JPS5931044B2 - optical deflector - Google Patents

optical deflector

Info

Publication number
JPS5931044B2
JPS5931044B2 JP12077775A JP12077775A JPS5931044B2 JP S5931044 B2 JPS5931044 B2 JP S5931044B2 JP 12077775 A JP12077775 A JP 12077775A JP 12077775 A JP12077775 A JP 12077775A JP S5931044 B2 JPS5931044 B2 JP S5931044B2
Authority
JP
Japan
Prior art keywords
piezoelectric material
light beam
inverse piezoelectric
incident
optical deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12077775A
Other languages
Japanese (ja)
Other versions
JPS5245939A (en
Inventor
煕康 舟久保
正征 大泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP12077775A priority Critical patent/JPS5931044B2/en
Publication of JPS5245939A publication Critical patent/JPS5245939A/en
Publication of JPS5931044B2 publication Critical patent/JPS5931044B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 本発明はレーザー光ビーム等を走査あるいは偏向するた
めの光偏向器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical deflector for scanning or deflecting a laser beam or the like.

光偏向器としては、機械的方法、電気、音響光学効果に
よるものとがあり、以下その概要について説明する。機
械的方法、 ホログラフイー技術を利用して回折角の異なる種種の回
折格子を作製し、これを機械的に順次切りかえるという
方式であるがしかしこの方法にあつては偏向速度の上限
が低い、制御の確度が劣るなど、高速高精密走査には適
さないという欠点がある。
Optical deflectors include those based on mechanical methods, electricity, and acousto-optic effects, and an outline thereof will be explained below. Mechanical method: This method uses holographic technology to create diffraction gratings of different types with different diffraction angles, and mechanically switches these gratings sequentially. The disadvantage is that it is not suitable for high-speed, high-precision scanning, such as poor accuracy.

電気、音響光学効果を用いる方法: 電気光学効果、すなわち電界による媒質の屈折率だ円体
の変形を利用したもので主としてディジタル光偏向を行
なうのに用いられている、また音響光学効果、すなわち
超音波と光の相互作用を用いる方式では光弾性効果(ひ
ずみによる媒質の屈折率変化)を利用しており、屈折率
変化により媒質が回折格子と同様の作用をして光が回折
するのを超音波波長を変化させて制御する方式であるが
、広い偏向角度領域で分解能より、速い速度で入射光ビ
ームを偏向させ、かつ効率よく放射させるという全ての
条件を満足させることが困難であつた。
Methods using electric and acousto-optic effects: The electro-optic effect, which utilizes the deformation of the refractive index ellipsoid of the medium by an electric field, is mainly used for digital light deflection; Methods that use the interaction between sound waves and light utilize the photoelastic effect (change in the refractive index of the medium due to strain), and due to the change in the refractive index, the medium acts similar to a diffraction grating, thereby suppressing the diffraction of light. This method controls by changing the wavelength of the sound wave, but it has been difficult to satisfy all the conditions of deflecting the incident light beam at a faster speed than resolution over a wide deflection angle range and radiating it efficiently.

本発明は叙上の欠点を克服したもので、その目的とする
ところは、高速度ビームの走査を可能にし、大きな偏向
角を得ることができると共に構造的に簡単で安価に製作
し得る光偏向器を提供するにある。次に本発明の実施例
を図面と共に説明する。
The present invention overcomes the above-mentioned drawbacks, and its purpose is to provide an optical deflection system that allows high-velocity beam scanning, provides a large deflection angle, and is structurally simple and inexpensive to manufacture. It is to provide the equipment. Next, embodiments of the present invention will be described with reference to the drawings.

1は光に対し透明な逆圧電性を有するXカット水晶板等
の材料にして、その上下面に導電性材料からなる電極2
、3が蒸着等の適宜手段によつて設けられている。
1 is made of a material such as an X-cut crystal plate that has reverse piezoelectricity and is transparent to light, and electrodes 2 made of a conductive material are placed on the upper and lower surfaces of the material.
, 3 are provided by appropriate means such as vapor deposition.

また該逆圧電性材料1の相対向する光ビームびが入射さ
れる入射面1aと、放射される放射面lbとが光学的に
平滑に研磨されている。また上記した電極2、3には電
力を供給するためのリード線4、5が接続されている。
そしてこれら全体を偏向器Aとする。実施例に見るX=
カット水晶振動子はX軸方向に厚み縦振動を行い、振動
子内部に弾性波が形成される。
Further, an entrance surface 1a of the inverse piezoelectric material 1, into which the opposing light beams are incident, and a radiation surface lb, from which the light beams are emitted, are optically polished to be smooth. Further, lead wires 4 and 5 for supplying power are connected to the electrodes 2 and 3 described above.
The whole of these will be referred to as a deflector A. X= seen in the example
The cut crystal resonator performs thickness longitudinal vibration in the X-axis direction, and elastic waves are formed inside the resonator.

1次振動に伴う水晶振動子のX−軸方向弾性振動に伴う
変位分布は、第T図のようになる。
The displacement distribution associated with the elastic vibration of the crystal resonator in the X-axis direction due to the primary vibration is as shown in Fig. T.

同図からも判るように中心で節となり変位せず、両端(
t/2)で最大変位を示す。X軸方向の振動の変位(Y
x)は、 ここに {j:リニ= ト である。
As can be seen from the same figure, it becomes a node at the center and does not displace, but at both ends (
t/2) indicates the maximum displacement. Vibration displacement in the X-axis direction (Y
x) is here {j:linit=t.

1式で示される定在波振動を行う。Perform standing wave vibration shown in equation 1.

これからある時間におけるX軸方向でのひずみ(S○は
、で表わすことができる。光弾性効果による屈折率変化
は、媒質の屈折率が媒質中の弾性ひずみによつて生ずる
効果であり、その変化(Δn)は光弾性定数をPとすれ
ば、の屈折率の変化を生ずる。
The strain (S○) in the X-axis direction at a certain time can be expressed as follows.The refractive index change due to the photoelastic effect is an effect where the refractive index of the medium is caused by elastic strain in the medium, and the change (Δn) causes a change in the refractive index, where P is the photoelastic constant.

これから屈折率勾配は、となる。これはCOS2πγT
=1であるTの時最大値を示す(第8図)。この結果、
屈折勾配(Dn)は振動の節ではOゝ D
xとなり偏光は生じない。
From this, the refractive index gradient becomes. This is COS2πγT
When T=1, the maximum value is shown (FIG. 8). As a result,
The refraction gradient (Dn) is Oゝ D at the vibration node.
x, and no polarization occurs.

X=±t/2の時最大屈折勾配を生ずる。The maximum refraction gradient occurs when X=±t/2.

従つて入射ビームの位置をOからt/2まで変えれば、
それに対応した屈折勾配から、φ−2L箸に対応する偏
光角を得ることができる。上記光偏向器Aは高周波発生
器及びその増幅器からなる高周波電力供給装置Bと電気
的に結合して使用され、必要に応じて高周波電流計ある
いは高周波電力計C等が設置される。
Therefore, if we change the position of the incident beam from O to t/2, we get
The polarization angle corresponding to the φ-2L chopsticks can be obtained from the corresponding refraction gradient. The optical deflector A is used in electrical connection with a high frequency power supply device B consisting of a high frequency generator and its amplifier, and a high frequency ammeter or a high frequency power meter C or the like is installed as necessary.

レーザーDから出た光ビームD′は光偏向器Aに入射し
偏向された光ビームD′が、たとえばスクリーンEに放
射される。良く知られているように逆圧電性物質は固定
した一つの幾何学的形状に形成された時、一般にその形
状に対応した固有の共振周波数を有する。
A light beam D' emitted from a laser D is incident on a light deflector A, and the deflected light beam D' is emitted onto a screen E, for example. As is well known, when an inverse piezoelectric material is formed into a fixed geometric shape, it generally has a unique resonant frequency corresponding to that shape.

本発明による光偏向器Aは高周波電力供給装置Bから供
給される高周波の周波数が逆圧電性材料1の共振周波数
であるような場合は最も良好に動作する。上記偏向器A
に用いる逆圧電性材料1としては、形状が直方体で、1
.0107MHzの共振周波数を有するXカツト水晶板
を用い、その水晶板のX面に銀薄膜の電極2,3を真空
蒸着法によつて形成したものである。
The optical deflector A according to the present invention operates best when the frequency of the high frequency supplied from the high frequency power supply device B is the resonant frequency of the inverse piezoelectric material 1. Above deflector A
The inverse piezoelectric material 1 used for
.. An X-cut quartz crystal plate having a resonant frequency of 0.0107 MHz is used, and electrodes 2 and 3 of thin silver films are formed on the X plane of the quartz plate by vacuum evaporation.

そして上記電極2,3間にり一ド線4,5を介して上記
1.0107MHzの周波数を持つ高周波電力によつて
動作させた場合の偏向方向を第4図に示す。図中黒丸は
入射面1aに対し略垂直に入射された光ビームD′であ
つて白丸は該光ビームD′の入射面1a上での偏向方向
を平面的に示したものである。この場合光ビームD′の
偏向はその共振周波数で厚み縦振動しているXカツト水
晶板の内部に発生している定在弾性波によつて引き起る
水晶板内部に発生する屈折率勾配8に起因するものであ
つDxて、入射面1a上での入射光ビームD′の位置に
対する周期的な函数としての光ビームD′の偏向方向は
水晶板のX軸方向の厚み縦振動による定在弾性波とその
振動によつて誘起されるY軸方向の定在弾性波が合成さ
れたリサージユ図形として解釈できる。
FIG. 4 shows the direction of deflection when the device is operated by high frequency power having a frequency of 1.0107 MHz via the single-wire wires 4 and 5 between the electrodes 2 and 3. In the figure, a black circle represents a light beam D' that is incident approximately perpendicularly to the incident surface 1a, and a white circle represents the deflection direction of the light beam D' on the incident surface 1a in a plan view. In this case, the deflection of the light beam D' is caused by a refractive index gradient 8 generated inside the crystal plate caused by a standing elastic wave generated inside the X-cut crystal plate that vibrates longitudinally in its thickness at its resonant frequency. The deflection direction of the light beam D' as a periodic function of the position of the incident light beam D' on the incident surface 1a is caused by It can be interpreted as a Lissage figure in which an elastic wave and a standing elastic wave in the Y-axis direction induced by the vibration are synthesized.

実用上望ましい偏向方向を設定するような場合は、光ビ
ーム入射面1a上での光ビームD′の入射位置を適当に
調整することによつて容易に可能となる。第4図に示し
たごとき光ビームD′の偏向は前記したごとく逆圧電性
材料1の内部に発生する屈折率の変化8に起因するが、
偏向の大きさ即ちDX)偏向角φと勅との間には一般に Dx の関係が存在する。
A practically desirable deflection direction can be easily set by appropriately adjusting the incident position of the light beam D' on the light beam entrance surface 1a. The deflection of the light beam D' as shown in FIG. 4 is caused by the change 8 in the refractive index occurring inside the inverse piezoelectric material 1 as described above.
Magnitude of Deflection (DX) There is generally a relationship Dx between the deflection angle φ and the force.

ここにLは光ビームD′が逆圧電性材料1の内部を通過
する時の光路の長さである。良く知られている様に実用
上、偏向角φは十分に大きいことが望ましい。上式から
明らかなように、偏向角φを増加させるための第一の手
段は8を増加させることであDxる 5の増加は供給す
る高周波電力の増大並び0dxに周波数の調節によつて
達成される。
Here, L is the length of the optical path when the light beam D' passes through the interior of the inverse piezoelectric material 1. As is well known, in practice, it is desirable that the deflection angle φ is sufficiently large. As is clear from the above equation, the first means to increase the deflection angle φ is to increase Dx by 8. The increase by 5 is achieved by increasing the supplied high-frequency power and adjusting the frequency to 0dx. be done.

偏向角φを増加させる第二の手段はLを増加させること
である。
A second means of increasing the deflection angle φ is to increase L.

第1図及び第2図を例にとればLは入射面1aと放射面
1bとの距離に相当する。よつてLの増加は逆圧電性材
料1の形状寸法を大きくすることによつて達成すること
ができる。しかし通常光学的に上質な逆圧電性材料1の
形状寸法にはある程度の限界を伴うのが普通である。従
つてさらに実質的にLを増加させる場合は、第5図及び
第6図に示すように入射面1a及び放射面1bの一部に
、例えば銀等を真空蒸着法等によつて作成した金属薄膜
からなる反射鏡1c,1dを設け、逆圧電性材料1の入
射面1aに入射した光ビームD′が反射鏡1dによつて
反射された後反射鏡1cに達し、ここで再び反射が繰返
されて放射面1bより放射光ビームとなつて放射される
ので、入射面1aと放射面1bとの距離を10〜20m
m程度にすることができる。従つて通常人手しやすい形
状寸法の逆圧電性材料1を用いた場合においても実質的
にLの大きさを十分に大きくすることができ、その結果
として十分大きな偏向角を得ることが出来る。実際、た
とえば逆圧電性材料1として前記した実施例で述べたX
カツト水晶板を用いた光偏向器Aを動作させた場合は、
通常数ワツト以下のわずかな電力を供給することによつ
て約1度程度の偏向角は容易に実現することができ、か
つ供給される高周波の周波数に対応した高速度、たとえ
ぱ上記した実施例の場合は1メガヘルツの速さで光ビー
ムD′を走査することができる。尚上記第5,6図の実
施例では、反射鏡1c,1dの間で光ビームD′が夫々
2回ずつ反射されているものを示したが、その反射回数
は2回より少なく、あるいは多いものであつても良いこ
とは勿論である。本発明は上記したようになるから、既
知のたとえば回転鏡型あるいは振動鏡型光偏向器に比し
てより高速度の光ビーム走査を可能とし、あるいは又既
知の電気光学効果型光偏向器に比してより大きな偏向角
を実現することを可能としさらには又既知の、いわゆる
従来の音響光学効果型光偏向器に比して、構造的に簡潔
であり、従つて製作が容易でかつ低コストを可能とする
すぐれた特徴を有するものである。
Taking FIGS. 1 and 2 as an example, L corresponds to the distance between the entrance surface 1a and the emission surface 1b. Therefore, an increase in L can be achieved by increasing the geometry of the inverse piezoelectric material 1. However, the shape and dimensions of the optically high-quality inverse piezoelectric material 1 are usually limited to some extent. Therefore, in order to further substantially increase L, as shown in FIGS. 5 and 6, a part of the entrance surface 1a and the emission surface 1b may be coated with a metal such as silver by vacuum evaporation or the like. Reflecting mirrors 1c and 1d made of thin films are provided, and the light beam D' incident on the incident surface 1a of the inverse piezoelectric material 1 is reflected by the reflecting mirror 1d and then reaches the reflecting mirror 1c, where the reflection is repeated again. The beam is emitted from the radiation surface 1b as a synchrotron radiation beam, so the distance between the incidence surface 1a and the radiation surface 1b is set to 10 to 20 m.
It can be made about m. Therefore, even when using the inverse piezoelectric material 1 having a shape and size that is usually easy to handle, the size of L can be substantially made sufficiently large, and as a result, a sufficiently large deflection angle can be obtained. In fact, for example, X
When operating optical deflector A using a cut crystal plate,
A deflection angle of about 1 degree can be easily achieved by supplying a small amount of power, usually a few watts or less, and a high speed corresponding to the frequency of the supplied high frequency, such as the embodiments described above. In this case, the optical beam D' can be scanned at a speed of 1 MHz. In the embodiments shown in FIGS. 5 and 6, the light beam D' is reflected twice between the reflecting mirrors 1c and 1d, but the number of reflections may be less than or more than two times. Of course, it is fine if it is something. As described above, the present invention enables higher-speed optical beam scanning than known, for example, rotating mirror type or vibrating mirror type optical deflectors, and also enables higher speed optical beam scanning than known electro-optic effect type optical deflectors. Furthermore, compared to known so-called conventional acousto-optic optical deflectors, it is structurally simpler and therefore easier to manufacture and less expensive. It has excellent features that make it possible to reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に係る光偏向器の実施例を示し、第1図は第
1実施例の光偏向器の斜視図、第2図は同上の側面図、
第.3図は本発明の光偏向器を動作させるための回路の
プロツク図、第4図は本発明の光偏向器に入射する光ビ
ームの位置と、その時の光ビームの偏光方向の関係を示
す説明図、第5図は第2実施例の光偏向器の斜視図、第
6図は同上の平面図、第7図は水晶振動子のX−Z軸方
向弾性振動に伴う変位分布を示す図、第8図は同上の特
性図である。 1・・・・・・逆圧電性材料、1a・・・・・・入射面
、1b・・・・・・放射面、1c,1d・・・・・・反
射鏡、2,3・・・・・・電極、D′・・・・・・光ビ
ーム。
The figures show an embodiment of the optical deflector according to the present invention, FIG. 1 is a perspective view of the optical deflector of the first embodiment, FIG. 2 is a side view of the same as above,
No. Figure 3 is a block diagram of a circuit for operating the optical deflector of the present invention, and Figure 4 is an explanation showing the relationship between the position of the light beam incident on the optical deflector of the present invention and the polarization direction of the light beam at that time. 5 is a perspective view of the optical deflector of the second embodiment, FIG. 6 is a plan view of the same as above, and FIG. 7 is a diagram showing the displacement distribution accompanying elastic vibration of the crystal resonator in the X-Z axis direction. FIG. 8 is a characteristic diagram similar to the above. 1...Inverse piezoelectric material, 1a...Incidence surface, 1b...Emission surface, 1c, 1d...Reflector, 2, 3... ...electrode, D'...light beam.

Claims (1)

【特許請求の範囲】 1 光ビームを入射及び放射するための光学的に平滑な
面を有し、光に対して透明性を有する逆圧電性材料と、
該逆圧電性材料に電力を供給するための一対の電極とか
ら構成した光偏向器。 2 光ビームを入射及び放射するための光学的に平滑な
面を有し、かつ該平滑面を相対向して配置すると共に夫
々の平滑面の一部を反射面とした光に対し透明性を有す
る逆圧電性材料と、該逆圧電性材料に電力を供給するた
めの一対の電極とから構成した光偏向器。
[Scope of Claims] 1. An inverse piezoelectric material that has an optically smooth surface for incident and emitting a light beam and is transparent to light;
and a pair of electrodes for supplying power to the inverse piezoelectric material. 2. Having an optically smooth surface for incident and emitting a light beam, and arranging the smooth surfaces to face each other, and using a part of each smooth surface as a reflective surface, so as to be transparent to light. An optical deflector comprising an inverse piezoelectric material having an inverse piezoelectric material and a pair of electrodes for supplying power to the inverse piezoelectric material.
JP12077775A 1975-10-08 1975-10-08 optical deflector Expired JPS5931044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12077775A JPS5931044B2 (en) 1975-10-08 1975-10-08 optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12077775A JPS5931044B2 (en) 1975-10-08 1975-10-08 optical deflector

Publications (2)

Publication Number Publication Date
JPS5245939A JPS5245939A (en) 1977-04-12
JPS5931044B2 true JPS5931044B2 (en) 1984-07-31

Family

ID=14794735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12077775A Expired JPS5931044B2 (en) 1975-10-08 1975-10-08 optical deflector

Country Status (1)

Country Link
JP (1) JPS5931044B2 (en)

Also Published As

Publication number Publication date
JPS5245939A (en) 1977-04-12

Similar Documents

Publication Publication Date Title
US4637684A (en) Method of making an optical coupler device utilizing volatile liquid to achieve optical contact
US4047795A (en) Optical integrated circuit laser beam scanner
US5852702A (en) Thin film optical waveguide and optical deflecting device
US5786926A (en) Electro-optical device having inverted domains formed inside a ferro-electric substrate and electro-optical unit utilizing thereof
JPS599884B2 (en) variable pitch optical grating
JP3401419B2 (en) Optical filter alignment device and optical filter alignment method
US3633995A (en) Acousto-optic light deflection system
JPS5921535B2 (en) Diffractive electroacoustic transducer
JPH02179626A (en) Light wavelength converter
US4929042A (en) Variable acoustical deflection of an optical wave in an optical waveguide
US3931592A (en) Surface acoustic wave tuned laser
US3373380A (en) Laser beam-soundwave techniques using curved acoustic waves
JPS5931044B2 (en) optical deflector
EP0100418A2 (en) Opto-optical light deflector
US3771856A (en) Acousto-optical light diffraction device
JPS58125025A (en) Two-dimensional optical deflector
US4025166A (en) Acousto-optic light beam scanner
JPS62284323A (en) Light beam scanner
JP2553367B2 (en) Multiple reflection type surface acoustic wave optical diffraction element
JPH0234011B2 (en)
JPS6150291B2 (en)
JPS6210411B2 (en)
JPH06118458A (en) Optical beam deflector having bragg lattice
US3507553A (en) Ultrasonic digital light deflector
JPS60133432A (en) Thin film type optical deflecting device