JP2988142B2 - Optical booster amplifier and optical transmission circuit - Google Patents

Optical booster amplifier and optical transmission circuit

Info

Publication number
JP2988142B2
JP2988142B2 JP4241518A JP24151892A JP2988142B2 JP 2988142 B2 JP2988142 B2 JP 2988142B2 JP 4241518 A JP4241518 A JP 4241518A JP 24151892 A JP24151892 A JP 24151892A JP 2988142 B2 JP2988142 B2 JP 2988142B2
Authority
JP
Japan
Prior art keywords
optical
excitation light
light source
amplifier
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4241518A
Other languages
Japanese (ja)
Other versions
JPH0697883A (en
Inventor
實 鹿田
有秀 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4241518A priority Critical patent/JP2988142B2/en
Publication of JPH0697883A publication Critical patent/JPH0697883A/en
Application granted granted Critical
Publication of JP2988142B2 publication Critical patent/JP2988142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、光ファイバ通信等の
分野において光信号を増幅する光ブースタアンプおよび
上記光ブースタアンプを含む光送信回路に関し、特に上
記光ブースタアンプの励起方法の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical booster amplifier for amplifying an optical signal in the field of optical fiber communication and the like and an optical transmission circuit including the optical booster amplifier, and more particularly to an improvement in a method of exciting the optical booster amplifier.

【0002】[0002]

【従来の技術】光ファイバ通信装置は高速変調特性や長
距離伝送特性に優れ、次世代の通信装置として急速な普
及と技術改良がなされている。特に光ファイバアンプ等
の光アンプを用いた光ファイバ通信装置は、高送信出力
化,高受信感度化による長距離通信系の構築や、波長多
重通信による高密度周波数多重通信の構築等が可能であ
り、将来通信システムの極めて重要な構成要素として注
目されている。
2. Description of the Related Art Optical fiber communication devices are excellent in high-speed modulation characteristics and long-distance transmission characteristics, and are being rapidly spread and improved in technology as next-generation communication devices. In particular, an optical fiber communication device using an optical amplifier such as an optical fiber amplifier can construct a long-distance communication system by increasing transmission power and receiving sensitivity, and can construct a high-density frequency multiplex communication by wavelength multiplex communication. In the future, it is attracting attention as a very important component of the communication system.

【0003】上述の光ファイバ通信装置,特に光ファイ
バアンプを送信ブースタアンプとして用いた装置では、
光信号を100mW程度まで増幅できることが確認され
ており、その長距離通信システムへの適用が期待されて
いる。
[0003] In the above-mentioned optical fiber communication apparatus, particularly in an apparatus using an optical fiber amplifier as a transmission booster amplifier,
It has been confirmed that an optical signal can be amplified up to about 100 mW, and its application to a long-distance communication system is expected.

【0004】ところで、ディジタル通信を行う光ファイ
バ通信装置では、一般に符号のマーク率(“1”,
“0”の2値のうち“1”が出現する割合)は必らずし
も0.5ではなく、例えば幹線伝送系では短時間的には
0.25から0.75程度まで、LAN等の情報伝送系
ではそれ以上変動するといわれている。このような光信
号のパルスピーク値は光送信回路の出力端において一定
値にする必要があるので、光ブースタアンプから出力さ
れる光信号の出力平均値が上述の符号マーク率において
0.5ないし1.5倍まで変動することになる。
In an optical fiber communication apparatus for performing digital communication, a mark rate of a code ("1",
The ratio of occurrence of “1” in the two values of “0” is not necessarily 0.5. For example, in the case of a trunk transmission system, from 0.25 to 0.75 in a short time, such as LAN It is said that the information transmission system fluctuates further. Since the pulse peak value of such an optical signal needs to be constant at the output end of the optical transmitting circuit, the output average value of the optical signal output from the optical booster amplifier is 0.5 to 0.5 at the above-described code mark rate. It will fluctuate up to 1.5 times.

【0005】上述した光送信回路は、光信号の平均出力
変動を吸収してピーク値一定の光信号を出力するため、
上記ブースタアンプに光ファイバアンプを用いると、こ
の光ファイバアンプの励起光出力を0.5ないし1.5
倍の範囲に出力制御する必要がある。しかし上記励起光
を発生する励起光源は、光信号のパルスピーク値が1.
0倍の通常の動作状態でも相当の出力で動作しており、
さらに高い1.5倍の励起光を出力させるには上記励起
光源の電流駆動系に相当の動作余裕が必要である。従っ
て、励起光源に上述のような高出力動作をさせると、励
起光源の寿命が大きく短縮される等の問題点があった。
The above-described optical transmission circuit absorbs the average output fluctuation of the optical signal and outputs an optical signal having a constant peak value.
When an optical fiber amplifier is used as the booster amplifier, the pumping light output of the optical fiber amplifier is 0.5 to 1.5.
It is necessary to control the output to double the range. However, the excitation light source that generates the excitation light has a pulse peak value of 1.
Even in the normal operating state of 0 times, it operates with considerable output,
In order to output 1.5 times higher pumping light, the current drive system of the pumping light source needs a considerable operation margin. Therefore, when the pumping light source performs the above-described high-power operation, there is a problem that the life of the pumping light source is greatly shortened.

【0006】[0006]

【発明が解決しようとする課題】従って本発明の目的
は、上述のような従来技術による光ブースタアンプの問
題点を排除し、光信号にマーク率変動がある場合でも、
励起光源の電流駆動系の動作余裕があり、しかも励起光
源の寿命への悪影響が少ない光ブースタアンプおよび上
記光ブースタアンプを光信号の増幅器とする光送信回路
を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to eliminate the above-mentioned problems of the optical booster amplifier according to the prior art, and to eliminate the above problem even when the optical signal has a mark rate fluctuation.
An object of the present invention is to provide an optical booster amplifier that has a margin of operation of a current drive system of an excitation light source and has little adverse effect on the life of the excitation light source, and an optical transmission circuit using the optical booster amplifier as an amplifier for an optical signal.

【0007】[0007]

【課題を解決するための手段】本発明の光ブースタアン
プは、ディジタル信号によって振幅変調された入力光信
号を励起光に励起されて増幅する光アンプと、前記励起
光を前記光アンプに供給する少なくとも二つの励起光源
と、前記ディジタル信号のマーク率に応じて前記二つの
励起光源からの励起光の供給率を変化させる励起光源制
御回路とを含んでいる。
SUMMARY OF THE INVENTION An optical booster amplifier according to the present invention is an optical amplifier that amplifies an input optical signal whose amplitude has been modulated by a digital signal by pumping light, and supplies the pumping light to the optical amplifier. At least two excitation light sources and an excitation light source control circuit for changing a supply rate of excitation light from the two excitation light sources according to a mark rate of the digital signal are included.

【0008】また、上記光ブースタアンプは、前記入力
光信号が、互いに波長の異なる複数の光信号であっても
よい。
In the optical booster amplifier, the input optical signal may be a plurality of optical signals having different wavelengths.

【0009】さらに、光ブースタアンプを含む光送信回
路は、ディジタル信号によって振幅変調された光信号を
生ずる光信号発生器と、前記光信号を励起光に励起され
て増幅する光アンプと、前記励起光を前記光アンプに供
給する第1および第2の励起光源と、前記光信号発生器
の生ずる前記光信号のマーク率を検出するマーク率検出
器と、前記第1の励起光源からの励起光を前記マーク率
に対応する強度に制御し前記マーク率が予め定められた
所定値より高いときには前記第2の励起光源も動作させ
てこの第2の励起光源からの励起光を前記マーク率に対
応する強度に制御する励起光強度制御回路とを備えてい
る。
Further, an optical transmission circuit including an optical booster amplifier comprises: an optical signal generator for generating an optical signal amplitude-modulated by a digital signal; an optical amplifier for exciting the optical signal by exciting it with excitation light; First and second excitation light sources for supplying light to the optical amplifier, a mark ratio detector for detecting a mark ratio of the optical signal generated by the optical signal generator, and excitation light from the first excitation light source Is controlled to an intensity corresponding to the mark rate, and when the mark rate is higher than a predetermined value, the second excitation light source is also operated, and the excitation light from the second excitation light source corresponds to the mark rate. And an excitation light intensity control circuit for controlling the intensity of the excitation light.

【0010】[0010]

【作用】本発明は、光ファイバ通信システム等に用いら
れ高出力の励起光を必要とする光アンプが一般に励起光
源として現用(第1)および予備(第2)励起光源を有
することに着目してなされたものであり、予備励起光源
を光信号のマーク率が高くなった瞬時だけ動作させ、高
マーク率時における現用励起光源の励起出力不足を補う
ものである。上述のように二つあるいはそれ以上の励起
光源に負荷を分担させると、光信号の高マーク率時にお
いても現用励起光源に要求される負荷が適正になり、現
用(第1)励起光源の電流駆動系に動作余裕が大きくな
り、これらの励起光源の寿命への悪影響も減少する。
The present invention focuses on the fact that an optical amplifier used in an optical fiber communication system or the like and requiring high-power pumping light generally has a working (first) and standby (second) pumping light source as a pumping light source. The preliminary pumping light source is operated only at the moment when the mark ratio of the optical signal becomes high, and compensates for the shortage of the pumping output of the working pumping light source at the time of the high mark ratio. When the load is shared between two or more pump light sources as described above, the load required for the current pump light source becomes appropriate even when the mark rate of the optical signal is high, and the current of the current (first) pump light source is reduced. The operating margin of the drive system is increased, and the adverse effect on the life of these excitation light sources is reduced.

【0011】[0011]

【実施例】次に本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0012】図1は本発明の第1の実施例のブロック図
である。また、図2はこの実施例における現用励起電源
と予備励起光源の動作範囲を示す説明図である。
FIG. 1 is a block diagram of a first embodiment of the present invention. FIG. 2 is an explanatory diagram showing the operating range of the working excitation power supply and the standby excitation light source in this embodiment.

【0013】図1の光送信回路は、光信号発生器6aが
波長1.55μmの光信号S3aを生じ、光ファイバア
ンプ4がこの光信号S3aを増幅して送信信号S4を光
ファイバ通信システムの伝送路(図示せず)に出力す
る。励起光源28は、光信号発生器6aからの補正出力
S5aおよび光ファイバアンプ4からの監視出力S6と
に応答して励起光S7を光ファイバアンプ4に供給す
る。
In the optical transmission circuit shown in FIG. 1, an optical signal generator 6a generates an optical signal S3a having a wavelength of 1.55 μm, and an optical fiber amplifier 4 amplifies the optical signal S3a and converts the transmission signal S4 into an optical fiber communication system. Output to a transmission path (not shown). The excitation light source 28 supplies the excitation light S7 to the optical fiber amplifier 4 in response to the correction output S5a from the optical signal generator 6a and the monitoring output S6 from the optical fiber amplifier 4.

【0014】光信号発生器6aにおいて、分布帰還型の
半導体レーザ1は、パルス駆動回路2からのパルス信号
電流およびバイアス電流源3からの直流のバイアス電流
S1によって駆動され、上記光信号S3aを発生する。
パルス駆動回路2には2.4Gb/sのパルス信号電流
S2がマーク率検出器5を介して印加されている。マー
ク率検出器5は、パルス信号電流S2のうち、論理
“1”の出現割合(マーク率)を検出し、このマーク率
に比例した補正出力S5aを励起光源28に供給する。
In the optical signal generator 6a, the distributed feedback semiconductor laser 1 is driven by the pulse signal current from the pulse drive circuit 2 and the DC bias current S1 from the bias current source 3 to generate the optical signal S3a. I do.
A pulse signal current S2 of 2.4 Gb / s is applied to the pulse drive circuit 2 via a mark ratio detector 5. The mark ratio detector 5 detects the appearance ratio (mark ratio) of the logic "1" in the pulse signal current S2, and supplies a correction output S5a proportional to the mark ratio to the excitation light source 28.

【0015】光ファイバアンプ4は、光信号S3aを増
幅するEr添加光ファイバ20と、励起光源28からの
励起光S7をEr添加光ファイバ20に導入する多重分
波回路24と、Er添加光ファイバ20の前後に配置さ
れ光信号S3aおよび送信信号S4の反射を防止する光
アイソレータ25a,25bと、送信信号S4の一部か
らこの送信信号S4の平均出力を監視する光検出器10
とを含む。この光ファイバアンプ4は、通常の動作状態
では約10dBの利得を有し、平均出力10mWの送信
信号S4を出力している。この送信信号S4の一部は、
光検出器10により検出されて監視出力S6を生じ、即
ちこの光送信回路の平均出力レベルが監視される。
The optical fiber amplifier 4 includes an Er-doped optical fiber 20 for amplifying the optical signal S3a, a multiplexing / demultiplexing circuit 24 for introducing the pump light S7 from the pump light source 28 into the Er-doped optical fiber 20, and an Er-doped optical fiber. Optical isolators 25a and 25b arranged before and after 20 to prevent reflection of the optical signal S3a and the transmission signal S4, and a photodetector 10 for monitoring an average output of the transmission signal S4 from a part of the transmission signal S4.
And This optical fiber amplifier 4 has a gain of about 10 dB in a normal operation state and outputs a transmission signal S4 having an average output of 10 mW. Part of this transmission signal S4 is
The detection output S6 is detected by the photodetector 10, ie, the average output level of the optical transmission circuit is monitored.

【0016】励起光源28は、光信号発生器6aからの
補正出力S5aと光ファイバアンプ4からの監視出力S
6を演算回路9に入力する。演算回路9は、これら補正
出力S5aと監視出力S6とに応答して現用励起光源2
1の電流駆動源12および予備励起光源22の電流駆動
源12を制御し、送信信号11のピーク出力を一定値に
保つ。なお現用励起光源21は波長1.48μmの励起
光を出力し、予備励起光源22は同じ波長の励起光を出
力する。これらの励起光は、光合波回路23により偏波
面多重され、励起光S7として光ファイバアンプ4の多
重分波回路24に供給される。
The excitation light source 28 has a correction output S5a from the optical signal generator 6a and a monitor output S5 from the optical fiber amplifier 4.
6 is input to the arithmetic circuit 9. The arithmetic circuit 9 responds to the correction output S5a and the monitor output S6 by
The first current drive source 12 and the current drive source 12 of the preliminary excitation light source 22 are controlled to keep the peak output of the transmission signal 11 at a constant value. The working pump light source 21 outputs pump light having a wavelength of 1.48 μm, and the preliminary pump light source 22 outputs pump light having the same wavelength. These pump lights are polarization-multiplexed by the optical multiplexing circuit 23 and supplied to the multiplexing / demultiplexing circuit 24 of the optical fiber amplifier 4 as the pump light S7.

【0017】現用励起光源21は、図2に示すように、
光信号S3aのマーク率0.6以下の領域でその出力す
る励起光で光ファイバアンプ4の動作を全面的に制御す
る。マーク率が0.6を越えると、演算回路9が予備電
流駆動源13も動作させ、従って予備励起光源22も励
起光を供給する。
As shown in FIG. 2, the working excitation light source 21
In the region where the mark ratio of the optical signal S3a is 0.6 or less, the operation of the optical fiber amplifier 4 is entirely controlled by the output pump light. When the mark ratio exceeds 0.6, the arithmetic circuit 9 also activates the preliminary current drive source 13, so that the preliminary excitation light source 22 also supplies excitation light.

【0018】なお、光信号S3aのマーク率0.6から
0.75までの領域において、光ファイバアンプ4の励
起光を現用励起光源21単独で賄うためには、電流駆動
源12の駆動能力を800mAから1A以上にし、また
現用励起光源21の動作出力を100mW以上に増大さ
せる必要がある。すると、現用電流駆動源12の駆動能
力を1.5倍にする必要が生じ、この現用電流駆動源1
2を大型化する必要も生じる。しかも励起光源21には
予備光源22を併用する場合に比べてほぼ2倍の信頼性
が要求されることになる。
In order to cover the excitation light of the optical fiber amplifier 4 with the current excitation light source 21 alone in the range of the mark ratio of the optical signal S3a from 0.6 to 0.75, the driving capability of the current drive source 12 must be increased. It is necessary to increase from 800 mA to 1 A or more, and to increase the operation output of the working pump light source 21 to 100 mW or more. Then, it becomes necessary to increase the driving capability of the working current drive source 12 by 1.5 times.
2 also needs to be enlarged. In addition, the excitation light source 21 is required to have almost twice the reliability as compared with the case where the auxiliary light source 22 is used together.

【0019】図1の実施例では、光信号S3aの高マー
ク率時に予備励起光源22を補足的に使うことにより、
電流駆動源12,13の駆動能力,励起光源21,22
の励起光出力レベルを小さく抑えることができ、また、
これらの回路12,13,21,22に高信頼性を要求
する必要がなくなった。なお、この実施例の光送信回路
は、現用励起光源21の動作電流が素子劣化等により初
期設定値の1.5倍に上昇すると、これを予備励起光源
22に切り替えて使用するが(このような切り替え機構
については公知であるので精細な説明は省略する)、こ
の切り替えに際して、上述したマーク率の補正出力S5
aによる励起光S7レベルの制御も予備電流駆動源22
側に切り替えられることは当然である。この場合には、
マーク率が0.6以上になると、現用励起光源21を逆
に高マーク率時に使用する。
In the embodiment shown in FIG. 1, the preliminary excitation light source 22 is used supplementarily when the optical signal S3a has a high mark rate.
Driving ability of current drive sources 12 and 13, excitation light sources 21 and 22
Pump light output level can be kept low, and
It is no longer necessary to request these circuits 12, 13, 21, 22 for high reliability. When the operating current of the working pumping light source 21 rises to 1.5 times the initial set value due to element deterioration or the like, the optical transmitting circuit of this embodiment is switched to the spare pumping light source 22 for use (as described above). A detailed description of the switching mechanism is publicly known, so a detailed description thereof will be omitted.) At the time of this switching, the correction output S5 of the mark ratio described above is used.
The control of the pumping light S7 level by a
Of course, it can be switched to the side. In this case,
When the mark ratio becomes 0.6 or more, the current excitation light source 21 is used when the mark ratio is high.

【0020】図3は本発明の第2の実施例のブロック図
である。
FIG. 3 is a block diagram of a second embodiment of the present invention.

【0021】この光送信回路は、図1の光送信回路が、
一つの光信号S3aのみを取り扱うのに対して、互いに
波長の異なる複数の光信号S3aないしS3cを取り扱
い、いわゆる周波数多重通信方式の光送信回路を構成し
ている。光信号発生器6a,6b,6cからの光信号S
3a,S3b,S3cは、光多重回路26で多重化さ
れ、光ファイバアンプ4に供給される。これら多重化さ
れた光信号S3a,S3b,S3cは光ファイバアンプ
4により共通に増幅され、送信信号S4になる。励起光
源28aの演算回路9aは、各光信号発生器6a,6
b,6cのマーク率検出回路8からの各マーク率S5
a,S5b,S5cと光ファイバアンプ4の光検出器1
0からの監視出力S6とを処理し、現用および予備電流
駆動源12,13を制御し、送信信号S4のピーク出力
を一定値に保つ。
In this optical transmission circuit, the optical transmission circuit of FIG.
While only one optical signal S3a is handled, a plurality of optical signals S3a to S3c having different wavelengths are handled, and an optical transmission circuit of a so-called frequency multiplex communication system is configured. Optical signal S from optical signal generators 6a, 6b, 6c
3a, S3b, and S3c are multiplexed by the optical multiplexing circuit 26 and supplied to the optical fiber amplifier 4. These multiplexed optical signals S3a, S3b, S3c are commonly amplified by the optical fiber amplifier 4 to become a transmission signal S4. The arithmetic circuit 9a of the excitation light source 28a includes the optical signal generators 6a, 6
Each mark ratio S5 from the mark ratio detection circuit 8 for b, 6c
a, S5b, S5c and optical detector 1 of optical fiber amplifier 4
The monitoring output S6 from 0 is processed to control the working and standby current driving sources 12 and 13 to keep the peak output of the transmission signal S4 at a constant value.

【0022】図3の実施例における個個の構成要素の回
路動作は、第1の実施例と同様なので説明を省略する。
この実施例においても、各光信号S3aないしS3cの
マーク率の変動にかかわらずピーク光出力が一定な送信
信号S4が得られることは図1の実施例と同様である。
しかもこの実施例では、一部の光信号発生器6aないし
6cのいずれかが光信号S3の送信を停止しても、他の
光信号発生器6による送信信号S4のピーク値は常に一
定出力に保たれることになる。
The circuit operation of the individual components in the embodiment of FIG. 3 is the same as in the first embodiment, and a description thereof will be omitted.
Also in this embodiment, a transmission signal S4 having a constant peak light output is obtained irrespective of a change in the mark ratio of each of the optical signals S3a to S3c, as in the embodiment of FIG.
Moreover, in this embodiment, even if any of the optical signal generators 6a to 6c stops transmitting the optical signal S3, the peak value of the transmission signal S4 by the other optical signal generators 6 is always a constant output. Will be kept.

【0023】本発明は、上記実施例に限られることはな
く、上記実施例を変形することは勿論可能である。図1
および図3の実施例では、光信号S3の増幅素子(光ア
ンプ)としてEr添加光ファイバ20を用いているが、
この光アンプは、他の種類の稀土類添加光ファイバアン
プを用いてもよく、導波路アンプであってもよい。光の
波長も光信号S3の1.55μmや励起光の1.48μ
mに限られないのは当然である。また励起光源21およ
び22は、現用と予備に区分けをしているが、必らずし
も冗長構成を意味するものではなく、現用光源と補償光
源といった考え方で構成してよく、主要な光源は常に現
用光源のみであってもよい。また予備励起光源22の動
作閾値を光信号S3のマーク率0.6に設定したが、こ
の閾値は自由に選んでよい。例えば、閾値を0.48と
すれば、予備励起光源22も常に微少動作することにな
る。励起光S7は、図1および図3のいずれの実施例に
おいても、Er添加光ファイバ20の信号出力側から励
起しているが、信号入力側からの励起や、入出力双方か
らの励起であってもよい。励起光源数も、実施例では二
つであるが、さらに多くてよいことは勿論である。
The present invention is not limited to the above embodiment, and it is of course possible to modify the above embodiment. FIG.
In the embodiment of FIG. 3, the Er-doped optical fiber 20 is used as an amplifier (optical amplifier) for the optical signal S3.
This optical amplifier may use another kind of rare earth-doped optical fiber amplifier, or may be a waveguide amplifier. The wavelength of the light is 1.55 μm of the optical signal S3 and 1.48 μm of the pump light.
It is natural that it is not limited to m. The excitation light sources 21 and 22 are classified into active and standby, but do not necessarily mean a redundant configuration, and may be configured based on the concept of an active light source and a compensation light source. Only the working light source may be used at all times. Although the operation threshold of the preliminary excitation light source 22 is set to the mark ratio 0.6 of the optical signal S3, this threshold may be freely selected. For example, if the threshold value is set to 0.48, the preliminary excitation light source 22 will always perform a small operation. The pumping light S7 is pumped from the signal output side of the Er-doped optical fiber 20 in each of the embodiments of FIGS. 1 and 3, but is pumped from the signal input side or from both the input and output. You may. Although the number of excitation light sources is two in this embodiment, it goes without saying that more excitation light sources may be used.

【0024】[0024]

【発明の効果】以上説明したように本発明は、光ブース
タアンプに入力される光信号のマーク率に変動がある
と、上記光ブースタアンプへ供給する励起光の強度を上
記マーク率に応じて二つ以上の励起光源にそれぞれ設定
するので、上記励起光源の電流駆動系の動作余裕を適正
に保つのみならず、上記励起光源の寿命への悪影響を少
なくする効果がある。
As described above, according to the present invention, when the mark ratio of the optical signal input to the optical booster amplifier varies, the intensity of the excitation light supplied to the optical booster amplifier is changed according to the mark ratio. Since each of the two or more excitation light sources is set, not only the operation margin of the current drive system of the excitation light source is properly maintained, but also the effect of reducing the adverse effect on the life of the excitation light source is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例のブロック図である。FIG. 1 is a block diagram of a first embodiment of the present invention.

【図2】図1の実施例における現用励起光源と予備励起
光源の動作範囲を説明する図である。
FIG. 2 is a diagram illustrating an operation range of a working excitation light source and a standby excitation light source in the embodiment of FIG.

【図3】本発明の第2の実施例のブロック図である。FIG. 3 is a block diagram of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 パルス駆動回路 4 光ファイバアンプ 5 マーク率検出器 6a,6b,6c 光信号発生器 9,9a 演算回路 10 光検出器 12 現用電流駆動源 13 予備電流駆動源 20 Er添加光ファイバ 21 現用励起光源 22 予備励起光源 23 光合波回路 24 多重分波回路 25a,25b 光アイソレータ 26 光多重回路 28,28a 励起光源 DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Pulse drive circuit 4 Optical fiber amplifier 5 Mark ratio detector 6a, 6b, 6c Optical signal generator 9, 9a Operation circuit 10 Photodetector 12 Working current drive source 13 Reserve current drive source 20 Er-doped optical fiber 21 Active pumping light source 22 Preliminary pumping light source 23 Optical multiplexing circuit 24 Multiplexing / demultiplexing circuit 25a, 25b Optical isolator 26 Optical multiplexing circuit 28, 28a Pumping light source

フロントページの続き (56)参考文献 特開 平1−135085(JP,A) 特開 平3−206746(JP,A) 特開 平4−92483(JP,A) H.Taga,et al,”459k m,2.4Gbit/s four w avelength multiple xing optical fibre transmission expe riment using six E r−doped fibre ampl ifiers”,Electronic s Letters,12th Apri l 1990,Vol.26,No.8,p 500−501 (58)調査した分野(Int.Cl.6,DB名) H04B 10/00 - 10/28 H04J 14/00 - 14/08 H01S 3/10 Continuation of front page (56) References JP-A-1-135085 (JP, A) JP-A-3-206746 (JP, A) JP-A-4-92483 (JP, A) Taga, et al., "459 km, 2.4 Gbit / s four wavelengths multiple multiplexing optical fiber transmission, transmission, electronic distribution, electronic distribution, electronic distribution, and electronic distribution. 26, No. 8, p 500-501 (58) Fields investigated (Int. Cl. 6 , DB name) H04B 10/00-10/28 H04J 14/00-14/08 H01S 3/10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ディジタル信号によって振幅変調された
入力光信号を励起光に励起されて増幅する光アンプと、
前記励起光を前記光アンプに供給する少なくとも二つの
励起光源と、前記ディジタル信号のマーク率に応じて前
記二つの励起光源からの励起光の供給率を変化させる励
起光源制御回路とを含むことを特徴とする光ブースタア
ンプ。
1. An optical amplifier which amplifies an input optical signal whose amplitude has been modulated by a digital signal by being pumped by pumping light;
At least two excitation light sources that supply the excitation light to the optical amplifier, and an excitation light source control circuit that changes a supply rate of the excitation light from the two excitation light sources according to a mark rate of the digital signal. Characteristic optical booster amplifier.
【請求項2】 前記入力光信号が、互いに波長の異なる
複数の光信号であることを特徴とする請求項1記載の光
ブースタアンプ。
2. The optical booster amplifier according to claim 1, wherein said input optical signal is a plurality of optical signals having different wavelengths.
【請求項3】 ディジタル信号によって振幅変調された
光信号を生ずる光信号発生器と、前記光信号を励起光に
励起されて増幅する光アンプと、前記励起光を前記光ア
ンプに供給する第1および第2の励起光源と、前記光信
号発生器の生ずる前記光信号のマーク率を検出するマー
ク率検出器と、前記第1の励起光源からの励起光を前記
マーク率に対応する強度に制御し前記マーク率が予め定
められた所定値より高いときには前記第2の励起光源も
動作させてこの第2の励起光源からの励起光を前記マー
ク率に対応する強度に制御する励起光強度制御回路とを
含むことを特徴とする光送信回路。
3. An optical signal generator for generating an optical signal amplitude-modulated by a digital signal, an optical amplifier for amplifying the optical signal by exciting it with excitation light, and a first amplifier for supplying the excitation light to the optical amplifier. And a second excitation light source; a mark ratio detector for detecting a mark ratio of the optical signal generated by the optical signal generator; and controlling the excitation light from the first excitation light source to an intensity corresponding to the mark ratio. When the mark ratio is higher than a predetermined value, the second excitation light source is also operated to control the excitation light from the second excitation light source to an intensity corresponding to the mark ratio. An optical transmission circuit comprising:
JP4241518A 1992-09-10 1992-09-10 Optical booster amplifier and optical transmission circuit Expired - Fee Related JP2988142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4241518A JP2988142B2 (en) 1992-09-10 1992-09-10 Optical booster amplifier and optical transmission circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4241518A JP2988142B2 (en) 1992-09-10 1992-09-10 Optical booster amplifier and optical transmission circuit

Publications (2)

Publication Number Publication Date
JPH0697883A JPH0697883A (en) 1994-04-08
JP2988142B2 true JP2988142B2 (en) 1999-12-06

Family

ID=17075541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4241518A Expired - Fee Related JP2988142B2 (en) 1992-09-10 1992-09-10 Optical booster amplifier and optical transmission circuit

Country Status (1)

Country Link
JP (1) JP2988142B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0975103B1 (en) 1998-02-06 2006-08-09 Fujitsu Limited Optical amplifier and method for controlling an excitation light source in an optical amplifier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H.Taga,et al,"459km,2.4Gbit/s four wavelength multiplexing optical fibre transmission experiment using six Er−doped fibre amplifiers",Electronics Letters,12th April 1990,Vol.26,No.8,p500−501

Also Published As

Publication number Publication date
JPH0697883A (en) 1994-04-08

Similar Documents

Publication Publication Date Title
US6369938B1 (en) Multi-wavelength light amplifier
US6178038B1 (en) Optical amplifier having an improved noise figure
JP3741767B2 (en) Optical fiber amplifier
US6377394B1 (en) Optical amplifier gain control
EP1603257B1 (en) Optical transmission device and optical communication system
JP2001111151A (en) Optical amplifier control placement and its control method
US5581397A (en) Optical-fiber amplifier
JPH07240551A (en) Prevention system of surge light generation in optical amplification and transmission apparatus
JPH1084152A (en) Optical amplifier
US7180654B2 (en) Raman amplifier
JP2669483B2 (en) Optical amplifier repeater circuit
JPH10150410A (en) Optical power monitor, optical amplifier and optical transmitter
JP2988142B2 (en) Optical booster amplifier and optical transmission circuit
JP3540217B2 (en) Method and apparatus for controlling the optical power of an optical transmission signal in a wavelength division multiplexing system
JPH05110511A (en) Optical wavelength demultiplexing/multiplexing system
JP2000091676A (en) Optical amplifier
JPH06252486A (en) Optical fiber amplifier
JP2755147B2 (en) Automatic optical output reduction circuit of optical amplifier
JP3033515B2 (en) Optical fiber amplifier and driving method thereof
JPH104231A (en) Optical fiber amplifier
JPH0621582A (en) Optical amplifier
JP2728045B2 (en) Optical fiber amplifier
JP3214882B2 (en) Optical amplifier drive circuit
JP2626586B2 (en) Laser light output device
JPH06112905A (en) Optical direct amplifier

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990907

LAPS Cancellation because of no payment of annual fees