JPS5931466A - Sonar sound locating device - Google Patents

Sonar sound locating device

Info

Publication number
JPS5931466A
JPS5931466A JP14100882A JP14100882A JPS5931466A JP S5931466 A JPS5931466 A JP S5931466A JP 14100882 A JP14100882 A JP 14100882A JP 14100882 A JP14100882 A JP 14100882A JP S5931466 A JPS5931466 A JP S5931466A
Authority
JP
Japan
Prior art keywords
interpolated
analog
listening
phased
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14100882A
Other languages
Japanese (ja)
Other versions
JPS646414B2 (en
Inventor
Koji Okada
浩二 岡田
Hideo Suzuki
秀雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP14100882A priority Critical patent/JPS5931466A/en
Publication of JPS5931466A publication Critical patent/JPS5931466A/en
Publication of JPS646414B2 publication Critical patent/JPS646414B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To perform sound detection for in-phase beam signals, by generating (n) interpolated in-phase beams between adjacent basic in-phase beams. CONSTITUTION:A group of in-phase beam signals to be interpolated corresponding to (m) azimuths is selected 2 among basic in-phase beam signals B0-BM-1 from input terminals 10-1M-1, and a sound detection azimuth from an input terminal 3 is converted 4 to supply only segmentation information on the group of in-phase beam signals to be interpolated to a selector 2. Output signals corresponding to the (m) azimuths are stored in (m) storage devices 6 at the same time, and their outputs are inputted to interpolators 81-8n through (m) D/A converters 7, thereby outputting interpolated in-phase beam signals. Then, sound detection signals of the interpolated in-phase beam signals corresponding to (n+1) azimuths in total are inputted to an analog multiplexer 10 to select a desired sound detecion azimuth on the basis of control signal from a line 11, supplying it to a loudspeaker 12.

Description

【発明の詳細な説明】 (技術分野) 本発明は、アナログビーム補間器を用いたディジタルソ
ーナーの聴音装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a digital sonar listening device using an analog beam interpolator.

(背景技術) 従来のディジタルソーナーの信号処理部の禍成例のブロ
ック図を第1図に示f。第1図において端子14,1□
、13.・・、11.・・・、IKは1〈個の独立した
受波器出力に接続されるソーナーのディジタル信号処理
部の入力端子、2はディジタルビームフォ−マ、ψ1八
1了−21+ 22 + 23 +・・・、21.・・
r 2Nはディジタルビームフメーマ2の出力端子、3
は自乗検波器、相関検波器、及び表示器等て代表される
後処理のためのディジクル信号処理装置、41142+
43+・・。
(Background Art) A block diagram of an example of a failure of a signal processing section of a conventional digital sonar is shown in FIG. In Figure 1, terminals 14, 1□
, 13. ..., 11. ..., IK is the input terminal of the digital signal processing section of the sonar connected to 1 independent receiver output, 2 is the digital beam former, ψ181ryo-21+22+23+...・,21.・・・
r2N is the output terminal of digital beam imager 2, 3
41142+ is a digital signal processing device for post-processing represented by a square law detector, a correlation detector, a display device, etc.
43+...

113.・・・+4NはN個のディジタル/アナログ変
換器(以下1)A変換器と称す)、51152153+
・・・、5.。
113. ...+4N is N digital/analog converters (hereinafter referred to as 1) A converters), 51152153+
..., 5. .

・・+ 5Nは前記りA変換器の出力端子、6は端子5
1゜52+53.・ 、5□、・・・+5Nを通過する
アナログ聴音信吋を選択可−るアナログマルチプレクサ
、7はアナログマルチプレクサ7と切り換える信号を入
力する制御端子、8はアナログマルチプレクサで選択さ
ねた聴音入力信号を出力1−ろ出力線、9は出力線80
信号を入力し音に変換する拡声器である。
...+5N is the output terminal of the A converter mentioned above, and 6 is the terminal 5
1°52+53.・ , 5□, . . . An analog multiplexer that can select the analog audio signal that passes through +5N, 7 is a control terminal that inputs a signal to be switched to the analog multiplexer 7, and 8 is an audio input signal that was not selected by the analog multiplexer. Output 1 - ro output line, 9 is output line 80
A loudspeaker that inputs signals and converts them into sound.

端子+1 + 12+ +3+・・・、10.・・・+
lKを通過する受波信号(ディジタル信号)は、ナイン
タルビームフォーマ2に入力さね、N方位外の整相ビー
ム信号(ディジクル信号)として変換され、端子21 
+ 22 +21.・・・、22.・・・r 2Nに出
力され後段の信号処理装置3で後処理される。他方、端
子2+ + 22 + 23 +・・・、21゜・・・
、2Nを通過した整相ビーム信号は、AD変換器13.
・1□+、Ll+・・、10.・・・、・INに直1冬
入力’−,,11、オペレータがl吻音するためのN方
位外のアナログ聴音信−号として41.1子5+ 、 
52.5++、・・・、50.・・・+5Nに出力され
、アナログマルチプレクサ6によって選択された聴音信
号が出カイg号線8に出力され、拡声器(例えばヘッド
ポン)90入力信号となり、オペレータにより聴音さね
る。
Terminals +1 + 12+ +3+..., 10. ...+
The received signal (digital signal) passing through lK is input to the ninetal beamformer 2, where it is converted as a phased beam signal (digital signal) outside the N direction, and is sent to the terminal 21.
+22 +21. ..., 22. . . . is output to r 2N and is post-processed by the signal processing device 3 at the subsequent stage. On the other hand, terminal 2+ + 22 + 23 +..., 21°...
, 2N, the phased beam signal is sent to the AD converter 13.
・1□+, Ll+..., 10. ..., 1 winter input directly to IN'-,,11, 41.1 as an analog auditory signal outside the N direction for the operator to make a proboscis 5+,
52.5++,...,50. ... +5N, and the audio signal selected by the analog multiplexer 6 is output to the output G line 8, and becomes an input signal to a loudspeaker (for example, headphone) 90, and is listened to by the operator.

上述のごと(111−来の聴音方式においては、ナイン
タルビームフォーマ2から出力され°る整相ビー、ム信
号が直接1)、・\変換器に入力されてアナログ信号に
変換されろものであり、この様な直接的方式では、以下
のいづれかの欠点を有していた。
As mentioned above (111- In the conventional listening system, the phased beam signal output from the ninetal beamformer 2 is directly input to the converter and converted into an analog signal). However, such a direct method has one of the following drawbacks.

(1)拡声器9で聴音する全ての整相ビーム信号ヲティ
ジタルビームフオーマ2千発生する必要があり、このこ
とはディジタルビームフオーマ2及び後処理装置3を構
成するディジタルノー−ドウエア量を大幅に増大させる
(1) It is necessary to generate 2,000 digital beamformers for all phased beam signals to be heard by the loudspeaker 9, which means that the amount of digital node hardware that constitutes the digital beamformer 2 and the post-processing device 3 is Increase significantly.

(2)装置3を構成するディジタル信号処理器の入力は
、一般的には全一ビーム数(これをNとイ”る)の整相
ビーム信号を必要とはせず、整相ビーム補間が1リイ1
ヒなJ′浸小の数へ・I(M(N)の独立な基本整相ビ
ームイハ号かあれば、そね以外の方位の粗相ビーム情−
弓は上記へ1゛方イ)シ分の基本整相ビーム信号からデ
ィジタルフィルタによる補間演算により求めらAlろ小
が知に、 1’+て(・ろ。この整相ビーム補間方式を
用いろ月1により、ディジタルビームフメーマ2の出力
′Ai′4A11ビーム数をN1と1−ることによりナ
インタルビームフォーマ2、及び後処理装置3の)・−
トウエア鼠を極力最小にづ−る沖がてきる。この場合第
1図の直接的な聴盲方式では、M方位以上の整相ビーム
信号を聴音出来ない欠点をもっている。
(2) The input of the digital signal processor constituting the device 3 generally does not require a total number of beams (hereinafter referred to as N) of phased beam signals, and phased beam interpolation is possible. 1lii 1
If there is an independent fundamental phased beam I(M(N)), then the coarse phase beam information in directions other than the
The bow is calculated by interpolation calculation using a digital filter from the basic phased beam signal of 1゛direction A). According to month 1, the output 'Ai'4A11 of the digital beam former 2 is set to N1 by 1-, so that the output of the ninetal beam former 2 and the post-processing device 3)
Oki comes to minimize the number of mice as much as possible. In this case, the direct hearing-blind system shown in FIG. 1 has the disadvantage that it is not possible to hear phased beam signals in the M direction or more.

(発明の課2r1) 本発明はこれらの欠点を解決1″ろために、ソーナーの
聴音装置にアナログビーム補間器を導入したもので、以
下詳細に説明する。
(Section 2r1 of the Invention) In order to solve these drawbacks, the present invention introduces an analog beam interpolator into a sonar listening device, and will be described in detail below.

(発明の構成および作用) /ド発明の実施例を述べる前に、ソーナーのビーノ、フ
メーマ出力をビーム補間する原理を第2図(a)、第2
図(1))を用いて簡単に説明する。第2図(a)にお
、jli、、・・、。
(Structure and operation of the invention) Before describing the embodiments of the invention, the principle of beam interpolation of the sonar's vino and humema outputs will be explained in Fig. 2(a) and Fig. 2(a).
This will be briefly explained using Figure (1)). In Figure 2(a), jli,...

いてl(o、 +(、、B□、 H,、、−・−+v′
1’M +は、夫々ディジタルビームフォーマで形成さ
れる整相ヒームノヒーム(直でル〕す、これらの11昏
相ビームはビームr山[川が成\ン゛1−ろために心安
な最小数の独立な基本整相ビームであると1−ろ1、ま
た、この基本整相ビームから整相ビーム補間がE月fj
ヒなビーム補間器の補間関数を第2図(1))とする。
and l(o, +(,, B□, H,,, −・−+v′
1'M+ is a phased beam formed by a digital beamformer, respectively. If the independent basic phased beam is 1-ro1, and the phased beam interpolation from this basic phased beam is
The interpolation function of the high beam interpolator is shown in FIG. 2 (1)).

以−1−の条件が族1゛lルて(・ろとき、一般的に知
られている標本化定理を適用1−ろ月1により、第2図
(alの中の隣り合う2つの基本壓第11ビーム間の任
意の整相方位の整相ビーノ・を求めろ81ができる。例
として第2図(a)の中のヒ゛−ム値か13□と133
である2つの基本整相ビームのなす角を4等分づ−る方
位(同図中の破線矢印で示されろ)の整相ビームのビー
ム値132−. 、 l(、−3゜l32−3  をビ
ーム補間により求めろものとする。このとき第2図(1
))て示されろ補間関数を同図破線で示されろ様に等分
割した時のとり得る値をα。、α1゜α2.・・・、α
11.α、6.α、7とすると、求める補間ビーム1直
l′32−3.1.3゜−3,I3□−1はB2tt1
3−α。、Ho−1−α1.B、十α6.B2+α9.
I33十α12・H4+α、5・B。
When the condition of -1- is in the family 1 (), apply the generally known sampling theorem. Find the phasing bino for any phasing direction between the 11th beams.81 can be obtained.For example, if the beam values in Fig. 2(a) are
The beam value 132-. , l(, -3°l32-3) shall be found by beam interpolation. In this case, as shown in Fig. 2 (1
)) The possible value when the interpolation function shown is equally divided as shown by the broken line in the figure is α. , α1°α2. ..., α
11. α, 6. α, 7, the interpolated beam 1 straight l'32-3.1.3°-3, I3□-1 is B2tt1
3-α. , Ho-1-α1. B, ten α6. B2+α9.
I33 ten α12・H4+α, 5・B.

13、、 、l=α、 、 +3o+α4−II、 l
α7・1.(2+αIO’ll:+十α、3・■34」
α+o’13゜ 1し 、−α、、−+3o十α5・131(α8・1う
、−II、ヒ13.十α+cJ3r十α1゜・135 のごとく、基本ビーム値+(o、 r(、、+3□、 
H3,+34. H,、と補間関数の標本値の組(α。
13, , l=α, , +3o+α4-II, l
α7・1. (2+αIO'll:+10α, 3・■34"
α+o'13゜1shi , -α, , -+3o ten α5・131 (α8・1u, -II, hi13.0α+cJ3r ten α1゜・135 The basic beam value + (o, r(,, +3□,
H3, +34. H, , and a set of sample values of the interpolation function (α.

、α3.α6.α9.α12.α1.)。, α3. α6. α9. α12. α1. ).

(α1.α1.α7.αlO+α43.α、6)及び(
α2.α5.α8.α、1゜α11.α1□)を用いて
求められる。上述の例では、説明を簡単にするために補
間ビームの前後3つの被補間ビーム値H,,,11,、
J3□と139.Jう1,13.を用いた6次袖間の例
で説明したが、一般的には、1η次補間に拡張できる。
(α1.α1.α7.αlO+α43.α, 6) and (
α2. α5. α8. α, 1°α11. α1□). In the above example, in order to simplify the explanation, three interpolated beam values before and after the interpolated beam, H,,,11,,
J3□ and 139. J1,13. Although the explanation has been given using an example of 6th order interpolation, it can generally be extended to 1η order interpolation.

すなわち補間ビームを中心に前後から夫々II+/2個
とり出した基本ビーム値の値を(I(o、Iう+ + 
′、’%m/ 2)  l )と(13(rn/2)−
13(rn/2)+1+1゜・・・、Hm−+)とし、
補間関数がら補間ビームに対応して取り出した111個
の標本値の組を(α。、α5.・・・。
In other words, the fundamental beam values extracted from the front and back of the interpolated beam by II+/2 are (I(o, Iu+ +
', '%m/2) l) and (13(rn/2)-
13(rn/2)+1+1°..., Hm-+),
A set of 111 sample values extracted from the interpolation function corresponding to the interpolation beam is (α., α5, . . . ).

αm−1)とすれば、求める補間ビームのビーム値B(
m/2)  l +(m/2)は(1)式で示される。
αm-1), the beam value B(
m/2) l + (m/2) is expressed by equation (1).

B(m/2) −1、(m/2)=Σ αi・Bl(1
11二〇 また、補間関数の性質から (1シ) が一般的に成立1−ろので(」二式では説明の都合」二
I11は4の倍数としたが、これは補間の一般性を失な
うものでな(・)、(1+式は(3)式で表現できる。
B(m/2) −1, (m/2)=Σ αi・Bl(1
1120 Also, from the properties of the interpolation function, (1) generally holds true (1), so (For the convenience of explanation in formula 2), I11 was set as a multiple of 4, but this meant that the generality of interpolation was lost. (・), (1+ expression can be expressed as equation (3).

(1°3) 次に本発明の実施例について求める。先ず第3図は(3
)式の整相ビーム補間演算とアナログ回路で実現するア
ナログビーム補間の実施例のブロック図である。同図に
おいて1゜、17.・・・+1(m/2) −2゜1(
m/2)−] ++1m/21 ](m/2)++ 、
“””’ + 1m−2+ 1m−1はIn個の被補間
整相ビーム値を格納する記憶装置、2Or2++”’+
 2(m/2)−2+ 2(m/2)−+ +2m/2
+2(m/2)+1.山・・・。
(1°3) Next, examples of the present invention will be described. First of all, Figure 3 is (3
FIG. 2 is a block diagram of an example of analog beam interpolation realized by the phased beam interpolation calculation of the ) formula and an analog circuit. In the same figure, 1°, 17. ...+1(m/2) -2゜1(
m/2)-] ++1m/21 ](m/2)++ ,
"""' + 1m-2+ 1m-1 is a storage device that stores In interpolated phased beam values, 2Or2++"'+
2(m/2)-2+ 2(m/2)-+ +2m/2
+2 (m/2)+1. Mountain···.

2m−212m−1はm個のDA変換器、30+ 3+
+−,3(m/2) −2゜3(m/2 ) + + 
:惰/2,3(m/2)刊、・・・・・・+ 3m−2
+ 3n+ 1 +及び6,8.9は抵抗、4及び7は
演算増幅器、10はアナログビーム補間器の出力端子で
ある。次に本ブロック図の動作原理を説明1−る。まず
11]個の記憶装置b+口口”’+ 1(m/2)−2
+ 1(m/2) ] ++1(m/2) +1 (m
/2 ) + + +−・・+ 1m−211m−1に
M個の基本整相ビームから取り出された111個の被補
間祭相ビーム仙がディジタル領’、 (Mel’M、装
置1(m/2)−1と1m/2に格納されて℃・るビー
ム間に補間ビームか形成されろ)として格納されている
ものとすると、この記憶装置の夫々の出力が同時に1η
個のl)A変換器2゜、2、。
2m-212m-1 is m DA converters, 30+ 3+
+-, 3 (m/2) -2゜3 (m/2) + +
: Published by Ina/2,3 (m/2),...+ 3m-2
+ 3n+ 1 + and 6, 8.9 are resistors, 4 and 7 are operational amplifiers, and 10 is an output terminal of an analog beam interpolator. Next, the principle of operation of this block diagram will be explained. First, 11] storage devices b + mouth"' + 1 (m/2) - 2
+ 1 (m/2) ] ++1 (m/2) +1 (m
/2) + + +-...+ 1m-211m-1, the 111 interpolated phase beams extracted from the M basic phased beams are in the digital domain', (Mel'M, device 1 (m /2) Assuming that an interpolated beam is formed between the beams stored at -1 and 1m/2, the outputs of each of these storage devices are simultaneously 1η.
l) A converters 2°, 2,.

”’ 、2(m/2 ) −2+2(m/2 )−1,
2m/2 +2(m/2 )+1 +−“°゛。
”', 2(m/2)-2+2(m/2)-1,
2m/2 +2(m/2)+1 +-“°゛.

2m−2+2m−1に入力され、アナログ量の被補間整
4目ビーム値に変換され、111個の抵抗から構成され
る抵抗網3o、:う1.・・’、3(m/2 ) 2 
+ 3(m/2 ) I + 3rn/2+3(m/2
 )−+−+ +・・・・・・+ Jm 213m −
+により重みづげられろ。今この抵抗網の抵抗値を1゛
。、+7.・・・、”(m/ 2) 2 +l’(m/
2 )−1+ l m/2 + 1’(m/2 )+1
 + ””” + I’m−2+ I’rn−1とする
。このとき上記1m1個の抵抗網のうちf32、++ 
li =O,]、−+(+n/ 4)−1−(3(m/
2 )+2i ] i −0,1,−、(+n/−1)
 −]  を通過する信号は演算増幅器・1で加勢され
ろ。抵抗6の値を1(。とすると、前切増幅器・1の出
力端子5での出力電圧■1は (・1) となる。同様にI11/2個の抵抗網 (32,l i = 0. ]、・・・、 (IIT/
 4 )−1、(3(m/z)+2B++li = o
、1.□・、(In/4)−1を通過1−ろ信号と前記
(A算増幅器4の出力が演算増幅器7の入力となるので
、抵抗8,9の抵抗値を13、。とすれば、演算増幅器
7の出力端子10における電圧v2はとなる。(4)、
(5)式から出力端子10におけろ出力電圧■2は(6
)式となる。
2m-2+2m-1, and is converted into an analog interpolated 4th beam value, and a resistor network 3o consisting of 111 resistors: U1. ...', 3 (m/2) 2
+ 3(m/2) I + 3rn/2+3(m/2
)−+−+ +・・・・・・+ Jm 213m −
Be weighted by +. Now, set the resistance value of this resistor network to 1゛. , +7. ...,"(m/2) 2 +l'(m/
2)-1+l m/2+1'(m/2)+1
+ """ + I'm-2+ I'rn-1.At this time, f32, ++ out of the 1m1 resistor network above
li =O,], -+(+n/4)-1-(3(m/
2)+2i ] i −0, 1, −, (+n/−1)
-] The signal passing through is boosted by operational amplifier 1. If the value of the resistor 6 is 1 (.), then the output voltage 1 at the output terminal 5 of the preamplifier 1 will be (・1).Similarly, if the value of the resistor 6 is 1 (. ],..., (IIT/
4)-1, (3(m/z)+2B++li = o
, 1. □・, (In/4)-1 passed through 1-filter signal and the output of the (A-arithmetic amplifier 4) are input to the operational amplifier 7, so if the resistance values of the resistors 8 and 9 are 13. The voltage v2 at the output terminal 10 of the operational amplifier 7 is (4),
From equation (5), the output voltage ■2 at the output terminal 10 is (6
).

以′下余白 (6)式にお(・て 1(、。Margin below In equation (6), 1(,.

一:1α” ” ”(m/2)+2H+1 = ’α(
m/2)→−2、→−目2 となる様に各抵抗値を設定すれば、出力端子10の電圧
■2は(3)式で求められろ被補間整相ビームB(m/
2)−+とI(m/2との間に形成される補間ビームk
l B(m/2 ) −] 、 (m/2 )となる。
1:1α""" (m/2)+2H+1 = 'α(
If each resistance value is set so that m/2)→-2, →-2, the voltage 2 at the output terminal 10 can be found using equation (3).The interpolated phased beam B(m/2)
2) Interpolated beam k formed between −+ and I(m/2)
lB(m/2)-], (m/2).

次に前述のアナログビーム補間器を具備した聴音装置に
関して説明する。第4図は本発明の聴音装置としての実
施例を示すブロック図であり、M方位分の基本整相ビー
ム(ビーム間隔をΔθとする)信号から1+次(■η<
M)のアナログ補間器を複数個(11個)用いて、隣り
合う基本整相ビーム間に11個の補間整相ビームを形成
することにより、Δ0/(11+1)間隔の整相ビーム
信号を聴音できる聴音装置の構成を示している。
Next, a listening device equipped with the above-mentioned analog beam interpolator will be explained. FIG. 4 is a block diagram showing an embodiment of the hearing device of the present invention, in which the basic phased beam (beam spacing is Δθ) signal for M directions is converted to the 1+th order (■η<<
By using multiple (11) analog interpolators of M) to form 11 interpolated phased beams between adjacent basic phased beams, it is possible to listen to phased beam signals at intervals of Δ0/(11+1). This shows the configuration of a possible listening device.

第11図において1゜+ 11+ 12+・・・、 I
M−1はソーナー聴に装置の入力ψ1114子、2は入
力端子1゜+ I++ 12+・・。
In Figure 11, 1°+ 11+ 12+..., I
M-1 is the input ψ1114 of the device for sonar listening, and 2 is the input terminal 1゜+ I++ 12+...

】旧1から入力さねたへ1方位分の基本整相ビーム信号
から111次のビーム補間に必安なm個の被補間整相ビ
ーム信号の組を選択する被補間整相ビーム信号選択器、
:3は不装置に聴音方位情報が入力されろ入力端子、4
は聴音方位を八l[方位分の基本整相ビーム信号から聴
音方位に対応した1η方位分の被補間ビーム信号の組を
切り出すための情報と、補間器出力を切り換える情報に
変換する変換器、5は制御線、6Q+61・・・、6(
m/2 )−2、6(rn/2 ) −] 、 6m/
2 。
]An interpolated phased beam signal selector that selects a set of m interpolated phased beam signals that are essential for 111th beam interpolation from the basic phased beam signal for one direction from the old 1 to the input Saneta. ,
: 3 is an input terminal for inputting the listening direction information to the non-device, 4
is a converter that converts the listening azimuth into information for cutting out a set of interpolated beam signals for 1η azimuths corresponding to the listening azimuth from the basic phased beam signal for 8l[azimuths, and information for switching the interpolator output; 5 is the control line, 6Q+61..., 6(
m/2)-2, 6(rn/2)-], 6m/
2.

6(m/2)刊、・・・・・・56m2+6m−]は記
憶装置、70+71+・・・。
6 (m/2) issue,...56m2+6m-] is a storage device, 70+71+...

7(m/2 )−217(m/2 )−h7m/2 +
7(m/2 )+1 + ”曲+7m2+7rn−1は
I)A変換器、8oは記憶装置7(rn/2)−1に格
納されている被補間整相ビーム値をアナログ出力する出
力線、8+ + 821831・・・+8nは第3図の
破線部内で示される抵抗網と演算増幅器から構成される
アナログビーム補間演算器、%は出力線8oの出力端子
、91 + 92 + 931・・・+9nはアナログ
ビーム補間器81゜8、.8.、、・・・、8゜の出力
端子、10は端子9゜+ 91 + 92+ 93+・
・・+9nを通過する聴音伯刊のうち1つの信号を選択
するアナログマルチプレクサ、11は変換器4の2神j
”a’rの出力情報のうちアナログビーム補間器出力を
切り換える情報によりアナログマルチプレクサ10を制
御する制御線、12はアナログマルチプレクサ9の聴音
出力信号を聴音するための拡声器である。
7(m/2)-217(m/2)-h7m/2+
7(m/2)+1+'' song+7m2+7rn-1 is an I)A converter, 8o is an output line for analog output of the interpolated phased beam value stored in the storage device 7(rn/2)-1, 8+ + 821831...+8n is an analog beam interpolation calculator composed of a resistor network and an operational amplifier shown within the broken line in FIG. 3, % is the output terminal of output line 8o, 91 + 92 + 931...+9n are the output terminals of the analog beam interpolator 81° 8, .8., ..., 8°, and 10 is the terminal 9° + 91 + 92 + 93 + .
...+9n is an analog multiplexer that selects one of the signals passing through n, and 11 is the two signals of converter 4.
A control line 12 controls the analog multiplexer 10 using information for switching the output of the analog beam interpolator among the output information of the ``a'r.'' 12 is a loudspeaker for listening to the audible output signal of the analog multiplexer 9.

入力端子1゜、 1.、1□、・・・+IMl にはデ
ィジタルビームフォーマ出力としてのM方位分の基本整
相ビーム信号Ho、 +3.、 l(、、、・” + 
l’M +  か入力され、このうちI+1方位分の被
補間整相ビーム信号の組を選択する被補間整相ビーム信
号選択器2に入力されろ。
Input terminal 1°, 1. , 1□, . . . +IMl are basic phased beam signals Ho for M directions as digital beamformer output, +3. , l(,,,・” +
l'M + is inputted, and the interpolated phased beam signal selector 2 selects a set of interpolated phased beam signals for I+1 directions.

一方入力端子:うから入力された聴音方位は、変換器4
によって変換された情報のうち、被補間整相ビーム信号
の組の切り出し情報か制御線5を介して被補間整相ビー
ム信号選択器2に供給される。
On the other hand, the input terminal: The listening direction input from the converter 4
Among the information converted by , the cutout information of the set of interpolated phased beam signals is supplied to the interpolated phased beam signal selector 2 via the control line 5 .

この時、制御線5の情報によって被補間整相ビーム選択
器2ば、端子3に入力された聴音方位に一対一対応する
。1〕1万位分の被補間整相ビーム信号の組を出力する
。このI+1方位分の出力信号は111個の記憶装置6
0+61+・” + 6(m/2 ) −2+6(m/
2 )−I + 6m/2゜6(m/2)++、・・・
r 6m 2+ 6m−】に同時に夫々格納され、その
出力が1)ノ\変換器7o17.l・・、?(m/2)
−2。
At this time, depending on the information on the control line 5, the interpolated phased beam selector 2 corresponds one-to-one with the listening direction input to the terminal 3. 1] Output a set of 10,000 interpolated phased beam signals. The output signals for the I+1 direction are stored in 111 storage devices 6.
0+61+・” + 6(m/2) −2+6(m/
2)-I + 6m/2゜6(m/2)++,...
r 6m 2+ 6m-] and their outputs are stored in 1) \ converter 7o17. l...? (m/2)
-2.

7(m/2)−17m/2 + 7(m/2)++ +
”’ + 7m−217m−1に入力され、アナログ信
号としての破補間整相ビーム信号として出力され、出力
信号での信号も一!l−べてアナログビーム補間器81
 + 82+ 83+・・・、82.に入力されろ。こ
の11個のアナログビーム補間器によって、記憶装置6
(m/2)−1と6m/2  とに記憶された2つの被
補間整相ビーム間にn個の補間整相ビームが形成され、
端子91,9□、91.・・+9nに補間整相ビーム信
号として出力されろ。又、端子9゜には出力線8oを介
して、記憶装置6(m/2)−]に格納された被補間整
相ビーム信号かアナログ信号として前記信号と同時に出
力されろ。端子9゜を通過する一方位分の被補間整相ビ
ーム信号と、端子94,9□+9:++・・・。
7(m/2)-17m/2 + 7(m/2)++ +
"' + 7m-217m-1 is inputted, and output as a broken interpolated phased beam signal as an analog signal, and the signal at the output signal is also the same!l- All analog beam interpolators 81
+ 82+ 83+..., 82. be entered into. With these 11 analog beam interpolators, the storage device 6
n interpolated phased beams are formed between the two interpolated phased beams stored in (m/2)-1 and 6m/2,
Terminals 91, 9□, 91. ...Output as an interpolated phased beam signal to +9n. Further, the interpolated phased beam signal stored in the storage device 6(m/2)-] is output as an analog signal simultaneously with the above-mentioned signal to the terminal 9° via the output line 8o. The interpolated phased beam signal for one position passing through the terminal 9° and the terminals 94, 9□+9:++...

9oを通過する+1方位分の補間整相ビーム信号の合計
n+1方位分の聴音信号はアナログマルチプレクサ10
の入力となり、制御線11の情報によって所留の聴音方
位として選択され拡声器12に入力され、オペレータに
よって聴音される。
The interpolated phased beam signal for the +1 direction passing through 9o, the listening signal for the total n+1 direction is sent to the analog multiplexer 10.
is selected as the station's listening direction based on the information on the control line 11, is input to the loudspeaker 12, and is listened to by the operator.

(発明の効果) 以−1−説明したように、実施例ではディジタル信号と
してのM方位分の基本整相ビーム信号から取り出された
I+1方位分の被補間ビーム整相信号の組を用いて、2
つの被補間ビーム間の任意の方位の整相ビーム信号をア
ナログ的に補間して発生するものでル)ろから、基本整
相ビーム以外の整相ビーム信号を簡単なアナログ補間回
路を通すことにより聴音できる利点かある。また、アナ
ログ補間回路のハードウェア量は比較的小規模で実現出
来るので、聴音する方位信号を1−べてディジタルビー
ムフォーマで出力しこれを直接聴音する従来の方1mす
、ディジタルビームフォーマ、及び後処理としてのディ
・/タル信号処理装置のテイジタルノ・−ドウエア量・
を最小にする事が出来る利点がある。
(Effects of the Invention) As explained below in 1-1, in the embodiment, a set of interpolated beam phasing signals for I+1 azimuths extracted from basic phasing beam signals for M azimuths as digital signals is used. 2
It is generated by analog interpolation of phased beam signals in arbitrary directions between two interpolated beams, so by passing phased beam signals other than the basic phased beam through a simple analog interpolation circuit There is an advantage to being able to hear the sound. In addition, since the analog interpolation circuit can be realized with a relatively small amount of hardware, the conventional method of outputting the azimuth signal to be listened to by a digital beamformer and directly listening to it is a 1m beamformer and a digital beamformer. Digital signal processing equipment as post-processing
It has the advantage of being able to minimize the

本発明はアナログビーム補間器を有しているので、基本
整相ビーム以外の整相方位を聴音が可能となり、ディジ
タル信号処理のノ・−ドウエア量を最小にできろ利点が
あるのでテイジタルソーナーンステムの聴音装置として
有効に利用できろ。
Since the present invention has an analog beam interpolator, it is possible to listen to phasing directions other than the basic phasing beam, and the amount of hardware for digital signal processing can be minimized. It can be used effectively as a system listening device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のディジタルソーナーの信号処理部の構成
例、第2図(11及び第2図(1))はソーナーtビー
ム補間の原理を説明−する図、第:3図は本発明のアナ
ログ整相ビーム補間回路の実施例、第4図は本発明のソ
ーナー聴音装置としての実施例の説明図である。 10・]1・12・°゛′・1M−+;本装置の入力端
子2;破補間整相ビーム信号選択回路 3;聴音方位情報入力端子 4;聴音方位情報変換回路 5;制御線 6o 、 6+ 1′” +6(m/2 ) 2 +6
(m/2 ) ] ’16m/2 + 6(m/2)刊
。 ・・・・・・+ 6m−216m−1;記憶装置70+
 71 + ”’ +7(m/2)  2 + 7 (
m/2 )  I 17m/ 2 + 7(m/2 )
刊夕・・・・・・+ 7rn 2.7m ] ; ])
 A変換器8o;出力線 8−1 + 82+ 831・・・、8n;アナログビ
ーム補間回路10;アナログマルチプレクサ 11;制御線 12;拡声器 特  許  出  願  人 沖電気工業株式会社 特許田j組代理人 弁理±  111   本  恵  −第3図
Fig. 1 is an example of the configuration of a signal processing section of a conventional digital sonar, Fig. 2 (11 and Fig. 2 (1)) is a diagram explaining the principle of sonar T-beam interpolation, and Fig. 3 is a diagram of the present invention. Embodiment of Analog Phased Beam Interpolation Circuit FIG. 4 is an explanatory diagram of an embodiment of the sonar listening device of the present invention. 10・]1・12・°゛′・1M−+; Input terminal 2 of this device; Fractured interpolation phased beam signal selection circuit 3; Listening direction information input terminal 4; Listening direction information conversion circuit 5; Control line 6o, 6+ 1'" +6 (m/2) 2 +6
(m/2) ] Published '16m/2 + 6 (m/2). ...+ 6m-216m-1; Storage device 70+
71 + ”' +7 (m/2) 2 + 7 (
m/2) I 17m/2 + 7(m/2)
Publication evening...+7rn 2.7m ] ; ])
A converter 8o; Output lines 8-1 + 82+ 831..., 8n; Analog beam interpolation circuit 10; Analog multiplexer 11; Control line 12; Loudspeaker patent application Patent office at Hitokki Electric Industry Co., Ltd. Attorney ± 111 Megumi Moto - Figure 3

Claims (1)

【特許請求の範囲】 fll  l’、′1個(へ・1は予め定められる数よ
り犬なる整数)の方位の基本整相ビームがら補間を介し
て任意の方位の聴音を行なうンーナー聴音装置において
、八・1方位分の基本整相ティジタルビーム信号から、
m次ビーム補間に安するI’+1方位分の被補間ディジ
タルビーム信号の組を選択する被補間整相ビーム信号選
択器と、前記被袖間整相ビーム信号を同時に記憶する1
]1個の記憶装置と、前記記憶装置の出力をアナロク信
号に変換する111個のI)A変換器と、前記111個
のI)A変換器の出力を被補間ビーム信号として入力し
補間ビーム信号と出力するn個のアナログビーム補間器
と、11個のアナログビーム補間器の出力とひとつのI
)A変換器の出力により力えられるn +1方位の聴音
信号を切り換えろアナログマルチプレクサと、所望の聴
音方位を入力する入力端子と、当該聴音方位に従って前
記被補間整相ビーム信号選択器と前記アナログマルチプ
レクサとをfljll fjllする聴音方位情報変換
器と、前記アナログマルチプレクサの出力に接続され選
択された方位の聴音を行なう拡声器とを有−J〜ること
を特徴と1−ろンーナー聴音装置。 (2)  7i1記111個のアナログビーム補間器が
m個の抵抗と2個のアナログ加力−器とを有し、′41
(相ビームのビーム値と補間関数との積和を演栃−4−
ろことを特徴とする傷゛t′1請求の範囲第1項記載の
ソーナー聴音装置。
[Claims] In a Nner listening device that performs listening in an arbitrary direction through interpolation from basic phased beams in 1 (where 1 is an integer greater than a predetermined number) azimuths. , from the basic phased digital beam signal for 8.1 directions,
an interpolated phased beam signal selector for selecting a set of interpolated digital beam signals for I'+1 azimuths to be used for m-th beam interpolation; and 1 for simultaneously storing the interpolated phased beam signals.
] one storage device, 111 I)A converters that convert the output of the storage device into an analog signal, and the outputs of the 111 I)A converters are input as interpolated beam signals to generate an interpolated beam. n analog beam interpolators that output signals, outputs of 11 analog beam interpolators, and one I
) An analog multiplexer for switching the listening signal in the n+1 direction inputted by the output of the A converter, an input terminal for inputting a desired listening direction, the interpolated phased beam signal selector according to the listening direction, and the analog 1. A listening device comprising: a listening direction information converter for communicating with a multiplexer; and a loudspeaker connected to the output of the analog multiplexer for listening in a selected direction. (2) 7i1 111 analog beam interpolators have m resistors and 2 analog force generators, '41
(Calculate the product sum of the beam value of the phase beam and the interpolation function -4-
2. The sonar hearing device according to claim 1, wherein the sonar sound listening device is characterized by a hole.
JP14100882A 1982-08-16 1982-08-16 Sonar sound locating device Granted JPS5931466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14100882A JPS5931466A (en) 1982-08-16 1982-08-16 Sonar sound locating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14100882A JPS5931466A (en) 1982-08-16 1982-08-16 Sonar sound locating device

Publications (2)

Publication Number Publication Date
JPS5931466A true JPS5931466A (en) 1984-02-20
JPS646414B2 JPS646414B2 (en) 1989-02-03

Family

ID=15282037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14100882A Granted JPS5931466A (en) 1982-08-16 1982-08-16 Sonar sound locating device

Country Status (1)

Country Link
JP (1) JPS5931466A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447901A (en) * 1990-06-15 1992-02-18 Shoji Watabe Manufacture of colored wooden flooring
JP2015502524A (en) * 2011-11-04 2015-01-22 ブリュエル アンド ケアー サウンド アンド ヴァイブレーション メジャーメント エー/エス Computationally efficient broadband filter and sum array focusing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447901A (en) * 1990-06-15 1992-02-18 Shoji Watabe Manufacture of colored wooden flooring
JP2015502524A (en) * 2011-11-04 2015-01-22 ブリュエル アンド ケアー サウンド アンド ヴァイブレーション メジャーメント エー/エス Computationally efficient broadband filter and sum array focusing

Also Published As

Publication number Publication date
JPS646414B2 (en) 1989-02-03

Similar Documents

Publication Publication Date Title
US10306393B2 (en) Method and device for rendering an audio soundfield representation
TW268178B (en)
EP2976769B1 (en) Method and apparatus for enhancing directivity of a 1st order ambisonics signal
TWI444989B (en) Using multichannel decorrelation for improved multichannel upmixing
US20080298597A1 (en) Spatial Sound Zooming
JP2003516069A (en) Method for deriving at least three audio signals from two input audio signals
WO2010005050A1 (en) Signal analyzing device, signal control device, and method and program therefor
JP3101842B2 (en) Directional microphone device
Amengual Garí et al. Spatial analysis and auralization of room acoustics using a tetrahedral microphone
KR101637407B1 (en) Apparatus and method and computer program for generating a stereo output signal for providing additional output channels
Lecomte et al. Cancellation of room reflections over an extended area using Ambisonics
JPH06269098A (en) Sound field control system
JPS5931466A (en) Sonar sound locating device
US4352954A (en) Artificial reverberation apparatus for audio frequency signals
JPH07334181A (en) Sound reverberation generating device
FR2357135A1 (en) MULTI-CHANNEL SOUND REPRODUCTION SYSTEM
CN1236652C (en) Method for producing stereo sound effect
JP2000194977A (en) Evacuation guiding device
JPH0937397A (en) Method and device for localization of sound image
EP3677049B1 (en) Acoustic radiation control method and system
JPH0514991A (en) Speaker system
JPH0496500A (en) Audio signal processing device
Braasch et al. Binaural detection of a Gaussian noise target in the presence of a lead/lag masker
SU367567A1 (en) FOUNDATION nd ^ &#39;^ SHIRTY
KR970019738A (en) Sound Phase Control Apparatus and Method for Multi-Channel Audio System