JPS5931318A - Caisson work - Google Patents

Caisson work

Info

Publication number
JPS5931318A
JPS5931318A JP13890782A JP13890782A JPS5931318A JP S5931318 A JPS5931318 A JP S5931318A JP 13890782 A JP13890782 A JP 13890782A JP 13890782 A JP13890782 A JP 13890782A JP S5931318 A JPS5931318 A JP S5931318A
Authority
JP
Japan
Prior art keywords
water
caisson
ground
concrete
excavated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13890782A
Other languages
Japanese (ja)
Inventor
Akiyoshi Nojiri
野尻 明美
Hikari Sasao
笹尾 光
Fumio Kinoshita
文男 木下
Satoru Mochida
持田 悟
Yuji Sakagami
坂上 裕児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP13890782A priority Critical patent/JPS5931318A/en
Publication of JPS5931318A publication Critical patent/JPS5931318A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D23/00Caissons; Construction or placing of caissons
    • E02D23/08Lowering or sinking caissons

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)

Abstract

PURPOSE:To enhance the operational efficiency of caisson work by a method in which the ground is excavated by utilizing water gathered in the pit excavated side, a caisson is settled, underwater concrete is placed onto the bottom of the trench and hardened until the strength of the concrete is developed, and then the water in the caisson is discharged. CONSTITUTION:In excavating the ground by utilizing water gathered on the pit excavated side, a structural base 10, an ascending pier 11, and a hanging scaffold 12 are assembled. They are attached with an excavator 14 and a separator 15, together with a water supply or discharge tank (not illustrated). An earth anchor 16 is fixed to the structural base 10 to obtain the reaction of a jack 13, the excavation of the central part and the suction of water are started, and the jack 13 is actuated by jetting water from the tip of the blade. The settling of caisson is repeated to a given depth gradually, and after the completion of the settling, underwater concrete 21 is placed on the bottom of the excavated trench. When the load of the superstructure of the caisson is increased and balanced with the buoyancy, water is drained.

Description

【発明の詳細な説明】 この発明は構造物基礎部分あるいはJlh下室となるべ
き潜函を地上で構築し、順次沈設して行く潜函工法fこ
関するもので、根切り工事の効率化lこより工期の短縮
、工費の低減等を図ったものである。
[Detailed Description of the Invention] This invention relates to a method of constructing a subcase to be the foundation part of a structure or the lower room of a Jlh on the ground and sequentially sinking it. The aim is to shorten the time and reduce construction costs.

地下水位の高い地盤で根切り3よび地下躯体工事を行な
う場合、従来の仮設として使イ〕れている山止め壁、切
張り、排水施設、fjり台等は工期、Tl費を圧迫して
いる。J13下工事がj+I!!−1ニエ事に比べかな
り割高になっているのも、この仮設にか力)る経費であ
る。
When performing root cutting3 and underground structure work in ground with a high groundwater level, conventional temporary construction such as retaining walls, shedding, drainage facilities, fjing stands, etc. will put pressure on the construction period and Tl cost. There is. J13 under construction is j+I! ! The reason why it is considerably more expensive than the 1-year project is the expense involved in this temporary construction.

技術的な面でこれらを分析してみると、現在の+llL
下躯休工1体Fにおける各作業がほきんどドライワーク
を前提にしている関係上、根切り側をドライにしている
点がM要な原因として浮かび上って(る。
Analyzing these from a technical perspective, the current +lll
Since each work in the substructure work 1 F is based on the premise of dry work, the fact that the root cutting side is kept dry has emerged as an important cause.

これに対しこの発明の工法は従来の潜函工法を改良し、
従来、地下構造物の祭造において種々の工法で、排除す
る方向で取扱われてきた水を掘削および外力着定の面で
も積極的に利用したもので、特に地下水位の高い地盤に
適している。
In contrast, the construction method of this invention improves the conventional submerged box construction method,
Water, which has traditionally been removed using various methods in the construction of underground structures, is now actively used for excavation and fixation of external forces, and is particularly suitable for ground with a high groundwater level. .

すなわち、潜函工法において、根切り側の水を排水ぜず
地下水の不足する地盤の場合には注水する事もある。そ
の水を利用して掘削を行なう。更に潜函沈設終了後掘削
底へ水中コンクリートを打設し、この水中コンクリート
が強度を発揮した後、潜函内の水を排出して、地下躯体
工事を進めることを特徴とし、根切り工事の省力化、施
工性の向上、工費の低減等を可能!こしたもので1次の
ような手順、工法が採られる。
In other words, in the submerged box method, water may not be drained from the root cutting side, but water may be injected if the ground lacks groundwater. The water will be used for excavation. Furthermore, after the submergence has been completed, underwater concrete is placed at the bottom of the excavation, and after this underwater concrete has developed its strength, the water inside the submerged case is drained and underground structure work can proceed, which saves labor in root cutting work. , it is possible to improve workability and reduce construction costs! The following procedures and construction methods are used for filtered materials.

(a)  根切り側に水を溜める。(a) Store water on the side of the root cut.

(b)  その水を利用して掘削する。(b) Use that water to excavate.

(C)  掘削中、掘削用水は循環さ−ヒて用いる。(C) During excavation, excavation water is circulated and used.

(d)  地上で、壁および地中梁、柱を順次築造し、
沈設して行く。
(d) Building walls, underground beams, and columns in sequence on the ground;
I'm going to sink it.

(e)  面体の沈設は、必要(こ応じ刃先で水ジェツ
トを作用させたり、構台等を反力とした荷重をかけて行
なう。
(e) The face piece can be sunk as necessary (if necessary, by applying a water jet with the cutting edge or by applying a load using a gantry, etc. as a reaction force).

(f)  沈設終了後、掘削底に水中コンクリートなど
で底蓋をつくる。
(f) After settling the excavation, create a bottom cover with underwater concrete, etc. at the bottom of the excavation.

(g)  水中コンクリートの強度発現後、必要fこ応
じアースアンカーで定着する。
(g) After the underwater concrete has developed its strength, it is fixed with earth anchors as required.

(h)  必要tこ応じ、水中コンクリートと接Jli
x地盤の間に地盤改良用あるいは止水用のグラウトを施
すため、グラウト用配管を函体中に設値しておく。
(h) Contact with underwater concrete as necessary.
x In order to apply grout between the ground for ground improvement or water stoppage, set the grout piping inside the box.

を利用し、建家外部でゴニ砂と水の分ル’1kを行ない
、水のみ循環さぜることができる。
It is possible to separate Goni sand and water outside the building by using the system to circulate only the water.

次にこの発明の潜函工法の一実施例を1ン1面第1図〜
第11図に基づいて説明する。
Next, an example of the submerged box construction method of this invention is shown in Figure 1~
This will be explained based on FIG. 11.

■ 地中埋設物を撤去し、敷地内を整地した後。■ After removing underground objects and leveling the site.

遺影、墨出し、ベンチマークの設定を行なう(第1図参
照)0 ■ 刃先部の掘削(地下水位上面100〜200w程度
で止める)を行ない、掘削土は地中梁築a部分へ盛土を
し、整地を行なう。その後、刃先部、地中梁、築造部分
の捨てコン1を打設し、墨出しを行なう(第2図参照)
Carry out photographing, inking, and setting benchmarks (see Figure 1) 0 ■ Excavate the cutting edge (stop at about 100 to 200 W above the groundwater level), and fill the excavated soil into part a of the underground beam construction. Perform ground leveling. After that, pour concrete 1 for the cutting edge, underground beams, and construction parts and mark them out (see Figure 2).
.

■ 型枠2、足場3および鉄筋4を組み立て、刃先金物
5、ジェット用バイブロ、鉄骨用アンカー7等を取り付
けて、コンクリートを打設する(第6図参照)。
■ Assemble the formwork 2, scaffolding 3, and reinforcing bars 4, attach the cutting edge hardware 5, jet vibro, steel frame anchor 7, etc., and pour concrete (see Figure 6).

(優 止水板8を取り付はレイタンスを除去して、コン
クリート9の養生を行なう。その後、型枠2を解体して
外周部を埋め戻す(第4図参照)。
(Excellent) To install the water stop plate 8, remove the laitance and cure the concrete 9. After that, the formwork 2 is dismantled and the outer periphery is backfilled (see Figure 4).

また、アースアンカーを打設し躯体重、量不足の場合は
これを反力として沈設させたり、躯体のレベル調整に利
用する。
In addition, if earth anchors are installed and the weight of the structure is insufficient, this will be used as a reaction force to sink the structure or to adjust the level of the structure.

■ 11q台10、登り桟橋11′J6よび吊足場12
を組み立て、ジヤツキ15、掘削機141分離機15等
を取り付け、さらに給排水用のタンクをセットする。ア
ースアンカー16を構台10に固定し、ジヤツキ13の
反力をとる。
■ 11q platform 10, climbing pier 11'J6 and hanging scaffold 12
, install the jack 15, excavator 141, separator 15, etc., and set the water supply and drainage tank. An earth anchor 16 is fixed to the gantry 10 to take the reaction force of the jack 13.

そして、中央部分の掘削2よび吸水を開始し、−刀刃先
部分か−らは水ジェツトを噴射し、ジヤツキ13を始動
する(第5図参照)0所定深さまで沈設したら、一旦沈
設を停止し、アースアンカー16の固定を解除して構台
10をジヤツキアップし、再び固定する。
Then, excavation 2 in the center area starts water absorption, a water jet is injected from the tip of the sword, and the jack 13 is started (see Figure 5). 0. Once the stone has been submerged to a predetermined depth, the submergence is temporarily stopped. , the earth anchor 16 is released, the gantry 10 is jacked up, and the ground anchor 16 is fixed again.

■ 型枠17、鉄筋18等を配して地下躯体の築造を行
なう(第6回診M)。なお、図中19はパイプサポート
である。またスラブは後打ちとする。さらに、比較的規
模の小さい場合にはプレキャスト板を用いて地下躯体を
造ることもある。
■ Arrange formwork 17, reinforcing bars 18, etc., and construct the underground structure (6th inspection M). In addition, 19 in the figure is a pipe support. Also, the slab will be applied later. Furthermore, in cases where the scale is relatively small, an underground framework may be constructed using precast boards.

の 再び掘削、吸水を開始し、水ジェツトを噴射し、ジ
ヤツキ13を始動する(第7図参照)。
Excavation and water absorption are started again, the water jet is injected, and the jack 13 is started (see Figure 7).

以下、順次所定の深さまで沈設を繰り返し、沈設が完了
したら掘削機14、分離機15等を撤去する。
Thereafter, the sinking is repeated successively to a predetermined depth, and when the sinking is completed, the excavator 14, separator 15, etc. are removed.

■ 掘削底に水中コンクリート21を打設する。■ Place underwater concrete 21 at the bottom of the excavation.

このとき吸水パイプ171Cより水位レベルを確保して
おく。またアースアンカー16の頭部は地下躯体に固定
する。躯体内部に打込まれたアンカーは水中コンクリー
トで一時的に定着さぜる。ジェット用バイブロを利用し
て刃先周辺のグラウトを行なう(第8図参照)。
At this time, the water level is secured from the water suction pipe 171C. Further, the head of the earth anchor 16 is fixed to the underground framework. Anchors driven into the structure are temporarily anchored in underwater concrete. Grout around the cutting edge using a jet vibro (see Figure 8).

Q) スラブ型枠22および鉄筋を組み立てる(第9図
参照)。なお第9図は梁間の断面を示したもので、スラ
ブ型枠22としてはデツキプレートを用い、構台10よ
り吊り下げている。スラブコンクリート25を打設し、
養生した後、構台10は解体し、搬出する。
Q) Assemble the slab formwork 22 and reinforcing bars (see Figure 9). Note that FIG. 9 shows a cross section between the beams, and a deck plate is used as the slab formwork 22, which is suspended from the gantry 10. Place slab concrete 25,
After curing, the gantry 10 is dismantled and transported.

■ 外部足場24を組み立て、上部躯体を箔造して行く
(第10図参照)。
■ Assemble the external scaffolding 24 and fabricate the upper frame with foil (see Figure 10).

■ 上部躯体の荷重が増加し、浮力のバランスがとれた
ら排水を行なう。掃除、片付、水中コンクリート21の
レイタンス除去の後、地下スラブ筋25を組み立て、ス
ラブコンクリートを打設する(第11図参照)。最後に
仕上げを行ない地下工事が完了する〇 この発明は以上の構成からなり、次のような利点、特徴
を有する。
■ Drain water when the load on the upper structure increases and the buoyancy is balanced. After cleaning, tidying up, and removing laitance from the underwater concrete 21, underground slab reinforcements 25 are assembled and slab concrete is poured (see Fig. 11). Finally, finishing is performed and the underground construction is completed. This invention has the above configuration and has the following advantages and features.

(1)仮設資材、特に消却仮設資材が少ない。(1) Temporary construction materials, especially disposable temporary construction materials, are scarce.

(2)  ドライワークを前提としていないため天候に
左右されない全天候型の工事が可能である。
(2) Since dry work is not a prerequisite, all-weather construction is possible regardless of the weather.

(3)揚水工事(地下水の汲み上げ)がないため、周辺
地盤に与える影響が少なく、地下水問題に有利である。
(3) Since there is no pumping work (pumping up groundwater), there is less impact on the surrounding ground, which is advantageous for groundwater problems.

図−12の刃先きを用いる事により引すり込みによる周
辺地盤沈下も防止する事ができる。
By using the cutting edge shown in Figure 12, it is possible to prevent surrounding ground subsidence due to pulling.

(4)  同様に、掘削法面に働く外力を低減できる。(4) Similarly, the external force acting on the excavation slope can be reduced.

(C・)労働力の大幅削減が可能で、また労働災害も低
減される。大部分が地上工事となり、工事環境の悪いj
1ハ下に作業員を下ろす事がない。
(C.) It is possible to significantly reduce the labor force, and labor accidents are also reduced. Most of the work will be done above ground, creating a poor construction environment.
Workers are never lowered by one floor.

(6)仮設工事等が少ないので、工J(Flも短縮され
、また地下工事費の大幅な低減が可能である。
(6) Since there is less temporary construction work, etc., construction time is shortened and underground construction costs can be significantly reduced.

(7)吸込み穴掘削機を用いる場合にはJJil削機の
上下がないのでJl−下掘削深さの増大に対して作業能
率が下らない。
(7) When using a suction hole excavator, there is no upper or lower part of the JJil excavator, so the work efficiency does not decrease as the JJil excavation depth increases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第11図はこの発明の一実施例における細工手
順を示した縦断面図である。 1・・捨てコン、2・・型枠、3・・足場。 4・・鉄筋、5・・刃先金物、6・・ジェット用パイプ
、7・・鉄骨用アンカー、8・・止水板、9・・コンク
リート、10・・1flI台、11・・登り桟橋、12
・・吊足場、13・・ジヤツキ、14・・掘削機、15
・・分PJIE機、16・・アースアンカー、17・・
吸水パイプ、18Φ・型枠、19・・鉄筋、20・・パ
イブザボート、21・・水中コンクリ−1・、22・・
スラブ型枠、23・・スラブコンクリ−!・、24・・
外部足場、25・・地下スラブ筋。 第8図 第9[4 第10図 第111’、4
FIGS. 1 to 11 are longitudinal cross-sectional views showing the working procedure in an embodiment of the present invention. 1. Discarded concrete, 2. Formwork, 3. Scaffolding. 4...Reinforcement bar, 5...Blade edge hardware, 6...Jet pipe, 7...Anchor for steel frame, 8...Water stop plate, 9...Concrete, 10...1flI stand, 11...Climbing pier, 12
・・Hanging scaffold, 13・・Jacket, 14・・Excavator, 15
・・Min PJIE machine, 16・・Earth anchor, 17・・
Water absorption pipe, 18Φ, formwork, 19...reinforcement, 20...pipe the boat, 21...underwater concrete 1, 22...
Slab formwork, 23...Slab concrete!・、24・・
External scaffolding, 25... Underground slab reinforcement. Figure 8, Figure 9 [4 Figure 10, Figure 111', 4

Claims (1)

【特許請求の範囲】[Claims] (1)地上で順次潜函を(岬簗し、順次潜函下部の根切
り側の地盤を掘削して潜函を沈設して行く潜函工法に君
いて、根切り側に水を溜めてその水を利用して地盤の掘
削を行ない、潜函沈設終了後掘削底へ水中コンクリート
を打設し、この水中コンクリートが強度を元押した後、
潜函内の水を排出することを特徴とする潜函工法。
(1) A method of construction in which the canals are placed one after another on the ground, the ground on the side of the root cutting at the bottom of the canal is excavated one after another, and the canals are sunk, and water is collected on the side of the root cutting and the water is used. After the submersible has been sunk, underwater concrete is placed at the bottom of the excavation, and this underwater concrete provides strength.
A sub-box construction method characterized by draining the water inside the sub-box.
JP13890782A 1982-08-10 1982-08-10 Caisson work Pending JPS5931318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13890782A JPS5931318A (en) 1982-08-10 1982-08-10 Caisson work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13890782A JPS5931318A (en) 1982-08-10 1982-08-10 Caisson work

Publications (1)

Publication Number Publication Date
JPS5931318A true JPS5931318A (en) 1984-02-20

Family

ID=15232920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13890782A Pending JPS5931318A (en) 1982-08-10 1982-08-10 Caisson work

Country Status (1)

Country Link
JP (1) JPS5931318A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128612A (en) * 1975-12-10 1977-10-28 Mitsui Constr Closed fluid delivery method of excavated soil for caisson
JPS54142813A (en) * 1978-04-28 1979-11-07 Kahee Shimomura Caisson with floating preventive blade

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128612A (en) * 1975-12-10 1977-10-28 Mitsui Constr Closed fluid delivery method of excavated soil for caisson
JPS54142813A (en) * 1978-04-28 1979-11-07 Kahee Shimomura Caisson with floating preventive blade

Similar Documents

Publication Publication Date Title
US4697955A (en) Method of constructing reinforced concrete works such as underground galleries, road tunnels, et cetera; pre-fabricated contrete elements for constructing such works
CN111980019B (en) Construction method of steel pipe pile cofferdam for locking notch of main bridge bearing platform of super-large bridge
CN102430277B (en) Coarse grid sunk well for physically processing waste water and construction method thereof
CN105178244A (en) Quick formwork erecting construction method for cast-in-place wave wall
KR101173029B1 (en) Under Water Structure Building and Maintenance and Reinforce Method Using Water Tightened Caisson
CN117166510A (en) Deep large-diameter open caisson construction method
CN112281888A (en) Excavation supporting method for foundation pit caisson
CN116516845A (en) Maintenance and reinforcement method for underwater pier of bridge in tidal zone
CN114875972B (en) Construction method for open cut reverse foundation pit main structure
AU2020100004B4 (en) A Method Of Constructing A Column, A Subterranean Structure, And A Structure Made From The Method
JPS5931318A (en) Caisson work
CN113585336A (en) Quick construction method of sinking type concrete mixing station in soft foundation environment
CN107060380A (en) A kind of memorial archway being built on ancient building shelter bridge and its construction method
CN110685719A (en) Quick construction method for double-span simply-supported inverted arch trestle
CN111576483A (en) Open-cut construction method for sensitive building section near intercity railway tunnel
KR100647488B1 (en) Caisson for Pier Construction and Construction Method of Underwater Structure
CN113700004B (en) Deep foundation pit combined support construction device and method thereof
CN207974136U (en) Prefabricated assembled concrete thin plate loose tool structure
SU804757A1 (en) Method of constructing a columnar bridge pier
US1418879A (en) Cofferdam construction
KR200291370Y1 (en) Concrete caisson structure for earth and sand guard of pier's basis
IL34532A (en) System for the deepening of the bottom in front of moles and retaining walls of marine and river installations and the re-inforced moles so obtained
JP2000096976A (en) Vertical shaft constructing method
CN116927179A (en) Bridge T-shaped underground diaphragm wall foundation and construction method
CN116716913A (en) Construction method for locally reinforcing integrated B0 plate and serving as tower crane foundation