JPS5932233A - Fading discriminating processing system - Google Patents

Fading discriminating processing system

Info

Publication number
JPS5932233A
JPS5932233A JP57142550A JP14255082A JPS5932233A JP S5932233 A JPS5932233 A JP S5932233A JP 57142550 A JP57142550 A JP 57142550A JP 14255082 A JP14255082 A JP 14255082A JP S5932233 A JPS5932233 A JP S5932233A
Authority
JP
Japan
Prior art keywords
alarm signal
alarm
time
fading
generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57142550A
Other languages
Japanese (ja)
Other versions
JPS6247016B2 (en
Inventor
Hiroyoshi Suzuki
鈴木 弘佳
Tetsuya Kaneko
哲也 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57142550A priority Critical patent/JPS5932233A/en
Publication of JPS5932233A publication Critical patent/JPS5932233A/en
Publication of JPS6247016B2 publication Critical patent/JPS6247016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/17Detection of non-compliance or faulty performance, e.g. response deviations

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

PURPOSE:To discriminate a substantial failure from the effect due to fading, by applying Fourier transformation to an alarm signal in a certain time, and obtaining an approximate value of a frequency representing the peak value of a spectrum. CONSTITUTION:An alarm signal from radio devices RA-RC is detected at a sensor SEN and transferred to a computer CPU in a monitor station SV. The CPU summarizes the alarm signal for a prescribed time T from that point of time so as to discriminate a failure when the generation/restoring information of the alarm signal from the SEN is inputted. When the generation/restoration of the alarm signal continues, the next summarizing is performed from the time of generation/restoration time of the alarm signal just after the 1st summarization. The CPU counts the generation/restoration number of times (n) at each alarm after the end of each summarizing time so as to obtain n/2T. This value is compared with a prescribed value (f), and when the generation of alarm at the end of summarization, it is assumed as the fading in case of f<=n/2T and as the generation of a failure in case of f>n/2T.

Description

【発明の詳細な説明】 il+  発明の技術分野 本発明は、コンビーータによる無線通信設備の1洋視シ
ステムにおいて、無線通信設備荀が発するアラーム信号
の発生/復旧の、謀り返し状態の持つけyltを、フー
リエ変換の理論に基づくスペクトル密度が示す特徴によ
りflJ定し、本来の装置故障とフェージングによるア
ラーム発生とを識別することが出来るフェージング判定
処理方式に闇する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention is directed to a system for wireless communication equipment using a conbeater, and the key to generating/restoring an alarm signal emitted by the wireless communication equipment in a counterattack state. The present invention is based on a fading determination processing method that determines flJ based on the characteristics shown by the spectral density based on the theory of Fourier transform, and can distinguish between an original device failure and an alarm occurrence due to fading.

(2)技術の背足 従来から例えば、監視局から遠隔地にある無人局の無線
装置については、褐1図に示す如き構成によシ、無線装
置RA、RB、RCLJ)動作状j疎を監視局Svにて
監視を行なっている。
(2) Technological background Traditionally, for example, wireless equipment for unmanned stations located far from the monitoring station has been configured as shown in Figure 1. Monitoring is performed by monitoring station Sv.

そして例えば無線装置RAK異鹿が発生丈ると、無線装
rM、RAが発するアラーム信号を七ンνSENによっ
て検出し、監視局SVに1=送している。ここでアラー
ム信号が発生ずる要因としで、無線装置自体の故障とそ
の無線装置に対向する黒線装置の故1・慴または、フェ
ージングによる支1呂不良とが考えらtLる。いすれの
*台にも黒線装置からは、同僚ム現象としてアラーム信
号を発生する。このため監視局VCおいてh1対同する
燕胎裟1暖と含む装置の故障とフェージングとを区別し
ないと、無用に保守者を現地に派遣してしまう。
For example, when the radio device RAK is detected, an alarm signal emitted by the radio devices rM and RA is detected by the seven-pin νSEN and sent to the monitoring station SV. Here, the possible causes for the generation of the alarm signal are a failure of the wireless device itself, a failure of the black line device facing the wireless device, or a failure due to fading. An alarm signal is generated from the black wire device on both * machines as a synchronized phenomenon. For this reason, unless the monitoring station VC distinguishes between h1 and the same swallow's womb 1 warm, equipment failures, and fading, maintenance personnel will be needlessly dispatched to the site.

(3)便来技術及び問題点 このため従来からアラーム信号がフェージングによるも
のか否かの判定を行っているか、この判足方法に以下の
2つの方法のいずれかがとられていた3、一つQ、[、
アラー−′、信号の7cケア”+々旧を全て故障の発生
/ イr、i 11」として処理し、フェージング−(
”あるか苦力は、運用者が−i’lJ )ji L s
 システムに入力することにより行う方法で、ちり、I
Toの1つは!、+421♀Ha)のように計尊機(C
PU)においで、アラーム信号の発生/′田旧を一定時
間で集約し故j:ψ44」定を行い、その集約時間内で
発生に始まりノー、・終曲にuJl(コ1だアラームに
対して、フェージングと111定ずカ る1式である。
(3) Conventional techniques and problems For this reason, conventional techniques have been used to determine whether or not an alarm signal is due to fading. Tsu Q, [,
All alarm-', signal 7c care'' + 10 years old are treated as failure occurrence/ir, i 11'', and fading-(
``If there is any difficulty, the operator is -i'lJ)ji L s
Dust, I
One of the To is! , +421♀Ha), Keisonki (C
PU), the occurrence of alarm signals is summarized in a certain period of time, and ψ44 is determined, and within that aggregation time, the occurrence of the alarm signal starts with no, and ends with uJl (for the alarm with 1). , fading and 111 constants.

従って、前者の方法でv」、故1はり元生/1ン旧時の
複雑な処理をアラーム信号の凡生/1夛旧の都度行tな
ければならないことによるCPU負時の増大と、人間が
介aすることによるシスデムq〕非効率1jt+及び判
1177条作の不確定さという欠点がめり、後者の方法
においては、第2図(11の様に、取初の第約時間の彼
もフェージングが49.いている場合、集約終r時点に
おりるアラームの状態が発生fillにるるさ、フェー
ジングでにL&(故17発生と誤判定しまうために計q
俵(CPU)が無駄な処理を行う(4)発明の目的 本発明は、上記の点を青嵐して価号の発生、/後旧を一
褌のディジタル信号と考え、この・1−号に対してフー
リエ変換を施した場合のスペクトル密度がピークとなる
周波数を求め、この値により通常の故障とフェージング
とを識別することにょシ、人間が介在することなく、故
障の正確な判定を行う故障判定処理方式を提供するにあ
る。
Therefore, with the former method, the CPU has to carry out complex processing each time the alarm signal is generated/replaced, which increases the CPU load, and the human The drawbacks of inefficiency 1jt+ and uncertainty of the 1177-article production are serious, and in the latter method, as shown in Fig. If 49. is present, the state of the alarm at the end of aggregation r will be delayed to the occurrence fill, and due to fading it will be erroneously judged as the occurrence of 17.
The CPU performs unnecessary processing (4) Purpose of the invention The present invention takes the above points into consideration, considers the generation of the value code, and considers the old and new values to be one digital signal. The frequency at which the spectral density peaks when subjected to Fourier transform is determined, and this value is used to distinguish normal failures from fading.Faults can be accurately determined without human intervention. The purpose is to provide a judgment processing method.

(5)発明の構成 上記目的標1、通信設備から発せられるアラーム信号を
2値情報として取り込み、通信、設備の故障状態をコン
ピュータにより監視するシステムにおいて、ある時間内
におけるアラーム信号をフーリエ変換して、スペクトル
のピーク値をゴ;す周波数の近以値を求め、その値より
本来の故障とフェージングによる杉響とを識別すること
を特赦とするフェージング゛r1」定処理方式によって
達成される。
(5) Structure of the Invention In the above objective 1, a system that captures alarm signals emitted from communication equipment as binary information and monitors failure states of communication and equipment using a computer, Fourier transforms the alarm signals within a certain period of time. This is achieved by a fading ``r1'' processing method that allows the user to find a value close to the frequency at which the peak value of the spectrum is determined, and then use that value to distinguish between an original failure and a cedar echo caused by fading.

((1)発明の実施例 以上本発明を実施例に基づいて説明する。((1) Examples of the invention The present invention will be described above based on examples.

本9ら明Lj、 、辿′^の故1訃発生時とフェージン
グ発生時とフェージング発生時におりるアラーム16号
の発止/イλ、旧の・房1尾j:・よひ時111」間隔
の旅いに;白−目し、これが次の方法を、用いることに
よって、定−板曲に把握式れることを利用したものでめ
る。
Activation of alarm No. 16 that goes off when a death occurs, when a fading occurs, and when a fading occurs in Book 9. The journey of the interval is done by taking advantage of the fact that it can be grasped as a fixed plate by using the following method.

通信設備からy13.せられるアラーム16号の弗化/
後旧の縁り返しrl、−神のディジタル1ら号と見なす
ことが出来る。(第3図(−+1ε11i・)t/ζ、
jd3図(b)の様に、この信号をある限られた時1t
J区閤で見ると、原波形と同じ楳シ返し数を持つ、周波
数の一定な矩形波で近(1)、L、−C考えることが出
来る。
From communication equipment y13. Fluorization of alarm No. 16 /
It can be regarded as the ``Kami no Digital 1''. (Figure 3 (-+1ε11i・)t/ζ,
jd3 As shown in figure (b), this signal is 1t at a certain limited time.
Looking at J-ku, it can be considered as a rectangular wave with a constant frequency, having the same number of waveforms as the original waveform, near (1), L, -C.

そこで、この同量り、)f iJの長さをTとし、フー
リエ夏換による周波数スペクトルの>jイ1j(f−巧
えると、第3図fc)に示す、ij8にf = (−)
の周Jに0でピークzl′ を示t。
Therefore, let T be the length of this same weight, )f iJ, and add f = (-) to ij8, as shown in the frequency spectrum by Fourier summer conversion, shown in >j i1j (f-to be precise, Fig. 3 fc).
shows a peak zl' at 0 on the circumference J of t.

ここてIIはT萌聞内におりる丸Aユ/α旧5ノ回敢で
ある。今、通1.1般((−が故障リイ・い番、;フェ
ージング状週となりた時、夾此−のアラーム1ii号の
示J−は質(スペクトル)U、通話のへ’JQ+Qン1
ノー)・り合、6+541Δ(alに示)、1手にアラ
ーム16号すなわち改心のり3生状態に^I、i; i
4 シ性炉りるため、E+441<1(b)に示す様に
その周波数スペクトルはf−介伺近にピークを持つ分布
となる。これに対して、フェージングの場合給4図(c
:に訴す様に、アラームのり′ら生/ 1jl1日が数
s m S〜数秒(最小値はハードウェアに」:って異
なる)の間隔で連続する性質があり、その周波数スペク
トルは第4図(a)に示す様にf=(,4)(nは時間
T内の発生/俵旧の回数;nal)の周波数でピークを
持つ分布となる。従っC1Tを適当な陣にし”””倉、
)の値を求めることによシ、両者を定量的に識別するこ
とが可能である。
Here, II is Maru Ayu/α old 5th round in T Moebunai. Now, 1.1 general ((- is the faulty number, ; when it is fading, the indication of alarm 1ii of this- is the quality (spectrum) U, and the call is 'JQ+Q'n1
No) Riai, 6 + 541 Δ (shown in al), alarm No. 16 on the first hand, that is, conversion to the 3rd state of life ^I, i; i
4. Since the frequency is 4, the frequency spectrum becomes a distribution with a peak near f-interval, as shown in E+441<1(b). On the other hand, in the case of fading, Figure 4 (c
As shown in Figure 1, the frequency of alarms is continuous at intervals of several seconds to several seconds (the minimum value depends on the hardware), and the frequency spectrum is As shown in Figure (a), the distribution has a peak at a frequency of f=(,4) (n is the number of occurrences/the number of bales in the time T; nal). Therefore, put C1T in a suitable position and "Kura"
), it is possible to quantitatively distinguish between the two.

以上の(ヰ質を利用し、本発明では、最初のアラーム信
号の発生時刻からイじめ定めた時間区間Tの間のデータ
を1ヌ隼し、その時間内におけるアラームは弓の発生/
復旧回数■1を求め、ピーク周波数(h)を計it t
、、この値を予じめ定めた賊と比・ビL、その直より大
きい場合はフ、−ジンクとし、小式い病aは故[・竣兄
生とする。但し、とれ(・寸集約終了時点におりるアラ
ームの状態が発生の」4シ合のみでりす、復旧の場合は
(幻、)の直が予じめ定められたイ14より小ネくても
故障とfi、シない。また前者で、フェージングと判定
した」J、1合は、邦約終了時点でアラームが発生した
ものとして次の7時間のデータ収集でし11始するもの
とする。
Utilizing the above characteristics, in the present invention, the data for a predetermined time interval T from the time when the first alarm signal is generated is collected, and the alarm within that time is the occurrence of a bow.
Find the number of restoration times ■1 and calculate the peak frequency (h).
,,This value is compared to a predetermined value, and if it is larger than that, it is assumed to be a -zinc, and a small illness is considered to be a late [・complete birth]. However, if the alarm condition that occurs at the end of the aggregation occurs only in 4 cases, the correction of (phantom) is smaller than the predetermined 14. Also, in the former case, it was determined to be fading.It is assumed that an alarm occurred at the end of the contract, and data collection for the next 7 hours shall begin from 11.

次に、本発明の実施例について第1図zi! 5図、第
6図を用いて説明する。図において、無線装置RA、 
RB、 RC7)hらI)7ラーム信−号はセンサSE
Nによって検出され、監視局SV内の計算機(CPU)
に転送される。
Next, FIG. 1 zi! shows an embodiment of the present invention. This will be explained using FIGS. 5 and 6. In the figure, wireless device RA,
RB, RC7) h et al. I) 7 alarm signal is sensor SE
Detected by N, the computer (CPU) in the monitoring station SV
will be forwarded to.

計I!−機CPUはセンサSENからアラーム信号の発
生/復旧情報が入力されると1,45図に示されるよう
に、そのh点からある一定時間Tの間、送られて来るア
ラーム信号情報を年収し、その集約さtまたアラーム状
態号の全てを用いて故障判定を行う。また更にアラーム
信号の発生/復旧が続く鳴合a1回目の集約の旧後のア
ラーム信号の’4n !:+/復旧時刻から次の集約を
行う。このようにして集められたデータに対して、計算
機CPUでは各集約時間終了後アラーム毎にその発生/
復旧の回数をカウントし、集約時間1゛経過後カウンタ
値をその値を2Tで割シ(2−T)を求める。そして、
この′l1Mを予じめ定められた直f(第4図(1))
、 (a))と比較する0比較した結果 、(II/2
1”)がfより小さい場合、桑約品麩時及び集約終了時
フ′ンーム的弓がイ(旧しでいた力・否か′lL刊屋す
る。国力とも復旧していた」ん合には瞬間故障、として
故14発生とはせず終了時復旧してなりれは故諒宛生と
判定゛J−る。
Total I! - When the alarm signal generation/recovery information is input from the sensor SEN, the machine CPU calculates the annual income of the alarm signal information sent from point h for a certain period of time T, as shown in Figures 1 and 45. , the aggregation t, and all of the alarm status numbers are used to determine a failure. In addition, alarm signal generation/recovery continues, '4n' of alarm signals before and after the first aggregation! :+/ Perform the next aggregation from the recovery time. For the data collected in this way, the computer CPU handles each alarm after the end of each aggregation time.
The number of restorations is counted, and after an aggregation time of 1'' has elapsed, the counter value is divided by 2T to obtain (2-T). and,
This 'l1M is determined by the predetermined directivity f (Fig. 4 (1))
, Compare with (a)) 0 Comparison result , (II/2
1") is smaller than f, then at the time of the mulberry deal and the end of aggregation, the Fummu's bow is ii (the old power, or not, the national power has also been restored). 14 was not considered to be an instantaneous failure, but it was recovered at the end of the operation, and it was determined that the failure was due to failure.

一方果約開ゾb時アラーム@号がプら生し−Cおp1呆
駒組了時アシーム信号が置旧しCいれ(ば故畝復1日と
し、ユ祖h!Ji冬了時にもアラーム稀号が発生してい
れ(fよ、瞬ILJ山旧として状変がなかつたものとし
、故障が’w51aして発生していると団足J〜る。一
方1]/2Tがfよシ犬ひい一合(Cおいで、果約邑始
時アラーム信号が復旧していたJ易げにフェージングと
flJ iilターる。又 41シわ開始時アラーム信
号〃・うb生しておシ、l仕組ンi冬r時)′シームイ
己;号が1夛1目していれば改陣表旧と判足し、果g/
)長子時アジ・−ム信号がノb生しでいノLは、状鹿ン
Q L 、とL−,15iJlす1り駒組時の状態Wか
祇絖し“Cい。とflJ定ずろ。
On the other hand, when the contract is open, the alarm @ is activated and the Aseem signal is replaced when the C op1 group is completed. If a rare alarm has occurred (f), assuming that there is no change in the situation as the instant ILJ mountain old, it is assumed that the failure has occurred since 'w51a.On the other hand, 1]/2T is f. The alarm signal was restored at the beginning of the game, and the alarm signal was fading easily. If the name is 1 夛 1, then it is considered to be old, and the result is
) When the firstborn Aji-mu signal is generated, the state L is QL, and L-, 15iJl is the state W when the pieces are assembled. Zuro.

これらの判定基準を1とめると第1表のようになる。但
し、集約終了時点でアラムムが発生、次の集約を始める
ものとする。
If these criteria are set to 1, the result will be as shown in Table 1. However, when the aggregation ends, an alumm occurs and the next aggregation begins.

第1表について、説明すると、[復旧→発生Jとは集約
時間の最初はアラーム信号が復状態で、集約時間の終了
時点でアラーム信号が発生状態であることを示している
。第i5図における2回目の集約がこの場合に相当する
To explain Table 1, [Recovery→occurrence J indicates that the alarm signal is in the restored state at the beginning of the aggregation time, and that the alarm signal is in the generated state at the end of the aggregation time. The second aggregation in FIG. i5 corresponds to this case.

又、1発生→復旧」は、集約時間の最初はアラーム信号
が発生状態で、集約時間の終了時点で、ア、・ラーム信
号が復旧状態であることを示している。
Further, "1 occurrence→recovery" indicates that the alarm signal is in the generated state at the beginning of the aggregation time, and the alarm signal is in the recovery state at the end of the aggregation time.

第5図における3回目の集約がこの場合に相当する0 (6)発明の効果 本発明によれば、フェージングの判定を人間が介入せず
行うことが出歩、さらに集約終了時のアラーム状態に影
響され卆故障と誤判定することを防ぎ、運用者に対して
よシ正確な情報を提供することができる。また、故障と
誤判定される回数が減少され、総合的に見て計算機CP
Uの負荷を軽減する効果も期待できる。
This case corresponds to the third aggregation in FIG. It is possible to prevent a erroneous determination that the unit is affected by a malfunction, and to provide more accurate information to the operator. In addition, the number of times it is incorrectly determined to be a failure is reduced, and overall the computer CP
The effect of reducing the load on U can also be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、無線通信装置の監視システム図、第2図は従
来のフェージング判定方式を説明するための図、第3図
、第4図は本発明の原理を示す図、第5図は本発明にお
けるフェージング判定方式を説明するための図、第6図
は、本発明のフローチャートである。 図中RA、RB:+ RCは無線装置、SENはセンサ
ー−8Vtj:監視局である。
FIG. 1 is a diagram of a monitoring system for wireless communication equipment, FIG. 2 is a diagram for explaining a conventional fading determination method, FIGS. 3 and 4 are diagrams showing the principle of the present invention, and FIG. 5 is a diagram of the present invention. FIG. 6, which is a diagram for explaining the fading determination method in the invention, is a flowchart of the invention. In the figure, RA, RB:+RC is a wireless device, SEN is a sensor-8Vtj: a monitoring station.

Claims (1)

【特許請求の範囲】[Claims] 通信設備から発のられるアラーム信号を21直清として
取込み、通信設備の故障状態全コンピュタにより監挑す
るシステムにおいて、ある時間内におけるアラーム1吉
号、フーリエ入換して、スペクトルのビーク11代?示
す周波叡の近似lliを求め、その直より本来の故障と
ノエー゛ジングによる影曽とkA別すること全特徴とす
るフェージング判定処理方式。
In a system that captures the alarm signal emitted from communication equipment as 21 direct current, and monitors all failure states of the communication equipment using a computer, the alarm number 1 within a certain time is replaced by Fourier, and the peak of the spectrum is 11? This fading judgment processing method is characterized in that an approximation lli of the frequency value shown is obtained, and then the original failure, the effect due to no aging, and kA are distinguished from each other.
JP57142550A 1982-08-17 1982-08-17 Fading discriminating processing system Granted JPS5932233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57142550A JPS5932233A (en) 1982-08-17 1982-08-17 Fading discriminating processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57142550A JPS5932233A (en) 1982-08-17 1982-08-17 Fading discriminating processing system

Publications (2)

Publication Number Publication Date
JPS5932233A true JPS5932233A (en) 1984-02-21
JPS6247016B2 JPS6247016B2 (en) 1987-10-06

Family

ID=15317949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57142550A Granted JPS5932233A (en) 1982-08-17 1982-08-17 Fading discriminating processing system

Country Status (1)

Country Link
JP (1) JPS5932233A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108313A (en) * 1985-11-07 1987-05-19 Mitsubishi Electric Corp Off-line programming method for robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108313A (en) * 1985-11-07 1987-05-19 Mitsubishi Electric Corp Off-line programming method for robot

Also Published As

Publication number Publication date
JPS6247016B2 (en) 1987-10-06

Similar Documents

Publication Publication Date Title
MX2012011006A (en) Apparatus, system, and method for creating one or more slow-speed communications channels utilizing a real-time communication channel.
MX2014008136A (en) Apparatus, system, and method for creating one or more slow-speed communications channels utilizing a real-time communication channel.
CN112738538B (en) Live broadcasting room on-hook behavior detection method and device, electronic equipment and computer readable storage medium
CN106911800A (en) A kind of water purifier data collecting system and method based on GPRS
CN109239592A (en) Contact of breaker performance monitoring method, device and monitoring system
CN103297298B (en) For the network storm detection method real-time of intelligent substation
CN112098829A (en) FTU-based terminal and method for monitoring service life of power distribution switch
JPS5932233A (en) Fading discriminating processing system
CN209182412U (en) A kind of triggering monitoring system of compensator with series capaci tance
CN204291215U (en) A kind of site monitoring system
CN115790823A (en) Fault diagnosis method of GIS disconnecting link switch and sound vibration acquisition equipment with multiple monitoring points
CN207636680U (en) Electric power facility local monitoring device and system
CN110908956A (en) Information protection main station system and fault information filing method thereof
CN112486009B (en) Time service signal abnormal waveform recording analyzer and method
CN111370115B (en) Large health artificial intelligence prevention management method and system based on block chain
CN105788173A (en) Sleep monitoring method and sleep monitoring apparatus
CN104270622A (en) Switch cabinet detection method and system
CN204559172U (en) A kind of Intelligent charging spot control loop device
CN105842563A (en) Method for rapid collection of electric quantum of feeder terminal device
CN111913054B (en) Method and system for diagnosing over-temperature fault of chopping wave and transmission control device
CN106199340A (en) The method of discrimination of a kind of CT secondary circuit broken string and device
CN109390923A (en) Power distribution control method and device for low-voltage direct controller switching equipment
CN113691400B (en) GOOSE message abnormity monitoring method
CN105467236A (en) Digital quantity signal monitoring device
CN117289145B (en) Fault analysis method, data acquisition method, device, equipment, system and medium