JPS5931906A - Multicore optical fiber cable - Google Patents
Multicore optical fiber cableInfo
- Publication number
- JPS5931906A JPS5931906A JP57142379A JP14237982A JPS5931906A JP S5931906 A JPS5931906 A JP S5931906A JP 57142379 A JP57142379 A JP 57142379A JP 14237982 A JP14237982 A JP 14237982A JP S5931906 A JPS5931906 A JP S5931906A
- Authority
- JP
- Japan
- Prior art keywords
- spacer
- optical fiber
- cable
- modules
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 24
- 125000006850 spacer group Chemical group 0.000 claims abstract description 35
- 239000000463 material Substances 0.000 claims abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000001125 extrusion Methods 0.000 abstract description 2
- 239000004033 plastic Substances 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 239000000835 fiber Substances 0.000 description 24
- 238000005452 bending Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 210000001170 unmyelinated nerve fiber Anatomy 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4403—Optical cables with ribbon structure
- G02B6/4404—Multi-podded
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4403—Optical cables with ribbon structure
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
- G02B6/443—Protective covering
- G02B6/4432—Protective covering with fibre reinforcements
- G02B6/4433—Double reinforcement laying in straight line with optical transmission element
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Insulated Conductors (AREA)
Abstract
Description
【発明の詳細な説明】
不発明は簡易な製造方法により、経済的に製造でさるj
tlj信t#多心光ファイバケーブルの構造に関Tるも
のである。[Detailed description of the invention] The invention can be manufactured economically by a simple manufacturing method.
This article relates to the structure of a multi-core optical fiber cable.
光ファイバを多数収容するi[IJ(J用光ファイバケ
ーブルは、従来の銅線対を集会したケーブルと異なり、
元ファイバの伝送特71ミ、機械特性ケ劣化ぎせないた
めに、外力および温度変化等の条件に対して、特別な構
造膜d1゛が必要である。外力としては・ケーブルへの
(1111田と張力であり、温度変化では林料の熱伸縮
駐が問題とぎnる。こ11.は光ファイバが微小な曲り
ン受けると一光伝送損失が増大し易いこと、d°6大7
?張力あるいは伸び歪みケ受けると・破断し易いことの
2点に依る。このため、光フアイバケーブルの構造とし
ては、元ファイバをケーブル内で堅く包縛するのでなく
−たるみを有Tるように緩く収容するタイプが適してい
る。Optical fiber cable for i[IJ (J), which accommodates a large number of optical fibers, differs from conventional cables made up of copper wire pairs,
In order to prevent the transmission characteristics 71 and mechanical properties of the original fiber from deteriorating, a special structural film d1 is required to withstand conditions such as external forces and temperature changes. External forces include tension on the cable (1111), and thermal expansion and contraction of the forest material is a problem due to temperature changes.This 11. optical transmission loss increases when the optical fiber is subjected to minute bends. Easy, d°6 large 7
? This depends on two points: when subjected to tension or elongation strain, it is easy to break. For this reason, a suitable structure for an optical fiber cable is one in which the original fiber is not tightly wrapped within the cable, but is accommodated loosely with some slack.
スペーサ形の光フアイバケーブルはその代表であって、
σf:来は第11mに示すような構造がとらnている。Spacer-type optical fiber cable is a typical example.
σf: Currently, the structure shown in the 11th m is adopted.
元ファイバ心41111は星形のスペーサ2のスペース
8内に緩く収容されている。ケーブル中心には抗張力材
4ヶ有し、外面は外被5で被覆ざj。The original fiber core 41111 is loosely housed within the space 8 of the star-shaped spacer 2. The center of the cable has 4 tensile strength members, and the outer surface is covered with a jacket 5.
でいる。この星形スペーサCま長手方向に撚らnており
、光ファイバ8梅も中心軸の周りに撚ら2]ている。撚
りを有し、断面が円形(星形)であnば、任、橡の方間
に曲げが可能であり\どのスペースに収容ざ1]、た心
線も均等な曲り条件になるという利点を有するのである
が、反面−撚すケイfする星IF!。I'm here. The star-shaped spacers C are twisted in the longitudinal direction, and the optical fibers are also twisted around the central axis. If the wire is twisted and has a circular (star-shaped) cross section, it can be bent in either direction, and it has the advantage that it can be accommodated in any space, and the bending conditions are uniform for the wire. However, on the other hand - the twisting star IF! .
スペーサは製造に;9)たり回転M−分を・f−1する
侶・酢で大型の装置汐ケ必Qとすること、心線の集合に
際してCまスペーサの撚りに同期して、多数のyCファ
イバ心線を撚り合わせなから繰り吊子というt♀雑な操
作を必朝とすることなど、Okコスト化を阻害する大き
な問題を有している。When manufacturing the spacer, it is necessary to use a large equipment with vinegar to rotate M-minutes and f-1, and when assembling the core wires, a large number of There are major problems that impede cost reduction, such as the complicated operation of twisting the YC fiber core wires and using a dangling cord.
本発明は、スペーサをモジュールに分割するとともに、
断面平形にJ1%合Tるという従来にない構成をとった
ものであり、操作と、曲げ方向(ま限定2nるが、撚り
を行わず、1π18な装置^で高速度に製造でさ、共通
部品で多種類のケーブルン侶既でさるなど、大幅に経済
化を1文る口とのでさる多心光ファイバケーブルを提供
すること?目的とする。The present invention divides the spacer into modules and
It has an unprecedented configuration with a flat cross section and a J1% combination of T, and is common in terms of operation and bending direction (limited to 2n, but no twisting, and can be manufactured at high speed with a 1π18 device). The purpose is to provide a multi-core optical fiber cable that can be made with a wide variety of parts, making it possible to achieve significant economical savings.
以F1m面についてdY+細に説明する。The F1m plane will be explained in detail below.
+5) 2図、第3図、第を図、第S図は本発明の実施
例か示す図であって、ICゴ光ファイバ心線、8はスペ
ース、4は抗張力材、5番ま外被、0&iコの字形状N
i 面のスペーサモジュール、7はカバーモジュール、
EjG:f抗張力[4F含むスペーサモジュール・9G
f抗張力材4を含むカバーモジュール・1(J&まツC
ファイバリボン、11はゴム突起である。+5) Figures 2, 3, 3, and S are diagrams showing embodiments of the present invention, in which the IC core is an optical fiber, 8 is a space, 4 is a tensile strength material, and 5 is an outer jacket. , 0&i U-shaped N
i side spacer module, 7 is cover module,
EjG: f tensile strength [spacer module including 4F, 9G
f Cover module 1 including tensile strength material 4 (J & Matsu C
The fiber ribbon 11 is a rubber protrusion.
スペーサGま第2図(5)のように、コの字形の断11
°11ケ有する田5判に分割ざnる。口n、け長ぎ方間
に同じ断面形状を保って一様であり、また、その形状を
適宜に股・定してモジュール化している。第2図(5)
のスペーサモジュール6に3個平形に配列し、カバーモ
ジュール7を1個用い11ば、第2図()3)のように
3個のスペースを有するスペーサが形成ぎわ、各スペー
スに四散の光ファイバ心線ケ収容丁旧、ば・多心光フア
イバケーブルが構成でさる。ここでスペースに光ファイ
ーバ心線を収容する工!1!iは、スペーサモジュール
ケ組合せる工程の直M 11:y定するのである。ざら
にスペーサモジュール、カバーモジュールを組合せた直
後に、連続した工程で抗張力材4ヶ配し、プラスチック
外被5を押出被覆して、ケーブルが完成する。Spacer G has a U-shaped cut 11 as shown in Figure 2 (5).
Divided into 5 sizes with 11 pieces. The cross-sectional shape is uniform between the mouth and the length, and the shape is adjusted appropriately to create a module. Figure 2 (5)
By arranging three spacers in a flat shape in the spacer module 6 and using one cover module 7, a spacer having three spaces is formed as shown in FIG. The optical fiber cables used to accommodate fiber cables are made up of multi-core fiber optic cables. Here's how to accommodate the optical fiber in the space! 1! i is determined by the directivity M11:y of the spacer module assembly process. Immediately after roughly assembling the spacer module and cover module, four tensile strength members are arranged in a continuous process, and a plastic jacket 5 is extruded to complete the cable.
スペーサモジュール0、カバーモジュール7は一般的な
プラスチック樹脂の押出成形により、容易に製造でさる
。tanらは長さ方向に撚りを持たず一様形状であるか
ら、簡易な装Vt−C高di度の製造ができるのである
。The spacer module 0 and the cover module 7 can be easily manufactured by extrusion molding of general plastic resin. Since tan has a uniform shape with no twist in the length direction, it is possible to easily manufacture a Vt-C high di degree.
スペーサモジュールの作用を拡大する(jq造として、
第3図(5)のように、モジュール内に抗張力月4を埋
め込んで一体成形したものが有効である。Expanding the action of the spacer module (as a JQ structure,
As shown in FIG. 3 (5), it is effective to embed the tensile strength moon 4 in the module and integrally mold it.
このように各モジュールが抗張カ不(+ 44してぃn
は、ケーブル)i7i h (# ti’i Lゴ第3
図(111のようにコンパクトになり、ケーブル1葭工
程もより簡易化でさる。In this way, each module has a tensile strength of +44
, cable) i7i h (# ti'i Lgo 3rd
It is more compact as shown in Figure (111), and the process for installing one cable can be simplified.
スペーサモジュールを平形に配置i′I、集合するfi
l成によr、は、心釈数の異なる各41;(のケーブル
を・モジュールの組αせ個数を変えるだけで容易に(1
4成できる。第ダ図(5)、 (IJIはそnぞ1)2
個、#1.’、lのスペーサモジュール8紮用いたIf
(1i?例ケ示To 抗張力召Cゴモシュールの数に比
例して増減し、簡易に適切な抗張力作用をf尋ることか
でさる。10は5本のy6フアイバを束ねたリボンファ
イバであり、スペース8にダ個のリボンを収容Trは、
/スペース当りの収容心数はコθ心であるから、第q図
への構造ではψθ心ケーブル、同図(均の構造でCよに
θ心ケーブルとなる。本発明あるい&−1従来形のスペ
ーサ形ケーブルのスペースを有効に活11Jするに(ゴ
ーこのようなリボンファイバが1角しているのであるが
、リボン形状は儲り474造にGま不J当であり一本発
明のような長ざ方向に一様なスペースに収容するのが最
適である。Arrange spacer modules in a flat form i′I, collect fi
Depending on the configuration, R can easily be made by simply changing the number of cables and modules (41) with different numbers of center connections.
I can do 4 things. Figure 5 (5), (IJI is 1) 2
Pieces, #1. ', If using spacer module 8 ligation of l
(1i?Example)The tensile strength increases or decreases in proportion to the number of fibers, and the appropriate tensile strength can be easily determined by f.10 is a ribbon fiber made by bundling five Y6 fibers, The Tr that accommodates da ribbons in space 8 is
/Since the number of fibers accommodated per space is θ fibers, the structure shown in Figure q is a ψθ fiber cable, and the structure shown in Figure q (C) is a θ fiber cable.The present invention or &-1 Conventional In order to effectively utilize the space of the spacer-shaped cable (11J), such a ribbon fiber is angled, but the ribbon shape is inappropriate for the 474-shaped cable, and one of the methods of the present invention is It is best to accommodate them in a space that is uniform in the lengthwise direction.
肌コ図〜第ψ図のような平形断(hlのケーブルは当然
、(細面σ刀横方向には曲り無いという問題紮有Tるの
であるが、反面、(紙面の)研方向には十分に曲り易く
なるから、実用上の欠陥にGゴならない。むしろ−ホを
図のようにリボンファイバを収容するケーブルとしては
、任意方間に曲り易いのは危険であって、リボンの横方
向には曲り蛙くなっていた方が、光ファイ゛バの伝送特
性、機械特性を保つために望ましいのである。Flat-cut cables such as those shown in Figs. This does not result in a practical defect.In fact, as shown in the figure, it is dangerous for a cable that accommodates ribbon fibers to bend easily in any direction; It is preferable for the optical fiber to have a curved shape in order to maintain the transmission characteristics and mechanical characteristics of the optical fiber.
なお、本発明で番ゴスペースに収容する元ファイバ心線
には全く撚りケ与えないので、ケーブルの曲りにおいて
、う゛Cファイバにめj 1!IJな張力、伸び虫みが
加わらないようにするために、m!(支)(5)のよう
にスペース8内で元ファイバ心#11ヲたるませておく
必(がある。このたるみのル■(ま長ぎ余裕で1%以F
で十分であり、従来の撚りを加える顯鋒の長ざ増分の%
以ドになっている。fi口易に所望のたるみをつけるた
め、第S図f131のように、スペーサモジュールの内
面にとびとびに軟′nのゴム突起11?設けるのも有効
である。In addition, in the present invention, since no twist is applied to the original fiber core wire housed in the cable space, there is no twist to the C fiber when bending the cable. In order to prevent IJ tension and stretching, m! (Support) It is necessary to leave original fiber core #11 slack in space 8 as shown in (5).
% of the length increment of hyeonfeng is sufficient and adding the traditional twist
It is below. In order to easily create the desired slack, soft rubber protrusions 11 are inserted at intervals on the inner surface of the spacer module, as shown in Fig. S f131. It is also effective to provide one.
元ファイバケーブルCま、実1目上ケーブル相互の接続
がM(要な課顆となっている。接ih:r v+sでC
ま外被5を除去し、心m毎に露出して接ね・する。上記
の各構造のケーブルでは、外被5を除去した後、各スペ
ーサモジュールを分離して扱い、各心線の破断を防ぎな
がら接続作業ケ行う。ざらに心線接続終了後(ゴ心線余
長紮適切に収納するために、スペーサモジュール毎に心
MTh保1仰するのである。The original fiber cable C, the actual connection between the cables is M (an important component. Connection ih: r v + s and C
Then, the outer sheath 5 is removed, and every m core is exposed and bonded. In the cables of each of the above structures, after removing the jacket 5, each spacer module is handled separately, and connection work is performed while preventing breakage of each core wire. After completing the fiber connection (in order to properly store the excess fiber length), the core MTh should be removed for each spacer module.
以上詩明したように、本発明によrば、n?1易な構造
にモジュール化ざnた共通部材の糾会せで、各種心線数
の多心光ケーブルヶ4M Ijll’、 Tさ、しかも
ケーブル製造装置が[IN易で高速度製造が可能となる
から、元ファイバケーブルの価格全低減するために大き
な効果ぎ舟ることができる。As explained above, according to the present invention, n? By assembling common parts that can be modularized into a simple structure, it is possible to manufacture multi-core optical cables with various numbers of fibers up to 4M, and the cable manufacturing equipment can be easily manufactured at high speed. From this, it can have a great effect on reducing the total price of the original fiber cable.
1/図Cま従来のスペーサ形光ファイバケーブルの横断
ro1図、第2図囚、(均、第3図(春、(B)、第弘
スペーサモジュール内の九ファイバの設置a状即ン示す
図である。
■・・・・・・光ファイ)<心線、2・・・・・・星J
l−tスペーサ、8・・・・・・スペース、4・・・・
・・抗張カ月、5・・・・・・外被、6スペーサモジユ
ール、7・・・・・・カバーモジュール、8・・・・・
・スペーサモジュール、9・・・・・・カバーモジュー
ル・ 10・・・・・・光フアイバリボン、11・・・
・・・ゴム突起。
第2図
つ
第3図
第4図
(A) (B)第5図
(B)
ス1/Figure C: Cross section of conventional spacer-type optical fiber cable; Figure 2: Figure 3: Figure 3: (B); Installation of nine fibers in the spacer module. This is a diagram. ■...Optical fiber)<core wire, 2...Star J
lt spacer, 8... Space, 4...
・・Tensile month, 5・・・・Outer jacket, 6 Spacer module, 7・・・・Cover module, 8・・・・
・Spacer module, 9... Cover module ・ 10... Optical fiber ribbon, 11...
...Rubber protrusion. Figure 2 Figure 3 Figure 4 (A) (B) Figure 5 (B)
Claims (1)
収容して横EEcCrlるスペーサ形の光フアイバケー
ブルにおいて、該スペーサ番ゴ断面がコの字形状ノスヘ
ースを1個有するスペーサモジュールに分?JJ 2旧
でいるとと6に、該スペーサモジュールが平形に集合さ
1]ていることを特徴とする多心光ファイバケーブル。 2 スペーサモジュールは、断面の−ISt+に抗張)
J材を含んで、一体として押出成形己11ていることを
特徴とTる宥、fl’ R+i求の範囲第1項記載の多
・しs:ye7アイパケーブル。[Claims] l A plurality of optical fibers? In a spacer-shaped optical fiber cable that is loosely accommodated in the spacer space and horizontally EEcCrl, the spacer number is divided into a spacer module having one U-shaped cross section. A multi-core optical fiber cable characterized in that the spacer modules are assembled in a flat shape. 2 Spacer module is tensile to -ISt+ of the cross section)
The multi-layer cable according to item 1, characterized in that it is integrally extruded and includes J material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57142379A JPS5931906A (en) | 1982-08-17 | 1982-08-17 | Multicore optical fiber cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57142379A JPS5931906A (en) | 1982-08-17 | 1982-08-17 | Multicore optical fiber cable |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5931906A true JPS5931906A (en) | 1984-02-21 |
Family
ID=15314000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57142379A Pending JPS5931906A (en) | 1982-08-17 | 1982-08-17 | Multicore optical fiber cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5931906A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0236090A2 (en) * | 1986-02-28 | 1987-09-09 | BICC Public Limited Company | Optical cable |
EP0454345A2 (en) * | 1990-04-25 | 1991-10-30 | AT&T Corp. | Modular cable |
WO2015193696A1 (en) * | 2014-06-17 | 2015-12-23 | 3M Innovative Properties Company | Cable assemblies capable of withstanding high temperature variations |
-
1982
- 1982-08-17 JP JP57142379A patent/JPS5931906A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0236090A2 (en) * | 1986-02-28 | 1987-09-09 | BICC Public Limited Company | Optical cable |
EP0454345A2 (en) * | 1990-04-25 | 1991-10-30 | AT&T Corp. | Modular cable |
WO2015193696A1 (en) * | 2014-06-17 | 2015-12-23 | 3M Innovative Properties Company | Cable assemblies capable of withstanding high temperature variations |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4906067A (en) | Optical cable comprising a plurality of bundle elements | |
US4329018A (en) | Optical telecommunications cable | |
KR940000839B1 (en) | Optical fiber unit | |
US4498732A (en) | Fiber optic splice organizer | |
JP3896794B2 (en) | Tape optical fiber cord with optical fiber array | |
US5699467A (en) | Optical fiber complex overhead line | |
CN1871534A (en) | Fiber optic assemblies, cable, and manufacturing methods therefor | |
JPH08304675A (en) | Coated optical fiber | |
JPS5931906A (en) | Multicore optical fiber cable | |
JP2000206382A (en) | Multicore tight buffer optical fiber and multicore optical cable using it | |
JP3681616B2 (en) | Self-supporting optical fiber cable | |
JPH08110449A (en) | Self-supporting optical fiber cable | |
JPH0312607A (en) | Method of bundling optical fiber strand | |
JPS6186717A (en) | Optical cable and its manufacture | |
JPH0667071A (en) | Ribbon unit type optical fiber and optical-fiber cable | |
JPS5922006A (en) | Manufacture of optical fiber cable | |
JPH08110451A (en) | Optical fiber cable | |
JP4728529B2 (en) | Fiber optic cable | |
JP3354325B2 (en) | Multi-core optical fiber cable | |
JP2996209B2 (en) | Closure for optical fiber cable | |
JPH095592A (en) | Optical fiber cord | |
JPH08271771A (en) | Optical fiber cable and its production | |
JP2001201675A (en) | Optical fiber cable | |
JPH11258431A (en) | Optical fiber bundle and optical fiber cable | |
JP2782022B2 (en) | Optical fiber ribbon manufacturing method and optical fiber ribbon manufacturing apparatus |