JPS5931520B2 - Method for producing silk fibroin peptide aqueous solution - Google Patents

Method for producing silk fibroin peptide aqueous solution

Info

Publication number
JPS5931520B2
JPS5931520B2 JP3474479A JP3474479A JPS5931520B2 JP S5931520 B2 JPS5931520 B2 JP S5931520B2 JP 3474479 A JP3474479 A JP 3474479A JP 3474479 A JP3474479 A JP 3474479A JP S5931520 B2 JPS5931520 B2 JP S5931520B2
Authority
JP
Japan
Prior art keywords
aqueous solution
weight
silk
fiproin
silk fibroin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3474479A
Other languages
Japanese (ja)
Other versions
JPS55124793A (en
Inventor
博 中山
研一 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP3474479A priority Critical patent/JPS5931520B2/en
Publication of JPS55124793A publication Critical patent/JPS55124793A/en
Publication of JPS5931520B2 publication Critical patent/JPS5931520B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明は絹フィプロインペプチド水溶液の製造法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an aqueous silk fibroin peptide solution.

絹フィプロインは化粧品原料その他に古くから使用され
ている。
Silk fiproin has been used for a long time as a raw material for cosmetics and other purposes.

化粧品原料として利用する場合には、例えば絹フィプロ
インを酸或いはアルカリによつて膨潤又は溶解し、絹フ
ィプロインに大なる化学変化を与えることなく、中和又
は有機溶剤によつて水に不溶性の沈澱物とする方法、或
いは他の合成高分子物質と絹フィプロインの塩基性コロ
イドを混合して無機化粧品基剤に付着せしめるか又は縮
合糸樹脂等の他物質を混合して後乾燥粉末とする方法が
採用されているが、これらの方法により得られたものは
水不溶性の為主としてメーキヤツプ化粧用に限られてい
る。又、絹フィプロインを酸、アルカリ、塩類等により
ペースト状となすか、又は脂肪酸等を混合してクリーム
状となすものがあるが、これは繊維状の絹フィプロイン
を単にペースト状又はクリーム状とすることを目的とし
ており、その用途はクリーム状化粧料の単なる添加に過
ぎない。更には、絹フィプロインを酸によつて蛋白質反
応を示さざるまで分解する方法もあるが、これは絹フィ
プロインというよりアミノ酸であり、しかも水に難溶性
のため用途も自づから限定される。一方、特公昭42−
17030号公報には絹フィプロインを高濃度燐酸で処
理して得られる溶液にアセトン等の特定の有機溶媒より
なる沈澱剤を混合して沈澱を生成せしめ、これを水に分
散中和した後、放射菌類分泌蛋白質分解酵素を使用せし
め再び前記沈澱剤を用いて沈澱を生成せしめて水可溶性
物質を得ることが記載されているものの、本質的に固液
反応である為分子量分布は広くならざるを得ず、又平均
重合度を低くすればアミノ酸含有量は必然的に増加せざ
るを得ないという品質上の問題があるのみならず、工程
が複雑で操作上或いはコストの面で満足し得ないもので
ある。
When used as a cosmetic raw material, for example, silk fiproin can be swollen or dissolved in acid or alkali, and silk fiproin can be neutralized or treated with an organic solvent to form a water-insoluble precipitate without causing any major chemical changes. Alternatively, a method is adopted in which other synthetic polymer substances and basic colloid of silk fiproin are mixed and adhered to an inorganic cosmetic base, or a method is adopted in which other materials such as condensed thread resin are mixed to form a dry powder. However, since the products obtained by these methods are water-insoluble, they are mainly limited to use in make-up cosmetics. In addition, there are products that make silk fiproin into a paste form with acids, alkalis, salts, etc., or cream forms by mixing fatty acids, etc., but these are made by simply turning fibrous silk fiproin into a paste or cream form. Its purpose is to simply add it to creamy cosmetics. Furthermore, there is a method of decomposing silk fiproin with acid until it shows no protein reaction, but this is an amino acid rather than silk fiproin, and furthermore, it is poorly soluble in water, so its uses are naturally limited. On the other hand, the special public
No. 17030 discloses that a solution obtained by treating silk fiproin with highly concentrated phosphoric acid is mixed with a precipitant made of a specific organic solvent such as acetone to form a precipitate, which is dispersed and neutralized in water, and then subjected to radiation therapy. Although it is described that a water-soluble substance is obtained by using a fungal secreted proteolytic enzyme and again using the above-mentioned precipitant to form a precipitate, the molecular weight distribution must be wide because it is essentially a solid-liquid reaction. Furthermore, if the average degree of polymerization is lowered, the amino acid content inevitably increases, which is a quality problem, and the process is complicated, making it unsatisfactory in terms of operation and cost. It is.

本発明者等は上記の欠陥を排除し、絹フイプロインより
化粧品原料その他に有用な高品質の絹フイプロインペプ
チドを得べく鋭意研究の結果本発明を完成したものであ
る。本発明の目的は、平均重合度に比較してアミノ酸含
有量が少なく、且つ塩含有量が少なくてエタノール水溶
液への溶解度が高い、化粧料その他に有用な水溶性絹フ
イプロインペプチドを提供するにある。他の目的は平均
重合度に比較してアミノ酸含有量が少なく、且つ塩含有
量が少なく、そのま\でも化粧料等に適用し得る絹フイ
プロインペプチド水溶液を提供するにある。更に他の目
的は斯かる絹フイプロインペプチド水溶液を工業的容易
且つ安価に製造する方法を提供するにある。本発明方法
は銅−エチレンジアミン水溶液、水酸化銅−アンモニア
水溶液、水酸化銅−アルカリグリセリン水溶液、臭化リ
チウム水溶液、カルシウム或いはマグネシウム又は亜鉛
の塩酸塩或いは硝酸塩又はチオシアン酸塩の水溶液、チ
オシアン酸ナトリウム水溶液よりなる群から選ばれた少
なくとも一種の溶媒に精練絹原料を溶解後透析して得た
0.5〜20重量%の絹フイプロイン水溶液を酵素或い
は酸又はアルカリにより加水分解することを特徴とする
。本発明に適用する絹フイプロイン水溶液の溶媒は銅−
エチレンジアミン水溶液、水酸化銅−アンモニア水溶液
(シユワイサ一試薬)、水酸化銅アルカリ−グリセリン
水溶液(ローエ試薬)、臭化リチウム水溶液、カルシウ
ム或いはマグネシウム又は亜鉛の塩酸塩或いは硝酸塩又
はチオシアン酸塩の水溶液、チオシアン酸ナトリウム水
溶液等が挙げられるがニスト及び使用上の点からカルシ
ウム又ぱマグネシウムの塩酸塩又は硝酸塩が好ましい。
The present inventors have completed the present invention as a result of intensive research in order to eliminate the above-mentioned defects and obtain a high-quality silk fiproin peptide useful as a raw material for cosmetics and other uses from silk fiproin. An object of the present invention is to provide a water-soluble silk fiproin peptide that has a low amino acid content compared to the average degree of polymerization, a low salt content, and high solubility in an aqueous ethanol solution, and is useful for cosmetics and other applications. It is in. Another object is to provide an aqueous silk fiproin peptide solution that has a lower amino acid content and a lower salt content than the average degree of polymerization, and can be applied as is to cosmetics and the like. Still another object is to provide a method for industrially producing the silk fiproin peptide aqueous solution easily and at low cost. The method of the present invention uses copper-ethylenediamine aqueous solution, copper hydroxide-ammonia aqueous solution, copper hydroxide-alkaline glycerin aqueous solution, lithium bromide aqueous solution, calcium, magnesium or zinc hydrochloride, nitrate or thiocyanate aqueous solution, sodium thiocyanate aqueous solution. The method is characterized in that a 0.5 to 20% by weight aqueous silk fiproin solution obtained by dissolving a refined silk raw material in at least one solvent selected from the group consisting of the following and dialysis is hydrolyzed with an enzyme, an acid, or an alkali. The solvent of the silk fiproin aqueous solution applied to the present invention is copper-
Ethylenediamine aqueous solution, copper hydroxide-ammonia aqueous solution (Schweisser's reagent), copper hydroxide alkali-glycerin aqueous solution (Rohe reagent), lithium bromide aqueous solution, aqueous solution of calcium, magnesium or zinc hydrochloride, nitrate or thiocyanate, thiocyanide Examples include aqueous sodium chloride solutions, but calcium or magnesium hydrochloride or nitrate are preferred from the viewpoint of composition and use.

本発明に使用する原料としての絹は、まゆ生糸、まゆ屑
、生糸屑、ビス、揚り綿、絹布屑、ブーレツト等のいず
れも使用可能でありこれらを常法にノ従い、必要に応じ
界面活性剤の存在下、温水中で又は、酵素の存在下室温
水中でセリシンを除去し乾燥したものを使用する。
Silk as a raw material used in the present invention can be raw cocoon silk, cocoon waste, raw silk waste, screws, fried cotton, silk cloth waste, boulet, etc., and these can be prepared in accordance with a conventional method, and if necessary, Sericin is removed in warm water in the presence of an activator or in room temperature water in the presence of an enzyme and dried.

得られた精練絹原料を上記の溶媒に添加し温度60〜9
5℃、好ましくは70〜85℃で二ーダ一の如き装置内
で均一に溶解する。
The obtained refined silk raw material was added to the above solvent and heated to a temperature of 60 to 9.
Uniformly melt at 5°C, preferably from 70 to 85°C in an apparatus such as a secondary oven.

ここで浴比は通常該精練絹原料に対し、2〜50倍、好
ましくは3〜30倍である。溶媒は溶解性及び経済性を
考慮すると塩化カルシウム及び硝酸カルシウムが好まし
く、これらの金属塩濃度は通常15〜80重量%、好ま
しくは30〜70重量%、特に好ましくは40〜60重
量%である。
Here, the bath ratio is usually 2 to 50 times, preferably 3 to 30 times, relative to the refined silk raw material. Calcium chloride and calcium nitrate are preferred as the solvent in view of solubility and economy, and the concentration of these metal salts is usually 15 to 80% by weight, preferably 30 to 70% by weight, particularly preferably 40 to 60% by weight.

又溶解性をより高める為に、これらの水溶液にアルコー
ル類を添加することが好ましい。アルコールの添加時期
は絹原料の溶解の前又は途中が良く、又その添加量は金
属塩の水溶液に対し、20〜60重量%、好ましくは2
5〜50重量%である。得られた溶解液をセロフアン膜
に代表される透析膜や中空繊維を使用した透析器を用い
て前記塩類をほマ完全に除去する。
Further, in order to further improve solubility, it is preferable to add alcohols to these aqueous solutions. The timing of adding alcohol is preferably before or during the dissolution of the silk raw material, and the amount added is 20 to 60% by weight, preferably 2% by weight, based on the aqueous solution of metal salt.
It is 5 to 50% by weight. The salts are almost completely removed from the resulting solution using a dialysis membrane such as a cellophane membrane or a dialysis machine using hollow fibers.

ここで化粧料等に使用できる絹フイプロインペプチドを
得るためには、残留塩濃度を0.003〜0.06%程
度にすることが望ましい。この意味より透析を行うに際
し透析量と透析膜面積を調整するのが好ましく、例えば
膜表面積(CrA)≧10を満足する多層膜構造物 プライミング容量(― 又は中空糸集束構造物を使用して脱塩するのが好ましい
In order to obtain silk fiproin peptide that can be used in cosmetics and the like, it is desirable that the residual salt concentration be approximately 0.003 to 0.06%. From this point of view, it is preferable to adjust the dialysis amount and dialysis membrane area when performing dialysis. For example, it is preferable to adjust the dialysis amount and dialysis membrane area. Preferably salted.

ここでプライミング容量とは、透析チユーブ又は膜間の
内容積を示す。又該条件は例えば多層構造物の場合膜間
隔を2′以下に保持するとか、又中空糸集束構造物の場
合は、中空糸の径を4〜以下にすることにより達成され
る。次に得られたフイプロイン水溶液の濃度を加水分解
に適当な濃度、即ち0.5〜20重量%、好ましくは1
〜15重量%に調整する。
The priming capacity here refers to the internal volume of the dialysis tube or between the membranes. Further, this condition can be achieved, for example, by keeping the membrane spacing at 2' or less in the case of a multilayer structure, or by keeping the diameter of the hollow fibers at 4 or less in the case of a hollow fiber bundle structure. Next, the concentration of the obtained fiproin aqueous solution is adjusted to a concentration suitable for hydrolysis, that is, 0.5 to 20% by weight, preferably 1% by weight.
Adjust to ~15% by weight.

絹フイプロインの濃度が0.5重量%未満では生成絹フ
イプロインペプチドに対し金属塩の含有率が高く、品質
上の問題があるばかりでなくコスト面でも劣り、一方2
0重量%を越えると途中で絹フイプロインが凝集析出し
運転操作上の問題となるばかりかアミノ酸含有量の増加
、収率の低下等の欠陥をもたらす。濃度0。
If the concentration of silk fiproin is less than 0.5% by weight, the content of metal salts will be high in the produced silk fiproin peptide, which will not only cause quality problems but also be inferior in terms of cost.
If it exceeds 0% by weight, silk fiproin will coagulate and precipitate during the process, which will not only cause problems in operation but also cause defects such as an increase in amino acid content and a decrease in yield. Concentration 0.

5〜20重量%に調整された絹フイプロィン水溶液は次
いで、酵素或いは酸又はアルカリを用いて加水分解を行
なう。
The silk fiproin aqueous solution adjusted to 5 to 20% by weight is then hydrolyzed using an enzyme, acid, or alkali.

本発明に適用される酵素としては通常の蛋白質分解酵素
、例えば放線菌から得られるプロナーゼ、パパイヤから
得られるプロラーゼ等の数種のプロテアーゼ混合物と考
えられる酵素群、或いはトリプシン、キモトリプシン、
パパイン、プロメリン等が挙げられ、これらを単独或い
は2種以上混合して使用することができる。
Enzymes that can be applied to the present invention include common proteolytic enzymes, such as pronase obtained from actinomycetes and prolase obtained from papaya, which are considered to be a mixture of several proteases, or trypsin, chymotrypsin,
Examples include papain and promeline, and these can be used alone or in a mixture of two or more.

使用する酵素の量は酵素の種類、純度、反応条件或いは
目的とする絹フイプロインペプチドの平均重合度等によ
り異なるが通常絹フイプロインに対し100PPm〜1
0重量%、好ましくは0.1〜5.0重量%である。こ
の場合の加水分解の条件は使用する酵素の種類、濃度等
により異なるが通常PH5〜9、好ましくは6〜8.5
で温度が20〜50℃、好ましくは30〜45゜Cで1
〜72時間、好ましくは4〜16時間行なう。反応は静
置した状態でも進行するが均一化及び促進化のために攪
拌乃至振盪すれば好ましい。PHを調整するために燐酸
ナトリウム、トリス塩酸等の緩衝剤を使用することもで
きるが、本発明の絹フイプロイン水溶液はPHが7近辺
なので寧ろ使用しない方が得られた絹フイフロインペプ
チドの塩含有量が少なくなるので好ましい。使用する酵
素としては得られたものの品質及び収率並びに操作土の
点でパパイン及びキモトリプシンが好適である。本発明
に適用する酸としては塩酸、硫酸、硝酸、酒石酸、マロ
ン酸、コハク酸、マレイン酸、等の無機酸又は有機酸が
挙げられるが反応性及び副生する塩の少ないことから塩
酸、硫酸が好ましい。
The amount of enzyme used varies depending on the type of enzyme, purity, reaction conditions, average degree of polymerization of the desired silk fiproin peptide, etc., but is usually 100 PPm to 1 for silk fiproin.
0% by weight, preferably 0.1-5.0% by weight. The conditions for hydrolysis in this case vary depending on the type and concentration of the enzyme used, but the pH is usually 5 to 9, preferably 6 to 8.5.
1 at a temperature of 20-50°C, preferably 30-45°C.
~72 hours, preferably 4 to 16 hours. Although the reaction proceeds even if it is left standing, it is preferable to stir or shake it for homogenization and acceleration. Although a buffer such as sodium phosphate or Tris-HCl can be used to adjust the pH, since the pH of the silk fiproin aqueous solution of the present invention is around 7, it would be better not to use a buffer such as silk fifurin peptide salt. This is preferable because the amount is reduced. As the enzymes used, papain and chymotrypsin are preferable in terms of the quality and yield of the product obtained and the working soil. Examples of acids applicable to the present invention include inorganic or organic acids such as hydrochloric acid, sulfuric acid, nitric acid, tartaric acid, malonic acid, succinic acid, and maleic acid. is preferred.

又本発明に適用するアルカリとしては、水酸化ナトリウ
ム、水酸化カリウム、水酸化リチウム、ポリエチレンイ
ミン等のポリアミン等が使用し得るが反応性、経済性及
び安定性の面から水酸化ナトリウム、水酸化カリウムが
好適である。酸又はアルカリによる加水分解の条件は使
用する酸又はアルカリの種類、目的とする絹フイプロイ
ンペプチドの平均重合度及び重合度分布等により異なる
が通常0.03〜10N好ましくは0.3N以下の濃度
で20〜110℃、好ましくは30〜100℃の温度で
0.5〜50時間、好ましくは1〜25時間行なつた後
アルカリ又は酸を加えて中和する。
In addition, as the alkali applicable to the present invention, sodium hydroxide, potassium hydroxide, lithium hydroxide, polyamines such as polyethyleneimine, etc. can be used, but from the viewpoint of reactivity, economy, and stability, sodium hydroxide, hydroxide Potassium is preferred. The conditions for hydrolysis with acid or alkali vary depending on the type of acid or alkali used, the average degree of polymerization and distribution of the degree of polymerization of the target silk fiproin peptide, but are usually 0.03 to 10N, preferably 0.3N or less. After the reaction is carried out at a temperature of 20 to 110° C., preferably 30 to 100° C., for 0.5 to 50 hours, preferably 1 to 25 hours, an alkali or acid is added to neutralize.

加水分解により得られた本発明の絹フイプロインペプチ
ド水溶液はそのまま或いは濃縮又は希釈して、例えば化
粧料に適用し得るばかりでなく、脱塩して更に高品質の
ものとし得るし、又脱水することにより粉末状の絹フイ
プロインペプチドとすることもできる。
The silk fiproin peptide aqueous solution of the present invention obtained by hydrolysis can be applied as it is or after being concentrated or diluted, for example, in cosmetics, and can also be desalted to make it of higher quality. By doing so, a powdered silk fiproin peptide can also be obtained.

脱塩後脱水すれば高品質の粉末絹フイプロインペプチド
が得られる。脱塩は例えばイオン交換樹脂を使用して行
なうが、酸触媒を使用した場合、反応後弱塩基性アニオ
ン交換樹脂で処理すれば中和及び脱塩を同時に実施でき
る。
After desalting and dehydration, high quality powdered silk fiproin peptide can be obtained. Desalting is carried out using, for example, an ion exchange resin, but when an acid catalyst is used, neutralization and desalting can be carried out simultaneously by treating with a weakly basic anion exchange resin after the reaction.

又、アルカリ触媒の場合も同様に処理できる。脱水は通
常、減圧蒸溜又はアセトン等の非溶媒を添加して沈澱せ
しめる。本発明方法により得られた絹フイフロインペプ
チドは通常2〜20、好ましくは4〜15平均重合度を
有し15重量%以下、好ましくは10重量%以下、特に
5重量%以下のアミノ酸しか含有せず、しかも水溶性で
エタノール水溶液への溶解度も高く塩含有量も少ないの
で化粧料その他に広く利用し得る。
Further, in the case of an alkali catalyst, the same treatment can be performed. Dehydration is usually accomplished by distillation under reduced pressure or by adding a non-solvent such as acetone to cause precipitation. The silk fibroin peptide obtained by the method of the present invention usually has an average degree of polymerization of 2 to 20, preferably 4 to 15, and contains only 15% by weight or less, preferably 10% by weight or less, particularly 5% by weight or less of amino acids. Moreover, it is water-soluble, has high solubility in aqueous ethanol solution, and has a low salt content, so it can be widely used in cosmetics and other applications.

特に化粧品原料として使用する場合、保湿性を有し且つ
美粧効果が優れ、あれ、かゆみ或いは悪臭を防止し得る
。又、アレルギ一症状はアミノ酸に比較すれば皆無に近
い。又、本発明の絹フイプロインペプチドは重合度分布
が狭いのが特徴で、平均重合度が低い場合でもアミノ酸
含有量が低く、又比較的平均重合度が高い場合でも差程
重合度が高く且つ水に対する溶解性及び/又はl安定性
の低いものを含有しないので、透明なローシヨン等に使
用しても沈澱、濁りが発生せず、又スプレー等に使用し
てもノズル詰り等を惹起しない。以下実施例により本発
明方法を説明するが実施5例中の測定は次の方法で行な
つた。
Particularly when used as a cosmetic raw material, it has moisturizing properties and has excellent cosmetic effects, and can prevent itching, itching, and bad odors. Also, allergic symptoms are almost non-existent compared to amino acids. In addition, the silk fiproin peptide of the present invention is characterized by a narrow distribution of polymerization degrees, and even when the average degree of polymerization is low, the amino acid content is low, and even when the average degree of polymerization is relatively high, the degree of polymerization is relatively high. In addition, it does not contain substances with low solubility and/or stability in water, so it does not cause precipitation or turbidity when used in transparent lotions, etc., and does not cause nozzle clogging when used in sprays, etc. . The method of the present invention will be explained below with reference to Examples, and the measurements in Example 5 were carried out by the following method.

(ペプチド平均重合度測定法) 総ペプチド(混入アミノ酸を含む)量を測定し、ペプチ
ドを完全加水分解した場合のアミノ酸モル量を求め、こ
れを(a)とする。
(Peptide average degree of polymerization measurement method) The total amount of peptide (including contaminating amino acids) is measured, and the molar amount of amino acids when the peptide is completely hydrolyzed is determined, and this is designated as (a).

末端基量を測定し、9これを(b)とする。平均重合度
=(a)Ab)として求める。(a)を得るには、(1
)絶乾固形分量より灰分量を差引き、これとフイプロイ
ン構成アミノ酸の平均分子量より求める、(2)ゲルタ
ール窒素測定より求めた窒素原子量をアミノ酸モル量と
する。
Measure the amount of terminal groups and define this as (b). It is determined as average degree of polymerization=(a)Ab). To obtain (a), (1
) The ash content is subtracted from the absolute dry solid content and determined from this and the average molecular weight of the fiproin-constituting amino acids. (2) The nitrogen atomic weight determined by geltal nitrogen measurement is the amino acid molar amount.

(これはフイプロインを構成する塩基性アミノ酸量が非
常に少い為、実質的に誤差は非常に小さい。)(3)力
性ソーダ又は塩酸加水分解後、生成アミノ酸をニンヒド
リン比色定量する等の方法に依る。各測定法に若干の違
いがあるが、一般に良い一致を示す。(b)はフオルモ
ール滴定法により末端CO2H基を測定すれば良いが、
フイプロインの構成アミノ酸は、実質上、殆んど中性ア
ミノ酸である為精度は非常に高い。(アミノ酸含有量測
定法) サンプル固形分約10mf7を1CCの純水に溶解し、
これをセフツデツクスGlO(生化学工業社製)を内径
21mm1長さ75cmに充填したカラムで展開する。
(This is because the amount of basic amino acids that make up fiproin is very small, so the error is actually very small.) (3) After hydrolysis with sodium hydroxide or hydrochloric acid, the amino acids produced are measured by colorimetry using ninhydrin, etc. Depends on the method. Although there are some differences between each measurement method, there is generally good agreement. For (b), the terminal CO2H group can be measured by formol titration method, but
The amino acids that make up fiproin are essentially neutral amino acids, so the accuracy is very high. (Amino acid content measurement method) Dissolve sample solid content of approximately 10mf7 in 1CC of pure water,
This is developed in a column packed with Ceftudex GlO (manufactured by Seikagaku Kogyo Co., Ltd.) with an inner diameter of 21 mm and a length of 75 cm.

溶難液は0.05N−NaClを用い、流速4.8m1
/Hr分取は1管に就き1.4WL1とした。各フラク
シヨンを2.5N−NaOHで90℃、2.5時間加水
分解後、30%酢酸で中和し、ニンヒドリン比色法で含
アミノ酸量を測定する。予め、グリシン、アラニン、セ
リン、チロシンを流して、流出容積を求め、このフラク
シヨンに入るものをペプチド・サンプル中のアミノ酸含
量として求めた。グリシル−グリシン等の2量体は、こ
のフラクシヨン中に、若干混入することがあるが、これ
もアミノ酸として計量したので、こうして求めたアミノ
酸含量は、最大値として求められることになる。(30
%エチルアルコール溶解性)30%エチルアルコール水
溶液に2.5重量%のペプチド・サンブルを加え、攪拌
後、10℃で1日放置し、溶解量を測定し、添加量の何
%かを示す。
The solution used was 0.05N-NaCl, and the flow rate was 4.8ml.
/Hr fractionation was set to 1.4WL1 per tube. Each fraction is hydrolyzed with 2.5N NaOH at 90°C for 2.5 hours, then neutralized with 30% acetic acid, and the amount of amino acids contained is measured by ninhydrin colorimetry. Glycine, alanine, serine, and tyrosine were flowed in advance to determine the outflow volume, and what entered this fraction was determined as the amino acid content in the peptide sample. A small amount of dimer such as glycyl-glycine may be mixed into this fraction, but since this was also measured as an amino acid, the amino acid content determined in this way is determined as the maximum value. (30
% ethyl alcohol solubility) 2.5% by weight of the peptide sample was added to a 30% ethyl alcohol aqueous solution, stirred and left at 10°C for 1 day, the amount dissolved was measured and the percentage of the added amount was indicated.

実施例 1塩化カルシウムの60重量%水溶液11に精
練絹原料1407を加熱溶解する。
Example 1 Refined silk raw material 1407 is heated and dissolved in 60% by weight aqueous solution 11 of calcium chloride.

この際溶解を容易にする為エチルアルコール400m1
を添加した。次いで、これを24時間透析し、5.0重
量%のフイプロイン水溶液2.81を得た。電導度測定
に依] り測定された残留塩濃度は0,004%であつ
た。この11に濃塩酸を加えて0.2N−HCl溶液と
し、94℃で3.8時間攪拌下加熱した後5N−NaO
H溶液で中和し、PH6.8とした。これを活性炭で脱
色処理後、口過し、微黄色透明のフイプロインペプチド
水溶液を得た。(実験屋1)比較として、精練生糸50
Vを1N−HClllに浸漬し、窒素気流中100℃で
12時間加熱攪拌し反応させた。次いでロータリーエバ
ポレータにより溶媒を減圧除去後、水100CCを加え
、再び減圧除去する。純水11を加え不溶物を口過した
後、濃NaOH溶液でPH6,7に中和した。(実験洗
2)この2つのサンプルに就き、平均重合度、アミノ酸
含有量、塩含有量(生成ペプチド混合物に対する)ペプ
チド(アミノ酸を含む)収率、30%エチルアルコール
水溶液に対する溶解性、水溶液(5wt%)の安定性を
測定、観察した。結果を第1表に示す。第1表より解る
様に、比較として固体絹フイプロインを塩酸加水分解し
た実験黒2では収率も低いが、平均重合度も低いものし
か得られず、アミノ酸含量も高い。
At this time, to facilitate dissolution, use 400ml of ethyl alcohol.
was added. Next, this was dialyzed for 24 hours to obtain 2.81% of a 5.0% by weight aqueous solution of fiproin. The residual salt concentration determined by conductivity measurement was 0.004%. Concentrated hydrochloric acid was added to this 11 to make a 0.2N-HCl solution, and after heating at 94°C for 3.8 hours with stirring, 5N-NaO
The mixture was neutralized with H solution to a pH of 6.8. This was decolorized with activated carbon and passed through the mouth to obtain a slightly yellow and transparent aqueous solution of fiproin peptide. (Jikkenya 1) For comparison, scouring raw silk 50
V was immersed in 1N-HCIll, and reacted by heating and stirring at 100° C. for 12 hours in a nitrogen stream. Next, after removing the solvent under reduced pressure using a rotary evaporator, 100 cc of water was added, and the solvent was removed under reduced pressure again. After adding pure water 11 to remove insoluble materials, the solution was neutralized to pH 6.7 with concentrated NaOH solution. (Experimental Washing 2) These two samples were analyzed for average degree of polymerization, amino acid content, salt content (relative to the produced peptide mixture), peptide (including amino acid) yield, solubility in 30% ethyl alcohol aqueous solution, aqueous solution (5 wt. %) stability was measured and observed. The results are shown in Table 1. As can be seen from Table 1, for comparison, Experiment Black 2, in which solid silk fiproin was hydrolyzed with hydrochloric acid, had a low yield, but also had a low average degree of polymerization and a high amino acid content.

更に長時間反応させると収率は向上するが、平均重合度
は変らないか、かえつて低下する。しかし、フイプロイ
ン溶液透析液を加水分解した実験黒1では、平均重合度
、アミノ酸含量共、満足し得るものが得られ、収率も良
好である。実施例 2 精練絹100yを第2表に挙げた溶解液11?に溶解し
夾雑物を口別した後、透析し、約5重量%のフイプロイ
ン水溶液とする。
If the reaction is carried out for a longer period of time, the yield will improve, but the average degree of polymerization will remain the same or even decrease. However, in Experimental Black 1, in which a fiproin solution dialysate was hydrolyzed, a satisfactory average degree of polymerization and amino acid content were obtained, and the yield was also good. Example 2 Dissolution solution 11 of 100y of refined silk listed in Table 2? After dissolving impurities in the solution and separating the impurities, it is dialyzed to obtain an approximately 5% by weight aqueous solution of fiproin.

これに各々濃塩酸を加えて0.2N−HCl溶液として
90℃で3.8時間程度加熱攪拌し、平均重合度5.0
〜 5.3とした。中和処理後各々に就いて、アミノ酸
含量、収)率及び30%エチルアルコール水溶液への溶
液性を測定した結果を第2表に示す。第2表より解る様
に、これ等の溶解液を用いることにより、均一な懸濁状
フイプロイン水溶液を得ることが出来、これを加水分解
することにより、アミノ酸含量の低いペプチド混合物を
収率よく得ることが出来た。
Concentrated hydrochloric acid was added to each to form a 0.2N-HCl solution, and the mixture was heated and stirred at 90°C for about 3.8 hours, with an average polymerization degree of 5.0.
~ 5.3. Table 2 shows the results of measuring the amino acid content, yield, and solubility in a 30% aqueous ethyl alcohol solution for each product after neutralization. As can be seen from Table 2, by using these solutions, a uniform suspended fiproin aqueous solution can be obtained, and by hydrolyzing this, a peptide mixture with a low amino acid content can be obtained in good yield. I was able to do it.

実施例 3 硝酸カルシウムの60重量%水溶液11に実施例1と同
様に、精練絹原料を、溶解し、口過後これを24時間透
析して、フイプロイン水溶液を得る。
Example 3 In the same manner as in Example 1, a refined silk raw material is dissolved in a 60% by weight aqueous solution 11 of calcium nitrate, passed through the mouth, and then dialyzed for 24 hours to obtain a fiproin aqueous solution.

この際、精練絹原料を6y)30y) 100>v、2
00yと変え、各々、透析後のフイプロイン濃度が0.
3、1.5、5.10各重量%のものを得た。更にこの
10%フイプロイン溶液を窒素気流下注意深く濃縮し、
15%及び30%のものを得た。この各々に就き、0.
IN−HCI溶液とし、94℃で4.6時間加水分解を
行なつた。5N一NaOHでPH6.8に中和した後、
不溶物を口別し、収率、アミノ酸含量、ペプチド(アミ
ノ酸を含む)に対する塩含量、及び平均重合度を測定し
た結果を第3表に示す。
At this time, the scouring silk raw material is 6y) 30y) 100>v, 2
00y, and the fiproin concentration after dialysis is 0.
3, 1.5, and 5.10% by weight were obtained. Furthermore, this 10% fiproin solution was carefully concentrated under a nitrogen stream,
15% and 30% were obtained. For each of these, 0.
An IN-HCI solution was used and hydrolysis was carried out at 94°C for 4.6 hours. After neutralizing to pH 6.8 with 5N-NaOH,
Table 3 shows the results of measuring the yield, amino acid content, salt content relative to the peptide (including amino acids), and average degree of polymerization after separating the insoluble matter.

第3表より明らかな如くフイプロイン濃度が高くなるに
従つて、平均重合度が高いものが得られる傾向にある。
As is clear from Table 3, as the concentration of fiproin increases, the average degree of polymerization tends to be higher.

フイプロイン濃度が20重量%を超えると、溶液が不安
定になりフイプロインが凝集沈澱を起し易くなり、上表
中30重量%の場合も、塩酸を入れると同時に凝集沈澱
が生成し、反応終了時迄溶解せず残存した為、得られた
収率は低い。アミノ酸含量も比較的高く、操作上からも
好ましくない。又、フイプロイン濃度が低い場合、塩含
量も相対的に高くなり、又経済性及び後処理操作上不利
である。実施例 4 実施例1と同様にして、フイプロイン水溶液を得る。
When the concentration of fiproin exceeds 20% by weight, the solution becomes unstable and fiproin tends to coagulate and precipitate. Even in the case of 30% by weight as shown in the table above, coagulated precipitates are formed as soon as hydrochloric acid is added, and when the reaction is completed. Since it remained undissolved until then, the yield obtained was low. The amino acid content is also relatively high, which is not preferable from an operational point of view. Furthermore, if the fiproin concentration is low, the salt content will also be relatively high, which is also disadvantageous in terms of economy and post-processing operations. Example 4 A fiproin aqueous solution is obtained in the same manner as in Example 1.

この濃縮を窒素気流下、90℃でロータリーエバポレー
ターで行い、5重量%の濃度とした。これを第4表に示
した各種アルカリ性条件で加水分解した後、中和し、口
過後必要に応じて活性炭脱色処理を行ない、フイプロイ
ンペプチド水溶液を得た。これ等に就き、アミノ酸含量
、ペプチド(アミノ酸を含む)に対する塩含量、収率、
30%エタノール溶解性(2.5重量%添加)、水溶液
安定性(5重量%添加)及び平均重合度を測定した。結
果を第4表に示す。ペプチド混合物粉末を得るには、水
溶液を減圧下溶媒除去すればよく、これを水に加えると
、速やかに再溶解する。第4表に示した如く、適当なア
ルカリ濃度及び温度、時間を選ぶことにより、平均重合
度を種々変えることが出来るが▲1のように平均重合度
の高いものでも、エタノール水溶液に対する溶解性及び
水溶液の安定性は良い結果を得た。又上表より解る様に
、アミノ酸含量は低く、塩含量も低い。収率も良好であ
る。又上記実験では中和は6N−HClで行なつたが、
この代りに、弱酸性カチオン交換樹脂カラムを通してア
ルカリを除き、塩含量0〜3重量%程度のものとするこ
とが出来る。
This concentration was performed in a rotary evaporator at 90° C. under a nitrogen stream to give a concentration of 5% by weight. This was hydrolyzed under various alkaline conditions shown in Table 4, neutralized, filtered, and optionally decolorized with activated carbon to obtain a fiproin peptide aqueous solution. Regarding these, amino acid content, salt content for peptide (including amino acids), yield,
30% ethanol solubility (2.5% by weight added), aqueous solution stability (5% by weight added) and average degree of polymerization were measured. The results are shown in Table 4. To obtain a peptide mixture powder, the solvent may be removed from the aqueous solution under reduced pressure, and when this is added to water, it is quickly redissolved. As shown in Table 4, the average degree of polymerization can be varied by selecting an appropriate alkali concentration, temperature, and time. Good results were obtained regarding the stability of the aqueous solution. Furthermore, as can be seen from the above table, the amino acid content is low and the salt content is also low. The yield is also good. Also, in the above experiment, neutralization was performed with 6N-HCl,
Alternatively, the alkali can be removed through a weakly acidic cation exchange resin column, resulting in a salt content of about 0 to 3% by weight.

この場合、収率は80〜85%程度である。実施例 5 実施例1と同様にして得た5重量%の絹フイプロイン透
析液11にシグマ社製粗パパイン(Typel、1〜2
BAEEunits殉)2.57の水抽出物を添加し、
恒温槽中で45℃4時間反応させた。
In this case, the yield is about 80-85%. Example 5 Crude papain manufactured by Sigma (Type, 1 to 2
BAEEunits martyrs) 2.57 water extract is added,
The reaction was carried out in a constant temperature bath at 45°C for 4 hours.

緩衝液は使用しなかつたが反応開始時のPHは6.8、
反応終了時のPHは6.4とほぼ一定であつた。反応を
終了させる為に、オートクレーブ中で110℃15分間
加熱し、その後析出した僅かの白色沈澱を遠心分離し、
乾燥秤量した所3.97であつた。白色沈澱を除去した
後の上澄液は透明な淡黄色液体であり、絶乾重量測定に
よると4.85%の固形分を有しており収率は約97%
であつた。またこの上澄液のフオルモール滴定法による
末端カルボキシル基量は70μM/mlであつた。この
上澄液1eeを36%濃塩酸1CCと共に窒素中封管し
110℃にて16hrs加水分解を行なつた後、フオル
モール滴定を行なつた所、末端カルボキシル基量は55
4μM/mlであつた。これらの結果より、本実施例で
得られた絹フイプロインのパパイン消化物は平均重合度
7.9のペプチド混合物であつた。また比較の為に精練
生糸50Vを水11中に懸濁し、シグマ社製粗パパイン
( Typel.l〜 2BAEEunits/〜)2
.5Vの水抽出物を添加し、恒温槽中にて45℃4時間
反応させたが絹糸は殆んど酵素反応を受けず、不溶状態
のままであつた。
No buffer was used, but the pH at the start of the reaction was 6.8.
The pH at the end of the reaction was almost constant at 6.4. In order to terminate the reaction, the mixture was heated in an autoclave at 110°C for 15 minutes, and then a small amount of white precipitate was centrifuged.
The dry weight was 3.97. The supernatant liquid after removing the white precipitate is a transparent pale yellow liquid, and according to bone dry weight measurement, it has a solid content of 4.85%, and the yield is about 97%.
It was hot. Further, the amount of terminal carboxyl groups of this supernatant liquid was determined to be 70 μM/ml by formol titration. After 1 ee of this supernatant liquid was sealed in nitrogen with 1 cc of 36% concentrated hydrochloric acid and hydrolyzed at 110°C for 16 hours, titration of formol was performed, and the amount of terminal carboxyl groups was 55
It was 4 μM/ml. From these results, the papain digest of silk fiproin obtained in this example was a peptide mixture with an average degree of polymerization of 7.9. For comparison, 50V of scouring raw silk was suspended in water 11 and crude papain manufactured by Sigma (Type 1 ~ 2BAEEunits/~) 2
.. A 5V aqueous extract was added and the mixture was reacted for 4 hours at 45°C in a constant temperature bath, but the silk remained in an insoluble state with almost no enzymatic reaction.

ここでいうBAEEunitとはa − N −ベンゾ
イル− L −アルギニンエチルエステルをPH6.2
、25℃にて1分間1.0ItMを加水分解する場合を
1unitとする酵素活性単位を示す。
BAEEunit here refers to a-N-benzoyl-L-arginine ethyl ester with a pH of 6.2.
, the enzyme activity unit is defined as 1 unit when 1.0 ItM is hydrolyzed for 1 minute at 25°C.

実施例 6 実施例1と同様にして得られた絹フイプロインの5重量
%透析液11?にシグマ社製粗トリプシン>(Typ、
1000〜1500BAEEunits/ W9でキモ
トリプシン活性500〜1000ATEEunits/
〜)を絹フイプロイン重量に対し、各々0.2、1.0
、2.0)9.0重量%添加し、恒温槽中で振盪しなが
ら45℃で5時間反応させた。
Example 6 5% by weight dialysate of silk fiproin obtained in the same manner as in Example 1 11? Crude trypsin (manufactured by Sigma)
1000-1500BAEEunits/Chymotrypsin activity at W9 500-1000ATEEunits/
) are 0.2 and 1.0, respectively, relative to the weight of silk fiproin.
, 2.0) was added in an amount of 9.0% by weight, and the mixture was reacted at 45° C. for 5 hours with shaking in a constant temperature bath.

反応開始時の液のPHは6.96゛であり反応の進行に
伴つて徐々に低下し5時間後には6.10であつた。各
サンプルを経済的にフオルモール滴定によつて末端基増
加の測定を行なつた所第5表のとおりであつた。比較の
為絹フイプロインの5%透析液に替えて50Vの精練絹
糸を細かく刻んで11の水中に懸濁した液に10.0%
の上記酵素を作用させた所、5時間後でも殆んど反応が
進まず絹糸は不溶状態のままであつた。
The pH of the solution at the start of the reaction was 6.96°, and as the reaction progressed, it gradually decreased to 6.10 after 5 hours. The increase in end groups of each sample was economically measured by formol titration, and the results were as shown in Table 5. For comparison, instead of the 5% dialysate of silk fiproin, finely chopped 50V scouring silk thread was suspended in water in Step 11 and 10.0% was added.
When the above-mentioned enzyme was applied, even after 5 hours, the reaction hardly proceeded and the silk thread remained in an insoluble state.

オートクレーブ加熱処理により反応を終了させた後次い
で各サンプル(遥1〜4)をICCずつ採取し、36%
濃塩酸をICCずつ加え、アンプル中にて11『Cl6
時間加水分解した後、ニンヒドリンによる比色定量を行
なつたところ、各サンプルのNH2末端量は各々532
μM/ml、550μM/ml) 553μM/ml、
586μM/mlであつた。
After terminating the reaction by autoclave heat treatment, each sample (Haruka 1 to 4) was collected by ICC, and the ICC was 36%.
Add concentrated hydrochloric acid ICC at a time and add 11'Cl6 in an ampoule.
After time hydrolysis, colorimetric determination using ninhydrin revealed that the amount of NH2 terminals in each sample was 532.
μM/ml, 550 μM/ml) 553 μM/ml,
It was 586 μM/ml.

この結果より、サンプル1〜4は各々約14量体、12
量体、10量体、7量体と推定された。上記遥1〜4の
ペプチド混合物を薄層クロマトグラフイ一(シリカゲル
を担体とし、アンモニア気相中、展開溶媒としてフエノ
ール:水= 5:1混合溶液を使用)にかけた所、アミ
ノ酸は殆んど検出されなかつた。
From this result, samples 1 to 4 have approximately 14-mer and 12-mer, respectively.
It was estimated to be a decamer, a decamer, and a heptamer. When the above peptide mixtures 1 to 4 were subjected to thin layer chromatography (using silica gel as a carrier in an ammonia gas phase and a phenol:water = 5:1 mixed solution as a developing solvent), most of the amino acids were It was not detected.

Claims (1)

【特許請求の範囲】 1 銅−エチレンジアミン水溶液、水酸化銅−アンモニ
ア水溶液、水酸化銅−アルカリ−グリセリン水溶液、臭
化リチウム水溶液、カルシウム或いはマグネシウム又は
亜鉛の塩酸塩或いは硝酸塩又はチオシアン酸塩の水溶液
、チオシアン酸ナトリウム水溶液よりなる群から選ばれ
た少なくとも一種の溶媒に精練絹原料を溶解後透析して
得た0.5〜20重量%の絹フィブロイン水溶液を酵素
或いは酸又はアルカリにより加水分解することを特徴と
する絹フィブロインペプチド水溶液の製造法。 2 溶媒が塩化カルシウム或いは硝酸カルシウム又は硝
酸マグネシウム又は塩化マグネシウムの水溶液である特
許請求の範囲第1項記載の製造法。 3 溶媒中の塩濃度が少なくとも15重量%である特許
請求の範囲第2項記載の製造法。 4 絹フィブロイン水溶液中の絹フィブロインの濃度が
1〜15重量%である特許請求の範囲第1項記載の製造
法。5 酵素がパパイン、トリプシン又はキモトリプシ
ンである特許請求の範囲第1項記載の製造法。 6 酸又はアルカリの濃度が0.3N以下である特許請
求の範囲第1項記載の製造法。 7 絹フィブロインペプチドの平均重合度が2〜20で
アミノ酸含有量が15重量%以下である特許請求の範囲
第1項記載の製造法。 8 絹フィブロインペプチドの平均重合度が4〜15で
アミノ酸含有量が10重量%以下である特許請求の範囲
第1項記載の製造法。 9 アミノ酸含有量が5重量%以下である特許請求の範
囲第8項記載の製造法。
[Claims] 1 Copper-ethylenediamine aqueous solution, copper hydroxide-ammonia aqueous solution, copper hydroxide-alkali-glycerin aqueous solution, lithium bromide aqueous solution, calcium, magnesium, or zinc hydrochloride, nitrate, or thiocyanate aqueous solution, A 0.5 to 20% by weight aqueous silk fibroin solution obtained by dissolving a refined silk raw material in at least one solvent selected from the group consisting of an aqueous sodium thiocyanate solution and dialysis is hydrolyzed with an enzyme, an acid, or an alkali. A method for producing a characteristic silk fibroin peptide aqueous solution. 2. The manufacturing method according to claim 1, wherein the solvent is an aqueous solution of calcium chloride, calcium nitrate, magnesium nitrate, or magnesium chloride. 3. The method of claim 2, wherein the salt concentration in the solvent is at least 15% by weight. 4. The manufacturing method according to claim 1, wherein the concentration of silk fibroin in the silk fibroin aqueous solution is 1 to 15% by weight. 5. The production method according to claim 1, wherein the enzyme is papain, trypsin or chymotrypsin. 6. The manufacturing method according to claim 1, wherein the concentration of acid or alkali is 0.3N or less. 7. The production method according to claim 1, wherein the silk fibroin peptide has an average degree of polymerization of 2 to 20 and an amino acid content of 15% by weight or less. 8. The production method according to claim 1, wherein the silk fibroin peptide has an average degree of polymerization of 4 to 15 and an amino acid content of 10% by weight or less. 9. The production method according to claim 8, wherein the amino acid content is 5% by weight or less.
JP3474479A 1979-03-22 1979-03-22 Method for producing silk fibroin peptide aqueous solution Expired JPS5931520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3474479A JPS5931520B2 (en) 1979-03-22 1979-03-22 Method for producing silk fibroin peptide aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3474479A JPS5931520B2 (en) 1979-03-22 1979-03-22 Method for producing silk fibroin peptide aqueous solution

Publications (2)

Publication Number Publication Date
JPS55124793A JPS55124793A (en) 1980-09-26
JPS5931520B2 true JPS5931520B2 (en) 1984-08-02

Family

ID=12422823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3474479A Expired JPS5931520B2 (en) 1979-03-22 1979-03-22 Method for producing silk fibroin peptide aqueous solution

Country Status (1)

Country Link
JP (1) JPS5931520B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070550A1 (en) * 2001-03-07 2002-09-12 Kyoto Bio-Medical Sciences, Inc. Fibroin powders and aqueous fibroin solutions for medical use

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041043B2 (en) * 1980-06-11 1985-09-13 一丸フアルコス株式会社 Skin cosmetics containing solubilized silk peptides
JPS5815905A (en) * 1982-06-15 1983-01-29 Ichimaru Fuarukosu Kk Skin cosmetic containing solubilized silk peptide
JPS60112710A (en) * 1983-11-21 1985-06-19 Kanebo Ltd Hair treatment composition
JPS60243099A (en) * 1984-05-17 1985-12-03 Seiwa Kasei:Kk Quaternary trimethylammonium derived silk polypeptide
KR101293893B1 (en) * 2004-12-22 2013-08-06 라이온 가부시키가이샤 Hydrolyzed-silk-containing compositions for oral cavity
WO2008056797A1 (en) * 2006-11-07 2008-05-15 The Yokohama Rubber Co., Ltd. Rubber composition and pneumatic tire using the same
CA2994222C (en) 2014-08-20 2020-09-08 Silk Technologies, Ltd. Fibroin-derived protein composition
AU2017267370B2 (en) 2016-04-08 2021-07-08 Cornell University A method to enhance wound healing using silk-derived protein
AU2017310520A1 (en) 2016-08-12 2019-03-21 Silk Technologies, Ltd. Silk-derived protein for treating inflammation
CN107271689B (en) * 2017-07-21 2019-04-02 浙江理工大学 A kind of radially-arranged method of amino acid in analysis tussah silk fibroin albumen
KR102107821B1 (en) * 2019-10-28 2020-05-07 주식회사 네이처센스 농업회사법인 Production method of silk fibroin hydrolyzate with improved productivity and silk fibroin hydrolyzate prepared using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070550A1 (en) * 2001-03-07 2002-09-12 Kyoto Bio-Medical Sciences, Inc. Fibroin powders and aqueous fibroin solutions for medical use

Also Published As

Publication number Publication date
JPS55124793A (en) 1980-09-26

Similar Documents

Publication Publication Date Title
JPS5931520B2 (en) Method for producing silk fibroin peptide aqueous solution
US4420339A (en) Collagen fibers for use in medical treatments
US20180258147A1 (en) Pearl protein preparation method and a water-soluble pearl protein and acid-soluble pearl protein obtained by adopting this method
CN105400859A (en) Preparation method of micromolecule silk fibroin peptide
RU2046800C1 (en) Method of preparing microcrystalline chitosan
US3954725A (en) Alcohol soluble acylated protein hydrolyzate reaction products
JPH0767686A (en) Production of silk fibroin peptide having low molecular weight
JPH05227983A (en) Production of peptide from rice bran protein
JP3010160B1 (en) Collagen-containing cosmetics
JPS61180800A (en) Powdery silk fibroin peptide and production thereof
KR100532153B1 (en) producing method of protein hydrolysates from fish scale
US3984391A (en) Modified gelatin with a reduced gel-melting point
JP3592163B2 (en) Method for producing high-purity silk peptide by gel filtration
JPH08140585A (en) Production of low-molecular potato protein
JPH04306236A (en) Aqueous solution of silk fibroin having excellent storage stability and production thereof
JPS6363388A (en) Production of low molecular weight chitosan
JPH0790182A (en) Silk fibroin excellent in shelf stability and its production
KR0144014B1 (en) Functional Silk Amino Acids and Manufacturing Method Thereof
JPS6392671A (en) Peptide having excellent storage stability and manufacture thereof
Gotoh et al. Chemical modification of arginyl residues in silk fibroin: 1. Reaction of 1, 2-cyclohexanedione in borate buffer
JP3073865B2 (en) Water-soluble silk double spray glass bath agent and method for producing the same
JP2793158B2 (en) How to separate tyrosine from fibroin
CN1473816A (en) Process for preparing amino-acid chelated iron by hydrolyzing keratin
JPH10298199A (en) New peptide and angiotensin i converting enzyme inhibitor containing the peptide
JP2671226B2 (en) Silk fibroin aqueous solution having excellent storage stability and method for producing the same