覚センサの出力が行動制御装置C2に入力され、前記行動制御装置C2から各関節部材J1,J2,J3,J4を駆動するためのモータ駆動信号が出力されるように構成されている。 As shown in FIG. 1, the output of each tactile sensor A provided in the above-described universal robot hand 20 is input to the pressure distribution information detection device C1, and the output of each encoder and the output of each force sensor are action controlled. A motor drive signal for driving each joint member J1, J2, J3, J4 is output from the action control device C2 and input to the device C2.
前記圧力分布情報検出装置C1及び行動制御装置C2はネットワークNを介して統合制御装置C3に接続され、前記統合制御装置C3は前記圧力分布情報検出装置C1により解析された各フィンガーユニットの腹部に付与される対象物からの圧力情報、及び前記行動制御装置C2により解析された各関節の姿勢情報と各リンク部材に掛かる力覚情報に基づいて前記行動制御装置C2に各モータに対する駆動情報を出力するように構成されている。 The pressure distribution information detection device C1 and the behavior control device C2 are connected to an integrated control device C3 via a network N, and the integrated control device C3 is applied to the abdomen of each finger unit analyzed by the pressure distribution information detection device C1. Drive information for each motor is output to the behavior control device C2 based on the pressure information from the target object, the posture information of each joint analyzed by the behavior control device C2, and the force information applied to each link member. It is configured as follows.
前記圧力分布情報検出装置C1は、複数の触覚センサAからの出力値に基づいて各指体の各腹部に加わる圧力分布を高速に演算処理して前記統合制御装置C3に出力する。 The pressure distribution information detection device C1 performs high-speed calculation processing on the pressure distribution applied to each abdomen of each finger based on output values from the plurality of tactile sensors A, and outputs the pressure distribution to the integrated control device C3.
前記行動制御装置C2は、各力覚センサからの出力及びエンコーダ出力に基づいて、現在の各リンク部材の姿勢とそれに掛かる力を演算導出して前記統合制御装置C3に出力する。 The behavior control device C2 calculates and derives the current posture of each link member and the force applied to it based on the output from each force sensor and the encoder output, and outputs it to the integrated control device C3.
前記統合制御装置C3は、前記行動制御装置C2から入力された現在の各リンク部材の姿勢とそれに掛かる力と、前記圧力分布情報検出装置C1から入力された各腹部に加わる圧力分布等に基づいて把持対象物の形状や硬度等の特性を把握し、目的とする動作が遂行されるように前記行動制御装置C2に対して各モータM1,M2,M3に対する駆動情報を出力する。 The integrated control device C3 is based on the current posture of each link member input from the behavior control device C2 and the force applied thereto, the pressure distribution applied to each abdomen input from the pressure distribution information detection device C1, and the like. The characteristics of the object to be grasped, such as the shape and hardness, are grasped, and driving information for the motors M1, M2, M3 is output to the behavior control device C2 so that the intended operation is performed.
前記触覚センサAは、図4(a)、(b)に示すように、押圧により抵抗値が変化するシート状の感圧導電性部材7と、前記感圧導電性部材7の一側面に配置され、前記感圧導電性部材7のインピーダンスを検出する複数の電極セル14がマトリクス状に配列された電極シート8と、前記感圧導電性部材7を挟んで直交方向に隣接する四つの電極セル14間に跨るように対向配置され、前記感圧導電性部材7を加圧する複数の圧力伝達部材30と、前記圧力伝達部材30を被覆する弾性被覆層9とを備え、前記弾性被覆層9により前記圧力伝達部材30が感圧導電性部材7の法線方向及び接線方向に変異自在に支持されている。 As shown in FIGS. 4A and 4B, the tactile sensor A is disposed on a sheet-like pressure-sensitive conductive member 7 whose resistance value is changed by pressing, and one side surface of the pressure-sensitive conductive member 7. The electrode sheet 8 in which a plurality of electrode cells 14 for detecting the impedance of the pressure-sensitive conductive member 7 are arranged in a matrix, and four electrode cells adjacent in the orthogonal direction with the pressure-sensitive conductive member 7 interposed therebetween 14 and a plurality of pressure transmission members 30 that pressurize the pressure-sensitive conductive member 7 and an elastic coating layer 9 that covers the pressure transmission member 30. The pressure transmission member 30 is supported so as to be variably movable in the normal direction and the tangential direction of the pressure-sensitive conductive member 7.
前記感圧導電性部材7は、シリコーン樹脂等の絶縁性のゴム材料中に金属や炭素等の導電性粒子を均等に分散させてシート状に成形したもので、無加圧時には導電性粒子は互いに接触せず、体積抵抗、表面抵抗ともに107Ω以上の高い電気抵抗値を示すが、加圧時には導電性粒子が次第に接触し始めて電気抵抗値が滑らかに変化する。即ち、ゴムの弾性を生かして圧力変化によるゴムの歪みに伴って電気抵抗値が変化することから、加圧時にはその圧力に対応する低電気抵抗値を示すが無加圧時には元に戻り高電気抵抗値を示す。 The pressure-sensitive conductive member 7 is formed by uniformly dispersing conductive particles such as metal and carbon in an insulating rubber material such as a silicone resin, and forming the sheet in a non-pressurized state. Although they are not in contact with each other, both the volume resistance and the surface resistance exhibit a high electric resistance value of 10 7 Ω or more, but the conductive particles gradually come into contact with each other during pressurization and the electric resistance value changes smoothly. That is, since the electrical resistance value changes with the distortion of the rubber due to the pressure change by utilizing the elasticity of the rubber, it shows a low electrical resistance value corresponding to the pressure at the time of pressurization. Indicates the resistance value.
前記電極シート8は、前記感圧導電性部材7のインピーダンスを検出する二層フレキシブル基板で構成され、図5(a)に示すように、前記感圧導電性部材7に対向配置される第一基板11aに、電圧印加電極12と電圧検出電極13でなる電極セル14の複数がマトリクス状に配列されるとともに、列方向に配列された複数の電圧印加電極12が列毎に相互に接続され、外部からの電圧を同時に印加する複数のリードパターン15aが形成されている。 The electrode sheet 8 is composed of a two-layer flexible substrate that detects the impedance of the pressure-sensitive conductive member 7, and is disposed opposite to the pressure-sensitive conductive member 7 as shown in FIG. A plurality of electrode cells 14 including voltage application electrodes 12 and voltage detection electrodes 13 are arranged in a matrix on the substrate 11a, and a plurality of voltage application electrodes 12 arranged in the column direction are connected to each other in each column. A plurality of lead patterns 15a for applying external voltages simultaneously are formed.
前記電極シート8を構成する他方の第二基板11bは、図5(b)に示すように、前記第一基板11aに行方向に配列形成された複数の電圧検出電極13を行毎に相互に接続するスルーホール16bと、前記スルーホール16bを介して接続された電圧検出電極13からの検出電圧を出力する複数のリードパターン16aが形成されている。 As shown in FIG. 5B, the other second substrate 11b constituting the electrode sheet 8 has a plurality of voltage detection electrodes 13 arranged in the row direction on the first substrate 11a. A through hole 16b to be connected and a plurality of lead patterns 16a for outputting a detection voltage from the voltage detection electrode 13 connected through the through hole 16b are formed.
前記電極セル14は、図6に示すように、パターン幅0.2mm、セルサイズ3.4mm×1.8mmの矩形形状の電圧印加電極12と、その電圧印加電極12の内部で電圧印加電極12と一定の距離だけ離間するように配置された電圧検出電極13で構成される。従って、両電極パターンの間隙である電気的絶縁部分に対向する感圧導電性部材7が電気抵抗の計測対象部分となる。加圧された感圧導電性部材7の変形によって両電極12、13の間隙に対向する部分には前記導電性粒子の接触による導電経路ができ、この経路に沿って両電極間に流れる電流値に基づいて算出される抵抗値により圧力が検出される。 As shown in FIG. 6, the electrode cell 14 includes a rectangular voltage application electrode 12 having a pattern width of 0.2 mm and a cell size of 3.4 mm × 1.8 mm, and the voltage application electrode 12 inside the voltage application electrode 12. And a voltage detection electrode 13 arranged so as to be separated by a certain distance. Therefore, the pressure-sensitive conductive member 7 that faces the electrically insulating portion that is the gap between the two electrode patterns is the portion to be measured for electrical resistance. Due to the deformation of the pressurized pressure-sensitive conductive member 7, a conductive path is formed by contact of the conductive particles in a portion facing the gap between the electrodes 12, 13, and the current value flowing between the electrodes along this path The pressure is detected by the resistance value calculated based on the above.
上述の電極セル14では、両電極12、13の間隙である電気的絶縁部分の面積を大にすることで検出電流を増加させて感度を高めるべく、当該電気的絶縁部分を凹凸に入り組んだパターンとしてある。即ち、前記電極シート8に配列された電極セル14の前記電圧印加電極12と前記電圧検出電極13との相対距離、または、前記電圧印加電極12と前記電圧検出電極13との対向長さを調節することにより感度の調節が可能になる。このような感度の調節は使用する感圧導電性部材7の圧力−電気抵抗特性や検出対象物、電極セル14のサイズ、さらには用途等により適宜設定されるものである。 In the electrode cell 14 described above, in order to increase the detection current and increase the sensitivity by enlarging the area of the electrically insulating portion that is the gap between the electrodes 12 and 13, the pattern in which the electrically insulating portion is arranged in an uneven manner. It is as. That is, the relative distance between the voltage application electrode 12 and the voltage detection electrode 13 of the electrode cell 14 arranged on the electrode sheet 8 or the facing length between the voltage application electrode 12 and the voltage detection electrode 13 is adjusted. By doing so, the sensitivity can be adjusted. Such sensitivity adjustment is appropriately set according to the pressure-electric resistance characteristics of the pressure-sensitive conductive member 7 to be used, the object to be detected, the size of the electrode cell 14, and the application.
図5(a)に示すように、前記電極シート8には、70個の電極セル14がマトリクス状に配列され、前記電圧印加電極12の任意の列に電圧を印加したときに前記電圧検出電極13の任意の行から検出される電流により対応する電極セル14における圧力が算出される。列方向に配列された電極セル14は、その電圧印加電極12の一辺が共用され、行方向の間隔が0.2mmに設定されており、上述のリードパターンを含めた全パターン面積に対する計測点面積の割合が約82パーセントと高密度に構成されている。 As shown in FIG. 5A, 70 electrode cells 14 are arranged in a matrix on the electrode sheet 8, and the voltage detection electrode is applied when a voltage is applied to an arbitrary column of the voltage application electrodes 12. The pressure in the corresponding electrode cell 14 is calculated from the current detected from the 13 arbitrary rows. In the electrode cells 14 arranged in the column direction, one side of the voltage application electrode 12 is shared, the interval in the row direction is set to 0.2 mm, and the measurement point area with respect to the entire pattern area including the above lead pattern The ratio is about 82 percent and is configured with high density.
前記電極セル14は両電極12、13が縦横の中心線に対して線対象に形成され、前記電極シート8に等しい姿勢で配列されているため、何れの電極セル14においても出力特性が等しく、従って、前記感圧導電性部材7に対してどのような部位が押圧されても、精度良く安定した出力を得ることができる。 In the electrode cell 14, both electrodes 12, 13 are formed in line with respect to the vertical and horizontal center lines, and are arranged in the same posture as the electrode sheet 8, so that the output characteristics are equal in any electrode cell 14, Therefore, no matter what part is pressed against the pressure-sensitive conductive member 7, a stable output can be obtained with high accuracy.
前記圧力伝達部材30は、図7及び図9(a)に示すように、前記感圧導電性部材7に面接触する接触部31と、前記接触部31の中心から前記法線方向に延出形成され前記弾性被覆層9を介して付与される外力を前記接触部31に伝達する伝達部32を備えたアクリル系樹脂でなる剛体で構成され、図9(a)、(b)に示すように、前記接触部31の中心と前記感圧導電性部材7を挟んで直交方向に隣接する四つの電極セル14の中心が一致するように対向配置されている。尚、図9では、図5及び図6で示した電極セル14のセルサイズを3.2mm×1.8mmとして、列方向にも0.2mmの間隔で配列されている場合を示す。 As shown in FIGS. 7 and 9A, the pressure transmission member 30 is in contact with the pressure-sensitive conductive member 7 and extends in the normal direction from the center of the contact portion 31. As shown in FIGS. 9 (a) and 9 (b), it is formed of a rigid body made of an acrylic resin having a transmission portion 32 that is formed and transmits an external force applied through the elastic coating layer 9 to the contact portion 31. Further, the center of the contact portion 31 and the center of the four electrode cells 14 adjacent in the orthogonal direction across the pressure-sensitive conductive member 7 are arranged to face each other. FIG. 9 shows a case where the cell size of the electrode cell 14 shown in FIGS. 5 and 6 is 3.2 mm × 1.8 mm and arranged in the column direction at intervals of 0.2 mm.
前記接触部31は縦y2=5.0mm、横x2=3.0mm、高さz2=1.5mmの直方体で、前記伝達部32は縦y1=1.5mm、横x1=1.5mm、高さz1=3.0mmの直方体でそれらがアクリル樹脂等の絶縁性材料により一体的に成形され、そのヤング率は、100MPa以上に設定されている。 The contact portion 31 is a rectangular parallelepiped having a vertical y2 = 5.0 mm, a horizontal x2 = 3.0 mm, and a height z2 = 1.5 mm, and the transmitting portion 32 is a vertical y1 = 1.5 mm, horizontal x1 = 1.5 mm, high They are a rectangular parallelepiped of z1 = 3.0 mm, and they are integrally formed of an insulating material such as an acrylic resin, and the Young's modulus is set to 100 MPa or more.
前記圧力伝達部材30は、鋳込み成形法や光造形法により一体成形することが可能である。 The pressure transmission member 30 can be integrally molded by a casting molding method or an optical modeling method.
前記弾性被覆層9は、厚さが約5.5mmに設定され、前記感圧導電性部材7上に位置決め配置された圧力伝達部材30の上からシリコーンゴムを流し込んで硬化成形され、そのヤング率が、前記感圧導電性部材7のヤング率の50%から400%の範囲のものが使用されている。 The elastic covering layer 9 has a thickness of about 5.5 mm, and is cured and molded by pouring silicone rubber onto the pressure transmitting member 30 positioned on the pressure-sensitive conductive member 7, and its Young's modulus. However, the pressure-sensitive conductive member 7 having a Young's modulus in the range of 50% to 400% is used.
弾性被覆層を構成する材料のヤング率が小さ過ぎる場合には、対象物からの圧力を圧力伝達部材に伝えることが困難となるばかりか、僅かな圧力でも対象物と圧力伝達部材間で剪断破断される虞がある。逆にヤング率が大き過ぎる場合には、対象物からの圧力が伝達されるべき圧力伝達部材のみならず周辺の圧力伝達部材にも分散して伝達されるようになり、圧力検出精度及び分解能が低下する虞がある。 If the Young's modulus of the material forming the elastic coating layer is too small, not only will it be difficult to transmit the pressure from the object to the pressure transmission member, but even a slight pressure will cause a shear fracture between the object and the pressure transmission member. There is a risk of being. On the other hand, when the Young's modulus is too large, the pressure from the object is distributed and transmitted not only to the pressure transmitting member to be transmitted but also to the surrounding pressure transmitting members, and the pressure detection accuracy and resolution are reduced. May decrease.
上述の範囲であれば、感圧導電性部材との整合性が良好で、対象物から付与される想定範囲内の圧力で剪断破断されることなく、対象物からの圧力が伝達されるべき圧力伝達部材に対して良好に圧力を伝達することができるとともに、周辺の圧力伝達部材への影響が極力低減され、良好な圧力検出精度及び分解能を実現することができるようになる。 If it is in the above-mentioned range, the consistency with the pressure-sensitive conductive member is good, and the pressure at which the pressure from the object should be transmitted without shear fracture at the pressure within the assumed range given from the object. While being able to transmit a pressure favorably with respect to a transmission member, the influence on a surrounding pressure transmission member is reduced as much as possible, and favorable pressure detection accuracy and resolution can be realized.
本実施形態では、前記感圧導電性部材7のヤング率が0.2MPa、前記弾性被覆層9のヤング率が0.6MPa(タイプAデュロメータによる硬度20)のシリコーンゴムが採用されている。尚、ヤング率は、JIS規格表にあるJISK6254「加硫ゴムの低変形における応力・ひずみ試験方法」に基づいて計測され、具体的にはJIS規格に準拠した試験機により計測した荷重と変位の数値に基づきヤング率へ換算されるものである。また、前記圧力伝達部材30は、前記感圧導電性部材7や前記弾性被覆層9と比較してそのヤング率は非常に大きな値となるため、前記感圧導電性部材7や前記弾性被覆層9に対して剛体とみなすことができる。 In this embodiment, a silicone rubber having a Young's modulus of the pressure-sensitive conductive member 7 of 0.2 MPa and a Young's modulus of the elastic coating layer 9 of 0.6 MPa (hardness 20 by a type A durometer) is employed. The Young's modulus is measured based on JIS K6254 “Stress / Strain Test Method for Low Deformation of Vulcanized Rubber” in the JIS standard table, and specifically, the load and displacement measured by a testing machine compliant with the JIS standard. It is converted into Young's modulus based on the numerical value. Further, since the Young's modulus of the pressure transmission member 30 is very large compared to the pressure-sensitive conductive member 7 and the elastic coating layer 9, the pressure-sensitive conductive member 7 and the elastic coating layer are used. 9 can be regarded as a rigid body.
従って、上述の触覚センサAは、電極セル群を構成する四つの電極セル14と一つの圧力伝達部材30でなる触覚センサユニットaの複数がマトリクス状に配列されて構成され、前記圧力分布情報検出装置C1は、前記圧力伝達部材30に対向配置された隣接する電極セル群で検出されるインピーダンス値に基づいて、付与される圧力の法線方向成分及び接線方向成分を算出し、各電極セル群について算出された法線方向成分及び接線方向成分の圧力分布パターンに基づいて対象物の形状または動きを算出する演算処理部となる。 Therefore, the tactile sensor A described above is configured by arranging a plurality of tactile sensor units a including four electrode cells 14 and one pressure transmission member 30 constituting an electrode cell group in a matrix, and detecting the pressure distribution information. The device C1 calculates the normal direction component and the tangential direction component of the applied pressure based on the impedance value detected by the adjacent electrode cell group disposed opposite to the pressure transmission member 30, and each electrode cell group The calculation processing unit calculates the shape or motion of the object based on the pressure distribution pattern of the normal direction component and the tangential direction component calculated for.
詳述すると、前記ユニバーサルロボットハンド20の把持動作に伴って各フィンガーユニットの腹部に付与される対象物からの圧力は、前記弾性被覆層9を介して前記圧力伝達部材30の伝達部32に加えられる。前記対象物からの圧力の法線方向成分は前記伝達部32により前記接触部31全体に伝達され、前記接触部31の全面で前記感圧導電性部材7が押圧される。前記対象物からの圧力の接線方向成分は前記伝達部32により前記接触部31の中心を支点として前記接触部31に傾きを生じさせ、前記接触部31により傾きに応じた押圧力が前記感圧導電性部材7に加えられ、前記電極シート8の各電極セル14は、夫々に対向する前記感圧導電性部材7のインピーダンスに基づき圧力を検出する。 More specifically, the pressure from the object applied to the abdomen of each finger unit in accordance with the gripping operation of the universal robot hand 20 is applied to the transmission unit 32 of the pressure transmission member 30 via the elastic coating layer 9. It is done. The normal direction component of the pressure from the object is transmitted to the entire contact portion 31 by the transmission portion 32, and the pressure-sensitive conductive member 7 is pressed on the entire surface of the contact portion 31. The tangential component of the pressure from the object causes the contact portion 31 to be tilted by the transmitting portion 32 with the center of the contact portion 31 as a fulcrum, and the pressing force corresponding to the tilt is caused by the contact portion 31 to be the pressure sensitive. In addition to the conductive member 7, each electrode cell 14 of the electrode sheet 8 detects pressure based on the impedance of the pressure-sensitive conductive member 7 facing each other.
例えば、図10に示すように、対象物Bが弾性被覆層9に付与されたときにおける各電極セル14で検出される圧力分布Dを例示する。尚、図10では、触覚センサAを構成する各電極セル14に対応して分割された区画毎に検出される圧力が、濃度が濃いほど高圧力となる濃度パターンで示されている。また、前記圧力分布Dの個々の太枠dは、四つの電極セル14で構成される電極セル群毎、換言すると、触覚センサユニットa毎の区切りを示す。 For example, as shown in FIG. 10, the pressure distribution D detected in each electrode cell 14 when the object B is applied to the elastic coating layer 9 is illustrated. In FIG. 10, the pressure detected for each section divided corresponding to each electrode cell 14 constituting the tactile sensor A is shown as a density pattern in which the pressure increases as the density increases. In addition, each thick frame d of the pressure distribution D indicates a partition for each electrode cell group constituted by four electrode cells 14, in other words, for each tactile sensor unit a.
前記電極セル14からの圧力情報が前記圧力分布情報検出装置C1に入力されると、前記圧力分布情報検出装置C1は、各電極セル群で圧力の法線方向成分及び接線方向成分を算出するとともに、対象物の形状または動きを算出する。例えば、図11(a),(b),(c)に示すような特性が検出されたときには、その圧力分布Dに基づき、対象物Bの少なくとも弾性被覆層9との接触面は球面上であり、図11正面に向かって、前記弾性被覆層9上を左から右へと移動していると判断することができる。 When pressure information from the electrode cell 14 is input to the pressure distribution information detection device C1, the pressure distribution information detection device C1 calculates a normal direction component and a tangential direction component of pressure in each electrode cell group. Calculate the shape or movement of the object. For example, when the characteristics shown in FIGS. 11A, 11B, and 11C are detected, based on the pressure distribution D, at least the contact surface of the object B with the elastic coating layer 9 is a spherical surface. Yes, it can be determined that the elastic coating layer 9 is moved from left to right on the front surface of FIG.
また、電極セルのサイズに対して極めて大きな対象物から接線方向成分を持った圧力が電極セルの配列方向に平行に加えられると、当該配列方向に配列される圧力伝達部材の全てが当該接線方向に傾斜し、その方向に配列された電極セルからは、図12に示すような山型の圧力波形が得られる。このとき、各電極セルには法線方向成分の圧力と、接線方向成分が法線方向に変換された圧力との加算値が検出されているため、同じ圧力伝達部材により押圧される隣接する電極セル間の山側の値と谷側の値の加算平均処理により法線方向成分が、減算平均処理により接線方向成分が算出される。このような値や山側(谷側)から谷側(山側)に変化する傾斜角度に基づいて、対象物からの法線方向及び接線方向圧力及び形状などの情報を得ることができるのである。 Further, when a pressure having a tangential component from a very large object with respect to the size of the electrode cell is applied in parallel to the arrangement direction of the electrode cells, all of the pressure transmission members arranged in the arrangement direction are in the tangential direction. A mountain-shaped pressure waveform as shown in FIG. 12 is obtained from the electrode cells inclined in the direction and arranged in that direction. At this time, since the added value of the pressure of the normal direction component and the pressure obtained by converting the tangential direction component into the normal direction is detected in each electrode cell, adjacent electrodes pressed by the same pressure transmission member The normal direction component is calculated by the addition averaging process between the peak side value and the valley side value between the cells, and the tangential direction component is calculated by the subtraction averaging process. Based on such values and the inclination angle changing from the mountain side (valley side) to the valley side (crest side), it is possible to obtain information such as normal direction and tangential pressure and shape from the object.
以下に、圧力伝達部材の種々の形状に対して水平方向荷重をかけた場合に生じる歪を有限要素法により解析した結果(第一から第五まで)を説明する。 Below, the result (from 1st to 5th) which analyzed the distortion which arises when a horizontal direction load is applied to various shapes of a pressure transmission member by the finite element method is explained.
上述の触覚センサに用いる圧力伝達部材の形状等の適合性について、有限要素法を用いて解析した。図13に示すように、所定のメッシュサイズに分割された解析平面Eに、剛体平板F上に三つの圧力伝達部材30が併置された接触センサAモデルを構築し、接触センサAモデルの下方から1.5Nの等分布荷重をかけるとともに剛体平板を2mm/sec.で移動させたとき、図14で示すように、前記弾性被覆層9を介して前記圧力伝達部材30に付加される圧力により感圧導電性部材7に生じる歪分布に基づき、前記感圧導電性部材7に与えられる歪を算出したものである。 The suitability of the shape and the like of the pressure transmission member used in the above-described tactile sensor was analyzed using a finite element method. As shown in FIG. 13, a contact sensor A model is constructed in which three pressure transmission members 30 are arranged on a rigid flat plate F on an analysis plane E divided into a predetermined mesh size, and from below the contact sensor A model. A 1.5N equidistributed load is applied, and the rigid flat plate is 2 mm / sec. 14, based on the strain distribution generated in the pressure sensitive conductive member 7 by the pressure applied to the pressure transmitting member 30 through the elastic coating layer 9, as shown in FIG. The strain applied to the member 7 is calculated.
〔第一解析結果〕y1=1.5mm、y2=5.0mm、z1=1.5mm、z2=3.0mmと設定し、弾性被覆層9のヤング率を0.1MPaから0.6MPaまで変化させて解析を行ったところ、図15に示すように、前記感圧導電性部材7に与えられる歪は、弾性被覆層9のヤング率が大きくなるに従って若干低下する傾向にあるが、この範囲では問題なく検出できることが明らかになった。 [First analysis result] y1 = 1.5 mm, y2 = 5.0 mm, z1 = 1.5 mm, z2 = 3.0 mm and the Young's modulus of the elastic coating layer 9 is changed from 0.1 MPa to 0.6 MPa. Then, as shown in FIG. 15, the strain applied to the pressure-sensitive conductive member 7 tends to decrease slightly as the Young's modulus of the elastic coating layer 9 increases. It became clear that it could be detected without problems.
弾性被覆層のヤング率が小さ過ぎる場合には、対象物からの圧力を圧力伝達部材に伝えることが困難となるばかりか、僅かな圧力でも対象物と圧力伝達部材間で剪断破断される虞がある。逆にヤング率が大き過ぎる場合には、対象物からの圧力が伝達されるべき圧力伝達部材のみならず周辺の圧力伝達部材にも分散して伝達されるようになり、圧力検出精度及び分解能が低下する虞がある。そこで、対象物から付与される想定範囲内の圧力で剪断破断されることなく、対象物からの圧力が伝達されるべき圧力伝達部材に対して良好に圧力を伝達するべく、弾性被覆層のヤング率を感圧導電性部材のヤング率の50%から400%の範囲に設定するものであるが、上述の解析の結果、問題なく検出できることが判明した。 If the Young's modulus of the elastic coating layer is too small, not only is it difficult to transmit the pressure from the object to the pressure transmission member, but even a slight pressure may cause shear fracture between the object and the pressure transmission member. is there. On the other hand, when the Young's modulus is too large, the pressure from the object is distributed and transmitted not only to the pressure transmitting member to be transmitted but also to the surrounding pressure transmitting members, and the pressure detection accuracy and resolution are reduced. May decrease. Therefore, in order to transmit the pressure to the pressure transmission member to which the pressure from the object is to be transmitted without being sheared and fractured by the pressure within the assumed range applied from the object, the Young of the elastic coating layer is used. The rate is set in the range of 50% to 400% of the Young's modulus of the pressure-sensitive conductive member, but as a result of the above analysis, it has been found that it can be detected without problems.
〔第二解析結果〕弾性被覆層のヤング率を0.6MPa、y1=1.5mm、z1=1.5mm、z2=3.0mmと設定し、y2を3mmから6mmまで変化させて解析を行ったところ、図16(a)に示すように、前記感圧導電性部材7に与えられる歪は、y2が4mmとなるとき、最大となり、5mm以上では急激に小さくなる特性が明らかになった。圧力の接線方向成分が弾性被覆層により減衰されるためとであると理解される。このような傾向は、図示しないが、異なるヤング率に対して行なっても同様の結果が得られている。 [Second Analysis Result] The Young's modulus of the elastic coating layer is set to 0.6 MPa, y1 = 1.5 mm, z1 = 1.5 mm, z2 = 3.0 mm, and analysis is performed by changing y2 from 3 mm to 6 mm. As a result, as shown in FIG. 16 (a), the strain applied to the pressure-sensitive conductive member 7 becomes maximum when y2 is 4 mm, and becomes sharply smaller at 5 mm or more. It is understood that the tangential component of the pressure is attenuated by the elastic coating layer. Although such a tendency is not shown, the same result is obtained even if it is performed for different Young's moduli.
〔第三解析結果〕弾性被覆層9のヤング率を0.6MPa、y1=1.5mm、y2=5.5mm、z2=2.0mmと設定し、z1を0mmから2.5mmまで変化させて解析を行ったところ、図16(b)に示すように、前記感圧導電性部材7に与えられる歪は、z1が大きくなるほど高い値となる特性が見られる。 [Third analysis result] The Young's modulus of the elastic coating layer 9 is set to 0.6 MPa, y1 = 1.5 mm, y2 = 5.5 mm, z2 = 2.0 mm, and z1 is changed from 0 mm to 2.5 mm. As a result of analysis, as shown in FIG. 16B, the strain applied to the pressure-sensitive conductive member 7 has a characteristic that the value becomes higher as z1 increases.
〔第四解析結果〕弾性被覆層9のヤング率を0.6MPa、y2=4.0mm、z1=3.0mm、z2=1.5mmと設定し、y1を1mmから4mmまで変化させて解析を行ったところ、図17(a)に示すように、前記感圧導電性部材7に与えられる歪は、y1大きくなるに連れて低下する傾向が見られた。このような傾向は、図示しないが、異なるヤング率に対して行なっても同様の結果が得られている。この場合にも圧力の接線方向成分が弾性被覆層により減衰されるためとであると理解される。 [Fourth analysis result] The Young's modulus of the elastic coating layer 9 is set to 0.6 MPa, y2 = 4.0 mm, z1 = 3.0 mm, z2 = 1.5 mm, and the analysis is performed by changing y1 from 1 mm to 4 mm. As a result, as shown in FIG. 17A, the strain applied to the pressure-sensitive conductive member 7 tended to decrease as y1 increased. Although such a tendency is not shown, the same result is obtained even if it is performed for different Young's moduli. In this case as well, it is understood that the tangential component of the pressure is attenuated by the elastic coating layer.
〔第五解析結果〕弾性被覆層9のヤング率を0.6MPa、y1=1.5mm、y2=4.0mm、z1+z2=4.5mmと設定し、z1を1mmから4mmまで変化させて解析を行ったところ、図17(b)に示すように、前記感圧導電性部材7に与えられる歪は、z1が増加するほど高い値となる特性が明らかになった。上述した単純二次元モデルが実証されたものである。しかし、z1+z2が一定の制限下では機械的強度等を勘案して適切な値を採用する必要がある。 [Fifth Analysis Result] The Young's modulus of the elastic coating layer 9 is set to 0.6 MPa, y1 = 1.5 mm, y2 = 4.0 mm, z1 + z2 = 4.5 mm, and the analysis is performed by changing z1 from 1 mm to 4 mm. As a result, as shown in FIG. 17 (b), it was found that the strain applied to the pressure-sensitive conductive member 7 increases as z1 increases. The simple two-dimensional model described above has been demonstrated. However, when z1 + z2 is limited, it is necessary to adopt an appropriate value in consideration of mechanical strength and the like.
以上に示す解析結果、種々の実験、及び部材の機械的強度を比較勘案した結果、前記圧力伝達部材は、前記接触部は前記電極セルとの対向領域のうち前記電極セルの配列方向に沿う最大長さが各電極セルの配列方向長さの40%から80%の範囲に設定され、前記対向領域の面積が少なくとも前記電極セルの面積の15%から65%の範囲に設定されるのが好ましい。また、前記電極セルの配列方向に沿う最大長さが各電極セルの配列方向長さの50%から75%の範囲に設定され、前記対向領域の面積が少なくとも前記電極セルの面積の25%から57%の範囲に設定されるのがより好ましい。 As a result of comparing and considering the analysis results, various experiments, and the mechanical strength of the member, the pressure transmission member has a maximum in the arrangement direction of the electrode cell in the region where the contact portion is opposed to the electrode cell. It is preferable that the length is set in a range of 40% to 80% of the arrangement direction length of each electrode cell, and the area of the facing region is set in a range of at least 15% to 65% of the area of the electrode cell. . The maximum length along the arrangement direction of the electrode cells is set in a range of 50% to 75% of the arrangement direction length of each electrode cell, and the area of the facing region is at least from 25% of the area of the electrode cells. More preferably, it is set in the range of 57%.
また、前記圧力伝達部材は、前記伝達部が前記接触部の最大径より小径で前記接触部の面中心から前記法線方向に延出形成されるとともに、前記圧力伝達部材の前記法線方向高さが前記接触部の最大径の40%から100%の範囲に設定されるのが好ましく、75%から95%の範囲がより好ましい。尚、径とは矩形に形成された接触部または圧力伝達部の法線に対する横断面形状が矩形の場合にはその対角線の長さを、円形の場合には半径を示す(以下、同様)。 In addition, the pressure transmission member is formed such that the transmission portion has a diameter smaller than the maximum diameter of the contact portion and extends from the center of the surface of the contact portion in the normal direction, and the height of the pressure transmission member in the normal direction is increased. Is preferably set in the range of 40% to 100% of the maximum diameter of the contact portion, and more preferably in the range of 75% to 95%. The diameter indicates the length of the diagonal line when the cross-sectional shape with respect to the normal line of the contact part or the pressure transmission part formed in a rectangle is rectangular, and the radius when the shape is circular (the same applies hereinafter).
さらに、前記圧力伝達部材は、前記伝達部の径が前記接触部の最大径の20%から60%の範囲に設定されるのが好ましく、25%から50%の範囲に設定されるのがより好ましい。 Further, in the pressure transmission member, the diameter of the transmission part is preferably set in a range of 20% to 60% of the maximum diameter of the contact part, and more preferably in a range of 25% to 50%. preferable.
さらに、前記圧力伝達部材は、前記伝達部の前記法線方向に沿った高さが前記圧力伝達部材の高さの60%から90%の範囲に設定されるのが好ましく、65%から70%の範囲に設定されるのがより好ましい。 Furthermore, the pressure transmission member preferably has a height along the normal direction of the transmission portion set in a range of 60% to 90% of the height of the pressure transmission member, and 65% to 70%. More preferably, it is set within the range.
以下、別実施形態を説明する。上述した実施形態では、弾性被覆層をシリコーンゴムにより構成するものを説明したが、弾性被覆層のヤング率が感圧導電性部材7のヤング率の50%から400%の範囲のものであれば、これに制限されるものではなく、他にウレタン、天然ゴム等を採用することができ、ウレタンゲルのようなエラストマーゲル状物質を採用するものであってもよい。これらは、接触センサの用途等に応じて適宜選択されるもので、その柔軟性や厚み等の諸特性も用途に応じて適宜設定することができる。 Hereinafter, another embodiment will be described. In the above-described embodiment, the elastic coating layer is made of silicone rubber. However, if the Young's modulus of the elastic coating layer is in the range of 50% to 400% of the Young's modulus of the pressure-sensitive conductive member 7. However, the present invention is not limited to this, and urethane, natural rubber, and the like can also be employed, and an elastomer gel material such as urethane gel may be employed. These are appropriately selected according to the use of the contact sensor and the like, and various characteristics such as flexibility and thickness can be appropriately set according to the use.
また、シート状の感圧導電性部材の組成、厚み、電極セルのサイズ、電極パターンの幅、電圧印加電極と前記電圧検出電極の形状等は、本発明の作用効果が奏される範囲において適宜変更して構成することが可能である。例えば、電極セルの形状は長方形に限るものではなく正方形としてもよく、さらには円形を採用するものであってもよい。 In addition, the composition, thickness, electrode cell size, electrode pattern width, voltage application electrode and voltage detection electrode shape, etc. of the sheet-like pressure-sensitive conductive member are appropriately selected within the range where the effects of the present invention are exhibited. It is possible to change and configure. For example, the shape of the electrode cell is not limited to a rectangle, but may be a square, and may further be a circle.
上述した実施形態では、圧力伝達部材を、接触部31を縦y2=5.0mm、横x2=3.0mm、高さz2=1.5mmの直方体で、前記伝達部32を縦y1=1.5mm、横x1=1.5mm、高さz1=3.0mmの直方体で構成するものを説明したが、これらの数値は上述した範囲内で適宜設定することが可能であり、その形状も上述した範囲内に収まる限りにおいて、また電極セルの形状との関係において適宜変更することができる。例えば、接触部の形状として正方形を採用してもよいし、伝達部の断面形状として長方形を採用するものであってもよい。さらには伝達部の形状を円柱形状としてもよいし、上端側ほど縮径された円錐台形状に形成するものであってもよい。 In the above-described embodiment, the pressure transmitting member is a rectangular parallelepiped having the contact portion 31 with the longitudinal y2 = 5.0 mm, the lateral x2 = 3.0 mm, and the height z2 = 1.5 mm, and the transmitting portion 32 with the longitudinal y1 = 1. Although the description has been made of the rectangular parallelepiped having 5 mm, horizontal x1 = 1.5 mm, and height z1 = 3.0 mm, these numerical values can be appropriately set within the above-described range, and the shape thereof is also described above. As long as it falls within the range, it can be appropriately changed in relation to the shape of the electrode cell. For example, a square may be employed as the shape of the contact portion, and a rectangle may be employed as the cross-sectional shape of the transmission portion. Furthermore, the shape of the transmission portion may be a columnar shape, or may be formed in a truncated cone shape with a diameter reduced toward the upper end side.
上述の触覚センサは、極限作業から家庭内での家事まで人間の作業を補完可能なヒューマノイドロボットのハンドに好適なものであるが、対象物との法線方向及び接線方向の接触圧や接触位置を検出する触覚センサとして幅広く使用することができる。 The tactile sensor described above is suitable for humanoid robot hands that can complement human work from extreme work to domestic chores, but with normal and tangential contact pressure and contact position with the object. It can be widely used as a tactile sensor for detecting.
7:感圧導電性部材
8:電極シート
9:弾性被覆層
14:電極セル
30:圧力伝達部材
31:接触部
32:伝達部
A:触覚センサ
7: Pressure-sensitive conductive member 8: Electrode sheet 9: Elastic coating layer 14: Electrode cell 30: Pressure transmission member 31: Contact part 32: Transmission part A: Tactile sensor
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006316876A JP2008128940A (en) | 2006-11-24 | 2006-11-24 | Tactile sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006316876A JP2008128940A (en) | 2006-11-24 | 2006-11-24 | Tactile sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008128940A true JP2008128940A (en) | 2008-06-05 |
Family
ID=39554894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006316876A Pending JP2008128940A (en) | 2006-11-24 | 2006-11-24 | Tactile sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008128940A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012050033A1 (en) * | 2010-10-14 | 2012-04-19 | シャープ株式会社 | Inspection device for plate material |
US8650971B2 (en) | 2009-05-22 | 2014-02-18 | The University Of Electro-Communications | Slippage detection device and method |
KR101449407B1 (en) | 2012-12-10 | 2014-10-15 | 한국기계연구원 | Highly Sensitive Tactile Sensor using Interlocking of Piezoelectric Element |
JP2018200281A (en) * | 2017-05-29 | 2018-12-20 | エルジー ディスプレイ カンパニー リミテッド | Force detector |
EP4019921A1 (en) | 2020-12-24 | 2022-06-29 | Yokogawa Electric Corporation | Force detector and force detection system |
WO2023008190A1 (en) * | 2021-07-26 | 2023-02-02 | 株式会社ブリヂストン | Estimation device, estimation method, and estimation program |
-
2006
- 2006-11-24 JP JP2006316876A patent/JP2008128940A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8650971B2 (en) | 2009-05-22 | 2014-02-18 | The University Of Electro-Communications | Slippage detection device and method |
WO2012050033A1 (en) * | 2010-10-14 | 2012-04-19 | シャープ株式会社 | Inspection device for plate material |
KR101449407B1 (en) | 2012-12-10 | 2014-10-15 | 한국기계연구원 | Highly Sensitive Tactile Sensor using Interlocking of Piezoelectric Element |
JP2018200281A (en) * | 2017-05-29 | 2018-12-20 | エルジー ディスプレイ カンパニー リミテッド | Force detector |
JP7007112B2 (en) | 2017-05-29 | 2022-01-24 | エルジー ディスプレイ カンパニー リミテッド | Force detector |
EP4019921A1 (en) | 2020-12-24 | 2022-06-29 | Yokogawa Electric Corporation | Force detector and force detection system |
JP2022100447A (en) * | 2020-12-24 | 2022-07-06 | 横河電機株式会社 | Force detector and force detection system |
US11976988B2 (en) | 2020-12-24 | 2024-05-07 | Yokogawa Electric Corporation | Force detector and force detection system with layered structure and stress generator |
JP7558054B2 (en) | 2020-12-24 | 2024-09-30 | 横河電機株式会社 | Force detector and force detection system |
WO2023008190A1 (en) * | 2021-07-26 | 2023-02-02 | 株式会社ブリヂストン | Estimation device, estimation method, and estimation program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5089774B2 (en) | Combined sensor and robot hand | |
JP2008128940A (en) | Tactile sensor | |
Choi et al. | Development of anthropomorphic robot hand with tactile sensor: SKKU Hand II | |
JP4364146B2 (en) | Tactile sensor | |
JP5187856B2 (en) | Tactile sensor | |
US20160136822A1 (en) | Robotic finger structure | |
US9851271B2 (en) | Sensor and method of manufacturing the same | |
JP4987304B2 (en) | Flexible contact type load measuring sensor | |
KR20080031946A (en) | Tactile sensor and device to which tactile sensor is applied | |
CN101258389B (en) | Touch feeling sensor and touch feeling sensor application apparatus | |
DK181377B1 (en) | Tactile sensor, matrix of tactile sensors, and methods for producing the same | |
JP5787537B2 (en) | Gripping device and robot device | |
JP2007285784A (en) | Pressure distribution information detection system and pressure distribution information detection method | |
JP2007152528A (en) | Joint device, finger unit using the joint device and universal robot hand | |
JP2004330370A (en) | Tactile sensor for robot hand | |
JP2020131378A (en) | Hand and robot | |
JP2012112685A (en) | Flexible sensor and controller for evaluating sensor | |
JP2005351653A (en) | Pressure sensor | |
KR20220085068A (en) | flexible multi-modal tactile sensor | |
JP2006337315A (en) | Tactile sensor and sensitivity-adjusting method of the tactile sensor | |
US11073434B2 (en) | Manufacturing method for shear and normal force sensor | |
JPS60221287A (en) | Force sensor for robot | |
CN109060200B (en) | Planar array type shear force touch sensor and shear force parameter detection method | |
JP2020091097A (en) | Force sensor | |
JP2011007654A (en) | Contact detector and robot |