JPS5931642B2 - Combustion method in fluidized bed furnace - Google Patents

Combustion method in fluidized bed furnace

Info

Publication number
JPS5931642B2
JPS5931642B2 JP53095087A JP9508778A JPS5931642B2 JP S5931642 B2 JPS5931642 B2 JP S5931642B2 JP 53095087 A JP53095087 A JP 53095087A JP 9508778 A JP9508778 A JP 9508778A JP S5931642 B2 JPS5931642 B2 JP S5931642B2
Authority
JP
Japan
Prior art keywords
fluidized bed
fuel
air
nozzle pipe
bed furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53095087A
Other languages
Japanese (ja)
Other versions
JPS5523824A (en
Inventor
恂 舘林
和明 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP53095087A priority Critical patent/JPS5931642B2/en
Priority to US06/062,532 priority patent/US4284401A/en
Priority to DE2931354A priority patent/DE2931354C2/en
Priority to DE19797922063U priority patent/DE7922063U1/en
Publication of JPS5523824A publication Critical patent/JPS5523824A/en
Publication of JPS5931642B2 publication Critical patent/JPS5931642B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/22Fuel feeders specially adapted for fluidised bed combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】 本発明は流動層炉における燃料の熱負荷の増大即ち燃料
の燃焼性の向上を目的として流動媒体に″砂もしくは石
灰石等の天然脱硫剤又は人工脱硫剤を使用して下部から
流動用空気を供給し、流動層を形成させ、該流動層中で
重■に軽油などの燃料又はタンクスラッジ等の油性廃棄
物及び油と石炭との混合燃料所謂コロイダル燃料等の燃
料もしくは焼却物(以下すべて燃料類と略称する。
Detailed Description of the Invention The present invention uses a natural desulfurizing agent such as sand or limestone or an artificial desulfurizing agent in a fluidized bed furnace for the purpose of increasing the heat load of the fuel, that is, improving the combustibility of the fuel. Fluidizing air is supplied from the lower part to form a fluidized bed, and in the fluidized bed, fuel such as heavy diesel oil, oily waste such as tank sludge, mixed fuel of oil and coal, so-called colloidal fuel, etc. Incineration materials (hereinafter referred to as fuels).

)を燃・暁させる際の流動層炉における当該燃料類の燃
焼方法に関するものである。従来の流動層炉においては
第1図に示す如く軽油、灯油、重油などを燃焼させるに
は通常の拡散燃焼用バーナ、所謂オープンフレームを形
成するバーナガン2を流動層炉の流動層1に挿入使用し
ているが、この場合流動層1内に挿入したバーナガン2
の先端が高温流動媒体の高熱伝達により過熱され、燃料
油が熱分解(クラツキング)を起し、バーナガン2の先
端部分にカーボンが付着するため、バーナガン2の先端
ノズルが閉塞するに至る欠点がある。
) relates to a method for burning the fuels in a fluidized bed reactor. In a conventional fluidized bed furnace, as shown in Figure 1, to burn light oil, kerosene, heavy oil, etc., a normal diffusion combustion burner, a burner gun 2 forming a so-called open flame, is inserted into the fluidized bed 1 of the fluidized bed furnace. However, in this case, the burner gun 2 inserted into the fluidized bed 1
The tip of the burner gun 2 is overheated by the high heat transfer of the high-temperature fluid medium, causing thermal decomposition (cracking) of the fuel oil, and carbon adheres to the tip of the burner gun 2, resulting in the nozzle at the tip of the burner gun 2 becoming clogged. .

従つて高圧空気による空気噴霧式バーナー(この場合内
部混合又は中間混合型のチツプを使用する例が多い。
Therefore, air atomization burners using high-pressure air (in this case, internal mixing or intermediate mixing chips are often used).

)を使用して、単に燃料類の供給のみを計り、流動層中
における燃焼はあくまでも層内条件によつていた。第1
図において3は燃料送入口、4は空気供給口、5は風箱
、6は空気分散板、7は炉壁である。
) was used to simply supply fuel, and combustion in the fluidized bed depended solely on the conditions within the bed. 1st
In the figure, 3 is a fuel inlet, 4 is an air supply port, 5 is a wind box, 6 is an air distribution plate, and 7 is a furnace wall.

上記に鑑み、本発明は第2図に示す如く流動層基部に設
置された空気分散板6を貫通したノズルパイプ9をバー
ナーガン本体としてノズルパイプ9内を空気で搬送され
た燃料類が燃料と空気との混合気の旋回流によつてジニ
ット(Jet)となつて流動層内へ供給されるようなら
しめたものであるOそのためノズルパイプ9による燃料
搬送空気量とその速度とによつて流動層内に吹き込まれ
た混合気ジニットの長さ(Jet.penetrati
On.depth)、及び層内の初期の気泡径及び層底
部における粒子、ガスの挙動が決定されるのである。
In view of the above, the present invention uses a nozzle pipe 9 passing through an air dispersion plate 6 installed at the base of the fluidized bed as a burner gun body, as shown in FIG. The swirling flow of the air-fuel mixture turns into jet and is supplied into the fluidized bed. The length of the mixture jet injected into the layer (Jet.
On. depth), the initial bubble diameter in the layer, and the behavior of particles and gas at the bottom of the layer.

それ故に層内での熱負荷を増加するためには燃料類投入
位置における流動媒体の撹拌と供給された燃料類の分散
とが良好でなければならない。従つて燃料類に対する搬
送空気量比ができるだけ大きく且つ初期の噴出速度が大
きい方が良好である。しかしながら燃料類に対する搬送
空気量比が過大になると層内で所謂吹き抜け現象が起り
、層内を有効に利用することが出来ない欠点がある。
Therefore, in order to increase the heat load in the bed, good agitation of the fluidizing medium at the fuel injection point and good dispersion of the supplied fuels are required. Therefore, it is better if the ratio of the amount of conveyed air to the fuel is as large as possible and the initial jetting speed is as large as possible. However, if the ratio of the amount of conveyed air to the fuel becomes too large, a so-called blow-through phenomenon occurs within the bed, and the inside of the bed cannot be used effectively.

即ち燃料類の量に対して或適正な空気量比が存在するの
である。本発明者等がCOの排出濃度として求めた燃焼
性能に及ぼすG1/GTの影響を調査した結果を第1表
に示す。
In other words, there is a certain appropriate ratio of the amount of air to the amount of fuel. Table 1 shows the results of an investigation by the inventors of the influence of G1/GT on combustion performance determined as CO emission concentration.

相対CO排出濃度比の値の小さい方が燃焼性能が良好で
ある。ここに従来法(第1図)における場合のCOの排
出濃度を1としてG1/GTを変化せしめた本発明の場
合の従来法に対する比、所謂相対CO排出濃度比を求め
た結果、第1表から明らかな様に燃料搬送空気比、G1
/GTの値には最適範囲があ勺、0.4以上にする必要
がある。
The smaller the value of the relative CO emission concentration ratio, the better the combustion performance. Here, the ratio of the so-called relative CO emission concentration ratio in the case of the present invention to the conventional method in which G1/GT was changed by setting the CO emission concentration in the case of the conventional method (Figure 1) to 1, and the results are shown in Table 1. As is clear from the fuel transport air ratio, G1
There is an optimal range for the value of /GT, and it needs to be 0.4 or more.

即ち本発明は流動層内へ混合流体が、 (イ) ジニットとなつて噴出させ、その場合、(ロ)
燃料搬送空気比G1/GTを0.4以上となし、更に後
記の如くジニットとなつて流動層内に吹込まれる燃料と
空気との混合流体が、(ハ)旋回流を生ぜしめるように
流動層内に供給することによつてこの(イ)、(口)、
(ハ)の相乗効果によV1流動層炉における前記従来の
流動層の欠点がことごとく除去され、更に流動層炉にお
ける燃焼性能を向上せしめるのに寄与するのである。
That is, in the present invention, the mixed fluid is ejected into the fluidized bed as (a) dinit, and in that case, (b)
The fuel transport air ratio G1/GT is set to 0.4 or more, and the mixed fluid of fuel and air, which is blown into the fluidized bed as dinit as described later, (c) flows so as to produce a swirling flow. By supplying this (a), (mouth),
The synergistic effect of (c) completely eliminates all the drawbacks of the conventional fluidized bed in the V1 fluidized bed furnace, and further contributes to improving the combustion performance in the fluidized bed furnace.

次に本発明者等の研究によると、前記G1/GTと同時
に、流動層内に燃料類を吹込むノズルパイプ9のバーナ
ーヘツド10の流動層内における空気分散板6から測定
した挿入長Hが流動層炉における燃料類の燃焼性能に影
響を及ぼすことが判明した。これは空気分散板からの距
離によつて粒子やガスの挙動が変化し、粒子やガスの混
合状態が変化するためで、良好な燃焼性能を得るために
は最良の混合状態にある場所へ燃料、空気の混合気を供
給しなければならない。即ちバーナーヘツドの挿入長H
は燃料類の燃焼量、即ち層内熱負荷によつて可変である
ことが望ましく、パワーシリンダー等の駆動装置によつ
て運転中にあつても負荷に応じた最適な長さに変化せし
めるようならしめた。
Next, according to research by the present inventors, at the same time as G1/GT, the insertion length H measured from the air distribution plate 6 in the fluidized bed of the burner head 10 of the nozzle pipe 9 that blows fuel into the fluidized bed is It was found that this affects the combustion performance of fuels in fluidized bed reactors. This is because the behavior of particles and gas changes depending on the distance from the air dispersion plate, and the mixing state of particles and gas changes. In order to obtain good combustion performance, fuel is directed to the location with the best mixing state. , the air mixture must be supplied. That is, the insertion length H of the burner head
It is desirable that the length be variable depending on the amount of fuel burned, that is, the heat load in the formation, and it is possible to change the length to the optimum length according to the load even during operation using a drive device such as a power cylinder. Closed.

本発明者等によつて測定されたバーナーヘツド挿入長H
の長さを5〜150m1に変化せしめた場合のHと燃焼
特性との関係を第2表に示した。
Burner head insertion length H measured by the inventors
Table 2 shows the relationship between H and combustion characteristics when the length of the tube was varied from 5 to 150 m1.

ここに相対CO排出濃度比はバーナーヘツド挿入長Hを
150V!lとした場合のCO排出濃度を1として求め
た。この場合も勿論第1表の場合と同様に相対CO排出
濃度比の値の小さい方が燃焼性能が良好であるO第2表
の結果より燃焼性能を良好ならしめる好適な範囲として
Hは10m7!L〜20mmであることが判明した。
Here, the relative CO emission concentration ratio is 150V with burner head insertion length H! The CO emission concentration was calculated by setting the CO emission concentration to 1. In this case as well, of course, as in Table 1, the smaller the value of the relative CO emission concentration ratio, the better the combustion performance. From the results in Table 2, H is 10 m7! It turned out to be L~20mm.

更に本発明者等の研究によると、バーナーヘツドの挿入
長Hと共に流動層内への燃料空気混合気の混合拡散を良
好ならしめるバーナーヘツドを選ぶことがG1/G,と
相乗的に燃焼性能の向上に効果があることおよびノズル
から燃料が噴出する位置によつて、ノズル近傍の流動媒
体のバツクミキシングが増大し、ノズル吹き出し口のコ
ーキング現象やカーボン付着の防止を可能ならしめ得ら
れ、更に流動層内に燃料と空気のジニット(Jet)が
拡散しやすくするようにノズルの吹き出し方向及び旋回
流を与えることによつてノズル閉塞防止の効果があり、
燃料の熱負荷を増大させる本発明の目的が達成されるこ
とが判明した。
Furthermore, according to the research conducted by the present inventors, selecting a burner head that improves the mixing and diffusion of the fuel-air mixture into the fluidized bed in conjunction with the insertion length H of the burner head synergistically improves combustion performance with G1/G. The back-mixing of the fluid medium near the nozzle is increased due to the position where the fuel is ejected from the nozzle, making it possible to prevent the coking phenomenon and carbon adhesion at the nozzle outlet. It has the effect of preventing nozzle clogging by providing the blowing direction of the nozzle and swirling flow to facilitate the diffusion of fuel and air jet in the layer.
It has been found that the object of the invention of increasing the heat load of the fuel is achieved.

流動層内への燃料空気の混合拡散を良好ならしめる種々
のバーナーヘツドの形状の例を第3図1,2,3,4,
5に示した。
Examples of various burner head shapes that improve the mixing and diffusion of fuel air into the fluidized bed are shown in Figures 3, 1, 2, 3, 4, and 3.
5.

1は1のA−A断面図、同様に2は2のB−B断面図、
3は3のC−C断面図、4,4のD−D断面図、5は5
のE−E断面図を示す。
1 is an AA sectional view of 1, similarly 2 is a BB sectional view of 2,
3 is a CC sectional view of 3, 4, 4 is a DD sectional view, 5 is 5
A sectional view taken along line E-E is shown.

何れの場合も層内に燃料空気混合気が拡散し易くなるよ
うに、夫々燃料空気混合気に適当な噴出速度、噴出方向
及び旋回流などを与えるように設計されたものである。
In either case, they are designed to give appropriate ejection speed, ejection direction, swirling flow, etc. to the fuel-air mixture so that the fuel-air mixture can easily diffuse into the layer.

噴出口を絞つたり又は燃料に施回流を与えるようになつ
ていない第3図バーナーヘツド1の場合のCO排出濃度
を1として、この値に対するバーナーヘツドが第3図、
2,3,4の場合のCO排出濃度の比を相対CO排出濃
度比として、本発明者等によつて求められた結果を第3
表に示した。
Assuming that the CO emission concentration in the case of the burner head 1 in Fig. 3, which is not designed to throttle the spout or give a circulating flow to the fuel, is 1, the burner head corresponding to this value is as shown in Fig. 3.
The results obtained by the present inventors are expressed as the third
Shown in the table.

第3表の結果よりバーナーヘツドの噴出開口部を絞る場
合、第3表の2叉は施回流を与える場合、第3表3,4
が燃焼性能をより良好ならしめることが判明した。バー
ナーヘツドの形状に関して、第3図3,4′1ノズルパ
イプの直角断面内において開口部の法線に対して30〜
40度の角度を持つ施回羽根を設け、燃料、空気混合気
に施回流を生ぜしめた場合である。
Based on the results in Table 3, when the ejection opening of the burner head is narrowed down, when the two-pronged flow shown in Table 3 is applied, and when the two-pronged flow is given,
It was found that the combustion performance was improved. Regarding the shape of the burner head, in Fig. 3, 4'1, 30~
This is a case where a swirling blade with an angle of 40 degrees is provided to create a swirling flow in the fuel/air mixture.

第3図5はノズル吹き出し口に多くの小孔を放射状に穿
つたもので開口部を絞り且つ施回流を与えるのと同様の
効果がある。
In FIG. 3, a number of small holes are radially bored in the nozzle outlet, which has the same effect as constricting the opening and providing a circulating flow.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃焼方式を説明する流動層炉の流動層部
分の概略断面図、第2図は本発明によるバーナーを使用
した一実施例の断面図、第3図1,2,3,4,5は夫
々流動層炉のノズルパイプのバーナーヘツドの種々な形
状を示す断面図、1は1のA−A断面図、2は2のB−
B断面図、3は3のC−C断面図、4は4のD−D断面
図、5は5のE−E断面図を示す。 1・・・流動層、2・・・バーナーガン、3・・・燃料
送入口、4・・・空気供給口、5・・・風箱、6・・・
空気分散板7・・・炉壁、13・・・チツプ、9・・・
ノズルパイプ、10・・・バーナーヘツド、16,18
・・・バーナーヘツド開口部、17・・・絞られたバー
ナーヘツド開口部、19・・・施回羽根、21・・・バ
ーナーヘツドの放射線状の小孔、15・・・燃料搬送用
空気入口。
Fig. 1 is a schematic sectional view of the fluidized bed portion of a fluidized bed furnace to explain the conventional combustion method, Fig. 2 is a sectional view of an embodiment using the burner according to the present invention, and Fig. 3 4 and 5 are cross-sectional views showing various shapes of the burner head of the nozzle pipe of a fluidized bed furnace, 1 is a cross-sectional view taken along line AA of 1, and 2 is a cross-sectional view taken along line B-2 of 2.
3 shows a CC sectional view of 3, 4 shows a DD sectional view of 4, and 5 shows an E-E sectional view of 5. DESCRIPTION OF SYMBOLS 1... Fluidized bed, 2... Burner gun, 3... Fuel inlet, 4... Air supply port, 5... Wind box, 6...
Air distribution plate 7... Furnace wall, 13... Chip, 9...
Nozzle pipe, 10... Burner head, 16, 18
...burner head opening, 17... constricted burner head opening, 19... winding vane, 21... radial small holes of burner head, 15... air inlet for fuel conveyance .

Claims (1)

【特許請求の範囲】 1 流動層炉において、流動層に導入される燃料搬送用
空気量G_1と燃焼に必要な空気量G_Tとの比G_1
/G_Tを0.4以上に調節し、ノズルパイプ内の空気
で搬送された燃料類が燃料と空気との混合気のジェット
(jet)となつて流動層内へ供給されるようにし、か
つ流動層炉に燃料類を供給するノズルパイプのバーナー
ヘッドから供給される流体に旋回流を与えるようになし
たことを特徴とする流動層炉における燃焼方法。 2 流動層炉において、流動層に導入されるG_1とG
_Tとの比G_1/G_Tを0.4以上に調節し、ノズ
ルパイプ内の空気で搬送される燃料類が燃料と空気との
混合気のジェットとなつて流動層内へ供給されるように
し、流動層に燃料類をノズルパイプのバーナーヘッドの
流動層における空気分散板よりの挿入高さ(H)を10
mm〜20mmに調節し、かつバーナーヘッドから供給
される流体に旋回流を与えるようになしたことを特徴と
する流動層炉における燃焼方法。 流動層炉において、流動層に導入されるG_1とG_T
との比G_1/G_Tを0.4以上に調節し、ノズルパ
イプ内の空気で搬送される燃料類が燃料と空気との混合
気のジェットとなつて流動層内へ供給されるようにし、
かつHを10mm〜20mmに調節し、更にバーナーヘ
ッドの開口部の断面の直径をノズルパイプの径の77%
〜94%に絞るか又は開口部を放射状の多数の小孔にす
るか又はノズルパイプの直角断面内において、開口部の
法線に対し30〜60度の角度を持つ旋回羽根を設け、
かつ燃料と空気との混合気に旋回流を生せしめるように
なしたことを特徴とする流動層炉における燃焼方法。
[Claims] 1. In a fluidized bed furnace, the ratio G_1 between the amount of fuel conveying air G_1 introduced into the fluidized bed and the amount of air G_T required for combustion.
/G_T is adjusted to 0.4 or more so that the fuel carried by the air in the nozzle pipe becomes a jet of a mixture of fuel and air and is supplied into the fluidized bed. A combustion method in a fluidized bed furnace, characterized in that a swirling flow is given to fluid supplied from a burner head of a nozzle pipe that supplies fuel to the bed furnace. 2 In a fluidized bed furnace, G_1 and G introduced into the fluidized bed
The ratio G_1/G_T with _T is adjusted to 0.4 or more so that the fuel carried by the air in the nozzle pipe becomes a jet of a mixture of fuel and air and is supplied into the fluidized bed. Insert the fuel into the fluidized bed by setting the insertion height (H) of the burner head of the nozzle pipe from the air distribution plate in the fluidized bed to 10
A method of combustion in a fluidized bed furnace, characterized in that the combustion angle is adjusted to 20 mm to 20 mm, and a swirling flow is given to the fluid supplied from the burner head. In a fluidized bed furnace, G_1 and G_T introduced into the fluidized bed
The ratio G_1/G_T is adjusted to 0.4 or more so that the fuel carried by the air in the nozzle pipe becomes a jet of a mixture of fuel and air and is supplied into the fluidized bed.
And adjust H to 10 mm to 20 mm, and further adjust the cross-sectional diameter of the burner head opening to 77% of the nozzle pipe diameter.
-94%, or the opening is made into a large number of radial small holes, or a swirling vane is provided at an angle of 30 to 60 degrees with respect to the normal to the opening in the right-angled cross section of the nozzle pipe,
A combustion method in a fluidized bed furnace, characterized in that a swirling flow is generated in a mixture of fuel and air.
JP53095087A 1978-08-03 1978-08-03 Combustion method in fluidized bed furnace Expired JPS5931642B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP53095087A JPS5931642B2 (en) 1978-08-03 1978-08-03 Combustion method in fluidized bed furnace
US06/062,532 US4284401A (en) 1978-08-03 1979-07-31 Method and means for feeding fuel into fluidized-bed combustion apparatus
DE2931354A DE2931354C2 (en) 1978-08-03 1979-08-02 Incinerator
DE19797922063U DE7922063U1 (en) 1978-08-03 1979-08-02 DEVICE FOR INTRODUCING FUEL INTO THE FLUID BED OF AN INCINERATOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53095087A JPS5931642B2 (en) 1978-08-03 1978-08-03 Combustion method in fluidized bed furnace

Publications (2)

Publication Number Publication Date
JPS5523824A JPS5523824A (en) 1980-02-20
JPS5931642B2 true JPS5931642B2 (en) 1984-08-03

Family

ID=14128141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53095087A Expired JPS5931642B2 (en) 1978-08-03 1978-08-03 Combustion method in fluidized bed furnace

Country Status (1)

Country Link
JP (1) JPS5931642B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965384A (en) * 1972-09-05 1974-06-25
JPS50106866A (en) * 1974-01-14 1975-08-22

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965384A (en) * 1972-09-05 1974-06-25
JPS50106866A (en) * 1974-01-14 1975-08-22

Also Published As

Publication number Publication date
JPS5523824A (en) 1980-02-20

Similar Documents

Publication Publication Date Title
US5697306A (en) Low NOx short flame burner with control of primary air/fuel ratio for NOx reduction
RU2153129C2 (en) Burner and internal combustion device with burner
US6189464B1 (en) Pulverized coal combustion burner and combustion method thereby
EP0233680B2 (en) Method of and apparatus for combusting coal-water mixture
JPS62276310A (en) Burner for low nox combustion
CA2188778A1 (en) Apparatus and method for reducing nox, co and hydrocarbon emissions when burning gaseous fuels
US8118588B2 (en) Energy efficient low NOx burner and method of operating same
TW200401871A (en) NOx-reduced combustion of concentrated coal streams
JP2004100967A (en) Burner for combusting powder, method of combusting powder and incinerator
PL185958B1 (en) Method of and apparatus for combusting dusty fuels
JPS62172105A (en) Combustion method and device for preventing production of nox
US4515553A (en) Combustion method for reducing the emission of nitrogen oxides
JP2006337016A (en) Furnace combustion system and fuel combustion method
JPH01500049A (en) Annular nozzle burner and method of using the annular nozzle burner
CA2508950C (en) Animal and vegetable oils combustor
JPS5931642B2 (en) Combustion method in fluidized bed furnace
CN208832443U (en) A kind of grading bamboo precombustion chamber coal burner
JPS59195011A (en) Pulverized coal burner
JP2004257673A (en) Combustion method using tubular flame burner
JPS59195016A (en) Combustion device
JPS599156Y2 (en) pulverized coal burner
JPS6314189Y2 (en)
JP2510568B2 (en) Combustion method of coal / water mixed fuel
JPH0721326B2 (en) Spraying method of coal / water slurry burner
CN216159040U (en) Novel low-nitrogen combustor