JPS5931996B2 - Optical output stabilization method - Google Patents

Optical output stabilization method

Info

Publication number
JPS5931996B2
JPS5931996B2 JP52002884A JP288477A JPS5931996B2 JP S5931996 B2 JPS5931996 B2 JP S5931996B2 JP 52002884 A JP52002884 A JP 52002884A JP 288477 A JP288477 A JP 288477A JP S5931996 B2 JPS5931996 B2 JP S5931996B2
Authority
JP
Japan
Prior art keywords
signal
current
component
optical output
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52002884A
Other languages
Japanese (ja)
Other versions
JPS5388590A (en
Inventor
喜市 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP52002884A priority Critical patent/JPS5931996B2/en
Publication of JPS5388590A publication Critical patent/JPS5388590A/en
Publication of JPS5931996B2 publication Critical patent/JPS5931996B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06832Stabilising during amplitude modulation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 (ハ 発明の利用分野 本発明は光通信システムの光源として半導体レーザダイ
オードを用いた時の光出力安定化装置に関し、特に信号
電流にバイアス電流を重畳する高速光源に於ける半導体
レーザの制御方式を提供する。
[Detailed Description of the Invention] (C) Field of Application of the Invention The present invention relates to an optical output stabilizing device when a semiconductor laser diode is used as a light source in an optical communication system, and particularly to a high-speed light source that superimposes a bias current on a signal current. The present invention provides a control method for semiconductor lasers that can

(2)従来技術 光通信では光源として半導体レーザダイオードが用いら
れるが、このダイオードの光出力は温度、駆動電流に非
常に大きく依存する性質がある。
(2) Prior Art In optical communications, a semiconductor laser diode is used as a light source, but the optical output of this diode has the property of being extremely dependent on temperature and drive current.

このため、従来、第1図に示す如く半導体レーザの光出
力監視光変化を駆動電流に負帰還する方法がとられてい
る。この装置の動作を略述すると、まず端子1より入力
された電気信号は駆動回路2で電圧一電流変換する。こ
の場合、高速駆動するには半導体レーザのパターン効果
を減らすためにバイアス電流に信号電流を重畳すること
が望ましい。次にバイアス電流と信号電流が重畳された
電流により3の半導体レーザを駆動すると端子6に電流
に比例した光出力が得られる。一方、半導体レーザ光出
力の監視光は光電変換回路4にて電流に変換される。こ
の電流は制御信号として利用されるものであるが、これ
は制御用信号としては制御回路5でピーク値検出、ある
いは平均値検出により交流−直流変換された後、増幅さ
れ駆動電流を制御する。この時、バイアス電流を一定に
し信号電流を制御する場合には閾電流の温度依存性が大
きいため広範囲の温度変化に追従しきれず、波形劣化が
大きくなる欠点がある。又、バイアス電流と信号電流を
同時に制御する場合にはその分配率の決定が難しく、ま
た制御の安定性を確保するのが困難である。このため、
従来はバイアス電流を制御する方法が一般的である。然
しながら、この方法は半導体レーザ特性に製造偏差や経
時劣化がある場合には必ずしも有力な方法ではない。例
えば微分量子効率βの製造偏差、経時劣化を考えてみる
。第2図は半導体レーザの駆動状態を示す。図中、1は
標準状態の微分量子効率βの時の光出カー電流特性、2
は製造偏差あるいは経時劣化による微分量子効率β′の
時の光出カー電流特性である。まず標準状態ではバイア
ス電流Ibに信号電流?aを重畳し図の如く駆動するも
のとする。この時、光出力PoはPo−β(より+IS
−Ith) ・・・・・・・・・・・・・・・・・・(
ハとなる。
For this reason, conventionally, a method has been adopted in which changes in the optical output monitoring light of the semiconductor laser are negatively fed back to the drive current, as shown in FIG. Briefly explaining the operation of this device, first, an electric signal inputted from a terminal 1 is converted into voltage and current by a drive circuit 2. In this case, in order to drive at high speed, it is desirable to superimpose a signal current on the bias current in order to reduce pattern effects of the semiconductor laser. Next, when the semiconductor laser 3 is driven by a current in which the bias current and the signal current are superimposed, an optical output proportional to the current is obtained at the terminal 6. On the other hand, the monitoring light of the semiconductor laser light output is converted into a current by the photoelectric conversion circuit 4. This current is used as a control signal, which is converted from AC to DC by peak value detection or average value detection in the control circuit 5, and then amplified to control the drive current. At this time, when the bias current is kept constant and the signal current is controlled, the temperature dependence of the threshold current is large, so that it cannot follow a wide range of temperature changes, and there is a drawback that waveform deterioration becomes large. Further, when controlling the bias current and the signal current simultaneously, it is difficult to determine the distribution ratio, and it is difficult to ensure control stability. For this reason,
Conventionally, a method of controlling bias current has been common. However, this method is not necessarily effective when there are manufacturing deviations or aging deterioration in the semiconductor laser characteristics. For example, consider the manufacturing deviation and aging deterioration of the differential quantum efficiency β. FIG. 2 shows the driving state of the semiconductor laser. In the figure, 1 is the light output Kerr current characteristic when the differential quantum efficiency is β in the standard state, and 2
is the light output Kerr current characteristic when the differential quantum efficiency β' is due to manufacturing deviation or aging deterioration. First, in the standard state, is the bias current Ib the signal current? A is superimposed and driven as shown in the figure. At this time, the optical output Po is Po−β(more than +IS
-Ith) ・・・・・・・・・・・・・・・・・・(
It becomes ha.

ここでIthは閾電流である。さて、微分量子効率が標
準状態の時の値より小さくなると光出力が減少するから
、この減少分を補償するためバイアス電流は増加する。
Here, Ith is a threshold current. Now, since the optical output decreases when the differential quantum efficiency becomes smaller than the value in the standard state, the bias current increases to compensate for this decrease.

しかし、バイアス電流が図のIb’のごとく閾電流を超
えると光出力に直流分が生じかつ光信号出力は規定値以
下で一定となるため受信側では大きなS/N劣化あるい
は符号誤り率の増加を生じる。従つて、許容される範囲
はIb<Ithであり微分量子効率の劣化量Δβは一1
a−υ J 〜−レ11−υυ/′ −4である。
However, when the bias current exceeds the threshold current as shown in Ib' in the figure, a DC component occurs in the optical output and the optical signal output remains constant below the specified value, resulting in significant S/N deterioration or an increase in the code error rate on the receiving side. occurs. Therefore, the permissible range is Ib<Ith, and the amount of deterioration Δβ of differential quantum efficiency is -1
a-υ J ~-Re11-υυ/' -4.

ここでβ。はb−1thとなる微分量子効率、IbOは
初期バイアス電流であんI,h−1b0は高速駆動の場
合には高々10mAであり、信号電流18は30〜40
mAであるから微分量子効率の劣化は25〜33%に制
限される。これは、半導体レーザの製造偏差、経時劣化
に対しては極めてきびしい条件である。(3)発明の目
的 本発明の目的は上記従来技術の問題点に鑑み、半導体レ
ーザの製造偏差、経時劣化の制限範囲を大幅に許容でき
、かつ光出力の直流分を監視できる半導体レーザの匍脚
方式を有する光出力安定化装置を提供するにあるっ(4
)発明の総括説明 本発明は上記目的を達成する為に下記の如き制御方式を
提供するものである。
Here β. is the differential quantum efficiency which becomes b-1th, IbO is the initial bias current I, h-1b0 is at most 10 mA in the case of high-speed drive, and the signal current 18 is 30 to 40 mA.
mA, the deterioration in differential quantum efficiency is limited to 25 to 33%. This is an extremely severe condition for manufacturing deviations and aging deterioration of semiconductor lasers. (3) Object of the Invention In view of the problems of the prior art described above, the object of the present invention is to provide a semiconductor laser which can largely tolerate the limited range of manufacturing deviations and aging deterioration of semiconductor lasers, and which can monitor the DC component of optical output. To provide a light output stabilizing device having a leg type (4)
) General description of the invention In order to achieve the above object, the present invention provides the following control system.

即ち、第1案は光出力に直流分が生じるとその平均値は
急激に増加するからこの増加分を検出し信号電流を制御
する方式である。第2案は、基準信号に光出力の信号成
分をもちいて直流分、信号成分を分離し、この直流分に
て信号電流を制御し、信号成分にてバイアス電流を制御
する方式である。この場合、バイアス電流の制御はピー
ク値検出信号にて行なう。(5)実施例以下、本発明を
実施例を参照して詳細に説明する。
That is, the first method is a method in which when a DC component occurs in the optical output, its average value increases rapidly, so this increase is detected and the signal current is controlled. The second method is to use the signal component of the optical output as the reference signal, separate the DC component and the signal component, control the signal current using the DC component, and control the bias current using the signal component. In this case, the bias current is controlled using the peak value detection signal. (5) Examples Hereinafter, the present invention will be explained in detail with reference to examples.

最初に原理説明を行なう。第2図で微分量子効率が劣化
した場合、光出力の直流分と信号成分はとなる0ここで
1b′は光出力の信号成分の減衰量で決まるバイアス電
流である。
First, I will explain the principle. When the differential quantum efficiency deteriorates in FIG. 2, the DC component and signal component of the optical output become 0, where 1b' is a bias current determined by the amount of attenuation of the signal component of the optical output.

このバイアス電流は(1)〜(3)式を使うとυ−レ五
1W0−ーυ である。
Using equations (1) to (3), this bias current is υ-RE51W0--υ.

ここでηは監視光と受光器との結合効率、aは光電変換
係数、Gはループの電流増幅率である。(4)式でβ。
くβ5の時はIb′はI,h以下であり、βo〉β5に
なつて初めてIth以上になる0それ故、Ib′−1,
h〉0なる条件で信号電流を制御する様にすれば光出力
の直流分を減殺できる。この時の制御信号はG77aI
8(βo−βりであり、また制御はβ′18′一β。1
8なる条件を満たす様行なわれる。
Here, η is the coupling efficiency between the monitoring light and the photoreceiver, a is the photoelectric conversion coefficient, and G is the current amplification factor of the loop. β in equation (4).
When β5, Ib' is less than I,h, and becomes more than Ith only when βo>β50 Therefore, Ib'-1,
By controlling the signal current under the condition that h>0, the DC component of the optical output can be reduced. The control signal at this time is G77aI
8 (βo−β, and the control is β′18′−β.1
This is done to satisfy the condition 8.

以上の議倫を光出力によつて表示すると次の如くなる。
即ち(3),(4)式より光出力の直流分はである。
When the above-mentioned logic is displayed using optical output, it looks like the following.
That is, from equations (3) and (4), the DC component of the optical output is.

従つて、全光出力はとなる。Therefore, the total light output is .

ここでTは信号の周期、f(t)は信号の時間変化を示
す。(6)式はβBf3Oの時直流分が零となる。すな
わちこの時光出力の平均値である。
Here, T indicates the period of the signal, and f(t) indicates the time change of the signal. In equation (6), the DC component becomes zero when βBf3O. That is, it is the average value of the optical output at this time.

従つて、(7)式を基準信号としてとれば、となりβ5
くβ。の時光出力の直流分が生じる。この場合、基準信
号は平均値でなくてもよく、交流信号成分を使用すれば
直流分と信号成分との分離が可能である。従つて、この
時の制御信号は光出力の直流分にて行なうことができる
。第3図に、本発明の一実施例を示す。
Therefore, if we take equation (7) as the reference signal, then β5
Ku β. When , a DC component of optical output occurs. In this case, the reference signal does not have to be an average value, and if an AC signal component is used, it is possible to separate the DC component and the signal component. Therefore, the control signal at this time can be performed using the DC component of the optical output. FIG. 3 shows an embodiment of the present invention.

ここで、7,8は夫々信号およびバイアス電流駆動回路
、10,9は夫々信号およびバイアス電流制御回路、1
1は基準回路、20は積分回路、21はゲーテイング回
路である。この系の動作を詳述すると、まず、監視光は
光電変換回路4にて電流に変換されるが、この電流は直
流分、交流分が重畳したものとなる。但し、μ″〉PO
の時には交流分のみであり、β1くβ。になつて初めて
直流分が生じ、こ5の増加は極めて激しくなる。従つて
積分回路20で積分すれば(6)式に相当した電流が得
られるから、この値が或る設定値以上になつた時ゲーテ
イング回路21のゲートを開き、バイアス制御回路9の
出力信号により信号電流制御回路10を制御するO様に
すればよい。この時の制御信号はβ′18′であり、こ
れと基準回路11の信号β。18とを比較し、その出力
信号で信号電流を制御する。
Here, 7 and 8 are signal and bias current drive circuits, 10 and 9 are signal and bias current control circuits, respectively, and 1
1 is a reference circuit, 20 is an integrating circuit, and 21 is a gating circuit. To explain the operation of this system in detail, first, the monitoring light is converted into a current by the photoelectric conversion circuit 4, and this current is a superimposition of a direct current component and an alternating current component. However, μ″〉PO
When , there is only the AC component, and β1 × β. It is only when this happens that a direct current component occurs, and the increase in 5 becomes extremely rapid. Therefore, if the integration circuit 20 integrates, a current corresponding to equation (6) can be obtained, so when this value exceeds a certain set value, the gate of the gating circuit 21 is opened and the output signal of the bias control circuit 9 is changed. The signal current control circuit 10 may be controlled as shown in O. The control signal at this time is β'18', and this and the signal β of the reference circuit 11. 18, and the signal current is controlled by the output signal.

この場合、制御信号、基準信号は積分信号でも交流信号
でもよい。この動作では、光出力の制御ほI〉βの時は
バイアス電流のみで行なわれ、β5くβ。では主に信号
電流にて行なわれ、バイアス電流は光出力の信号成分の
値によつて自動的に調整、決定される〇第4図に本発明
の他の実施例を示す0この系の動作原理は光出力の直流
成分にて信号電流を制御する方式で、その為、信号成分
と,直流成分との分離が必要となる。
In this case, the control signal and reference signal may be an integral signal or an alternating current signal. In this operation, when I>β, the optical output is controlled only by the bias current, and β5×β. 〇 Figure 4 shows another embodiment of the present invention 〇 Operation of this system The principle is to control the signal current using the DC component of the optical output, so it is necessary to separate the signal component and the DC component.

これは比較的簡単で、基準信号に光出力の信号成分をも
ちいればよい。このため、バイアス制御回路9にてピー
ク値検出すればよく、バイア入電流制御信号と共用でき
る利点がある。光電変換回路4の出力は直流分と交流分
とを含むから適当に増幅した後バイアス制御回路9より
得られる基準信号とを比較すれば、信号成分のみが相殺
できる。即ちこの動作は直流分検出回路12にて行なわ
れる。従つて、この回路の直流出力信号により信号電流
匍脚回路10を制御すれば信号電流はこれに応じて変化
する。この系では、基準信号と信号成分とは常に等しい
ためβ7〉βoでは直流分は零であり、β5くβ′初め
て直流分が生じ、制御信号が得られる。そのため、この
直流分を検出すれば制御と同時に光出力の直流分を監視
できる。従つて第3図の如く制限は不要となる。尚、こ
の場合も基準信号、信号成分は積分でも交流信号でもよ
いことは論を待たない0また、バイアス電流制御は常に
行なわれる〇以上、本発明の特徴は、信号電流とバイア
ス電流制御を分離し、β(βoの条件のみで信号電流を
制御することにある。
This is relatively simple, and it suffices to use the signal component of the optical output as the reference signal. Therefore, it is sufficient to detect the peak value in the bias control circuit 9, which has the advantage of being able to be used in common with the via input current control signal. Since the output of the photoelectric conversion circuit 4 includes a direct current component and an alternating current component, only the signal components can be canceled out by appropriately amplifying the output and comparing it with the reference signal obtained from the bias control circuit 9. That is, this operation is performed by the DC component detection circuit 12. Therefore, if the signal current support circuit 10 is controlled by the DC output signal of this circuit, the signal current will change accordingly. In this system, since the reference signal and the signal component are always equal, the DC component is zero when β7>βo, and the DC component is generated for the first time at β5-β', and a control signal is obtained. Therefore, by detecting this DC component, the DC component of the optical output can be monitored at the same time as control. Therefore, the restriction as shown in FIG. 3 is not necessary. In this case as well, it goes without saying that the reference signal and signal component may be integral or alternating current signals.Also, bias current control is always performed.As above, the feature of the present invention is that signal current and bias current control are separated. However, the purpose is to control the signal current only under the condition of β(βo).

これにより本発明は以下に示す如き、優れた利点をもつ
ことがわかる〇向、本方式は発光ダイオードにも適用で
きることは言うまでもない。(6)まとめ 以上、説明した如く本発明によれば、半導体レーザの駆
動においてバイアス電流と信号電流との制御を分離し、
かつ半導体レーザの微分量子効率がβ5くβ。
As a result, it can be seen that the present invention has excellent advantages as shown below.It goes without saying that this method can also be applied to light emitting diodes. (6) Summary As explained above, according to the present invention, the control of bias current and signal current is separated in driving a semiconductor laser,
And the differential quantum efficiency of the semiconductor laser is β5.

になつた時にのみ信号電流を制御するため、動作が安定
であり、かつ光出力の直流分監視と消去を同時に行なう
ことができる。また、β2〈βoにても直流分が相殺で
きるため、半導体レーザの製造偏差、経時劣化を大幅に
許容できるから半導体レーザの製造歩留りを非常に高め
ることができ、製造原価の大幅な低減化を図ることがで
きる。
Since the signal current is controlled only when the signal current is reached, the operation is stable, and the DC component of the optical output can be monitored and erased at the same time. In addition, since the DC component can be offset even in β2<βo, manufacturing deviations and aging deterioration of semiconductor lasers can be largely tolerated, so the manufacturing yield of semiconductor lasers can be greatly increased, leading to a significant reduction in manufacturing costs. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の実施例を示す接続図、第2図は本発明の
動作原理を説明する図、第3図、第4図は夫々本発明の
実施例を示す接続図である。
FIG. 1 is a connection diagram showing a conventional embodiment, FIG. 2 is a diagram explaining the operating principle of the present invention, and FIGS. 3 and 4 are connection diagrams showing embodiments of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 信号電流とバイアス電流との重畳電流にて駆動され
る半導体レーザの光出力安定化方式において、該安定化
装置光出力の直流成分と信号成分を分離検出し、前記光
出力の直流成分にて前記信号電流を、また、前記光出力
の信号成分にて前記バイアス電流を制御することを特徴
とする光出力安定化方式。
1. In an optical output stabilization method for a semiconductor laser driven by a superimposed current of a signal current and a bias current, the DC component and the signal component of the optical output of the stabilizing device are separately detected, and the DC component of the optical output is An optical output stabilization method characterized in that the signal current and the bias current are controlled by a signal component of the optical output.
JP52002884A 1977-01-17 1977-01-17 Optical output stabilization method Expired JPS5931996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52002884A JPS5931996B2 (en) 1977-01-17 1977-01-17 Optical output stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52002884A JPS5931996B2 (en) 1977-01-17 1977-01-17 Optical output stabilization method

Publications (2)

Publication Number Publication Date
JPS5388590A JPS5388590A (en) 1978-08-04
JPS5931996B2 true JPS5931996B2 (en) 1984-08-06

Family

ID=11541774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52002884A Expired JPS5931996B2 (en) 1977-01-17 1977-01-17 Optical output stabilization method

Country Status (1)

Country Link
JP (1) JPS5931996B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977729A (en) * 1983-09-26 1984-05-04 Hitachi Ltd Optical communication device

Also Published As

Publication number Publication date
JPS5388590A (en) 1978-08-04

Similar Documents

Publication Publication Date Title
US4612671A (en) Laser transmitter
US5570227A (en) Method and apparatus for preventing occurrence of surge light in optical amplifier/transmitter apparatus
GB1563944A (en) Imjection lasers
JP4973005B2 (en) Laser control apparatus and control method thereof
US6192060B1 (en) Optical transmitter
US5224112A (en) Semiconductor laser device driving circuit
JP3264669B2 (en) Laser control method and its device
US4483004A (en) Laser functional device
JPS5931996B2 (en) Optical output stabilization method
JPS6190487A (en) Semiconductor laser drive circuit
JP2694803B2 (en) Optical semiconductor laser device wavelength stabilization method
JPS6230433A (en) Laser diode bias current control system
JPS6328519B2 (en)
JPH0837331A (en) Semiconductor laser controller
JPS6053478B2 (en) Optical output stabilization circuit
JP3024246B2 (en) Modulation degree stabilization circuit
JP2988142B2 (en) Optical booster amplifier and optical transmission circuit
JPS61224385A (en) Semiconductor laser drive circuit
JPH0553078B2 (en)
JPH02111127A (en) Driving controller for light emitting element
JP2620776B2 (en) Laser diode stabilization circuit
JPS62279687A (en) Semiconductor laser driving circuit
JPH0590673A (en) Optical transmitter
JPH01183872A (en) Automatic control apparatus of optical output of semiconductor laser
JPH03141738A (en) Optical transmitter