JPS5931032A - Plasma oxide film forming device - Google Patents

Plasma oxide film forming device

Info

Publication number
JPS5931032A
JPS5931032A JP57141453A JP14145382A JPS5931032A JP S5931032 A JPS5931032 A JP S5931032A JP 57141453 A JP57141453 A JP 57141453A JP 14145382 A JP14145382 A JP 14145382A JP S5931032 A JPS5931032 A JP S5931032A
Authority
JP
Japan
Prior art keywords
plasma
oxide film
oxidation
silicon substrate
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57141453A
Other languages
Japanese (ja)
Inventor
Makoto Hirayama
誠 平山
Natsuo Tsubouchi
坪内 夏朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57141453A priority Critical patent/JPS5931032A/en
Publication of JPS5931032A publication Critical patent/JPS5931032A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To slow the speed of oxidation, and to form the thin oxide film being minute and having little defect by a method wherein the surfaces of semiconductor substrates are oxidized directly in the condition neutralized electrically in a plasma atmosphere. CONSTITUTION:The silicon substrates are heated by an outside heater 2 at 600 deg.C, for example, a high-frequency electric power source 4 is made to act to generate plasma between electrodes 5, the surfaces of the silicon substrates are oxidized according to plasma thereof, and oxidation is continued up to obtain the necessary thickness to form the oxide film. As the heating means of the silicon substrates 8 and plasma thereof, there exists a device furnished with a high-frequency coil 2a for heating to be used both as the coil for generation of plasma, or furnished with the outside heater 2 and electrodes 3 for generation of plasma.

Description

【発明の詳細な説明】 この発明は、プラズマ雰囲気下で半導体の酸化膜あるい
は窒化膜を生成させるのに用いられるプラズマ酸化膜形
成装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plasma oxide film forming apparatus used for forming a semiconductor oxide film or nitride film in a plasma atmosphere.

シリコンの半導体装置の製造には、シリコンの熱酸化膜
がフィールドの厚い絶縁膜からゲートの薄い酸化膜等に
広く使用されている。この場合、酸化膜の厚さは1〜2
μm程度から1000〜500A程度の汚染の少ない酸
化シリコン膜であることが要求される。さらに、これら
の酸化シリコン膜を生成するためには、シリコン基板を
酸化性雰囲気において900℃以上に加熱する必要があ
る。このような高温での加熱は、シリコン基板上に形成
される素子の微細化に対して好ましいものではない。す
なわち、シリコン基板中に形成さゎた接合の深さは熱処
理の温度と時間によって決定され、加熱温度が高い程拡
散層の広がりは大きくなり、浅い接合を得ることはむず
かしくなる。さらに素子の微細化に伴ってゲート酸化膜
は500A以下と薄くなっていく必要がある。この薄い
酸化膜を得るには酸化温度を下げればよい。しかも酸化
温度の低いところでは形成さねた酸化膜の密度は大きく
なる。こうした目的のために低温酸化を実現するための
新しい酸化膜形成方法が提案されている。例えば、高周
波発振によって発生したプラズマ雰囲気中にシリコン基
板を設置し陽極側電極として電流を流し酸素プラズマ中
で酸化膜な形成するのも一つの方法である。
In the manufacture of silicon semiconductor devices, silicon thermal oxide films are widely used for everything from thick field insulating films to thin gate oxide films. In this case, the thickness of the oxide film is 1 to 2
A silicon oxide film with less contamination is required from about μm to about 1000 to 500 A. Furthermore, in order to generate these silicon oxide films, it is necessary to heat the silicon substrate to 900° C. or higher in an oxidizing atmosphere. Heating at such high temperatures is not preferable for miniaturization of elements formed on a silicon substrate. That is, the depth of the junction formed in the silicon substrate is determined by the temperature and time of the heat treatment; the higher the heating temperature, the larger the spread of the diffusion layer, and the more difficult it is to obtain a shallow junction. Furthermore, with the miniaturization of devices, the gate oxide film needs to become thinner to 500A or less. This thin oxide film can be obtained by lowering the oxidation temperature. Furthermore, the density of the unformed oxide film increases at low oxidation temperatures. For these purposes, new oxide film formation methods have been proposed to achieve low-temperature oxidation. For example, one method is to place a silicon substrate in a plasma atmosphere generated by high-frequency oscillation, and to apply a current as an anode side electrode to form an oxide film in oxygen plasma.

しかしながら、上記従来の方法では、シリコン基板に厚
い酸化膜を形成することは容易であるが、酸化膜の特質
はゲート酸化膜として十分ではなく、さらに良質の酸化
膜を形成する必要がある。
However, although it is easy to form a thick oxide film on a silicon substrate with the above conventional method, the characteristics of the oxide film are not sufficient as a gate oxide film, and it is necessary to form an oxide film of even better quality.

第1図はプラズマ陽極酸化した場合(曲線■)とプラズ
マ直接酸化した場合(曲線I)の酸化速度を示している
。プラズマ陽極酸化した場合には酸化温度は6011 
T;の低温であるが、酸化速度が02μm/minと大
きく、形成した酸化膜の表面状態密度(Surface
 5tate density)もlO1″と通常の酸
化膜の値よりも1桁太きい。こねは酸化膜として不安定
であることを意味し、ゲート酸化膜として使用するには
適していない。そこで、ゲート酸化膜としては安定で構
造が緻密な膜を形成する心安があり、低温でしかも酸化
速度を抑制できろプラズマ直接酸化によって形成する方
法が有効である。同じプラズマ中の酸化でもシリコン基
板を陽極としないプラズマ直接酸化方法であれば酸化速
度が10分の1以下となり上記目的の酸化膜を形成する
ことができろ。さらに、シリコン酸化膜は酸化膜厚の減
少とともに絶縁破壊強度の絶対値が小さくなる。従って
絶縁破壊の原因となるピンホールなどの欠陥の少ない高
密度の薄い酸化膜を形成するためにプラズマ雰囲気中の
低温でシリコン基板を酸化することは有効である。
FIG. 1 shows the oxidation rates in the case of plasma anodic oxidation (curve ■) and the case of direct plasma oxidation (curve I). In the case of plasma anodization, the oxidation temperature is 6011
Although the temperature is low, the oxidation rate is as high as 02 μm/min, and the surface state density (Surface
5tate density) is also lO1'', which is an order of magnitude larger than the value of a normal oxide film. The method of forming the film by direct plasma oxidation is effective because it forms a film that is stable and has a dense structure, and it can be formed at low temperatures and the oxidation rate can be suppressed.Even in the same oxidation in plasma, the silicon substrate is not used as the anode. If the plasma direct oxidation method is used, the oxidation rate will be less than 1/10th, and the desired oxide film can be formed.Furthermore, as the oxide film thickness decreases, the absolute value of the dielectric breakdown strength of the silicon oxide film decreases. Therefore, it is effective to oxidize a silicon substrate at a low temperature in a plasma atmosphere in order to form a thin oxide film with high density and fewer defects such as pinholes that cause dielectric breakdown.

この発明では、従来のプラズマ陽極酸化法とは異なり、
半導体基板をプラズマ雰囲気中で電気的に中性にした(
フローティング)状態で表面を直接酸化することが特徴
である。上記の方法を用いれば酸化する速度を遅くする
ことができ、構造が緻密で欠陥の少ない薄い酸化膜の形
状か実現できる。
In this invention, unlike the conventional plasma anodization method,
The semiconductor substrate is made electrically neutral in a plasma atmosphere (
It is characterized by directly oxidizing the surface in a floating state. By using the above method, the oxidation rate can be slowed down, and a thin oxide film with a dense structure and few defects can be realized.

プラズマ雰囲気を形成するためには高周波あるいはマイ
クロ波などを用いる。石英容器(以下石英反応管という
)内に対向した電極を設けるかもしくは石英反応管外に
管壁に沿って電極を設置する。あるいは高周波コイルを
石英反応管外に設置してプラズマ発生を行う。反応ガス
は石英反応管外から供給することとし、系全体をIF’
〜1(1””torr程度の真空にする装置とを合わせ
て設置する。半導体基板C以下シリコン基板を例にとる
)の加熱は従来と同じ抵抗加熱を行うこともできるが、
プラズマ発生用の高周波コイルを用いて加熱することも
できる。シリコン基板は石英反応管内に設置され加熱さ
れる。石英反応管内はlo−1〜l0−3トルの真空度
にした後、プラズマ発生と同時に02もしくはN20な
どの気体を供給し、シリコン基板上に酸化膜な形成する
装置を提供することがこの発明の目的である。以下この
発明について説明する。
High frequency waves, microwaves, etc. are used to form a plasma atmosphere. Opposing electrodes are provided inside the quartz container (hereinafter referred to as quartz reaction tube), or electrodes are provided outside the quartz reaction tube along the tube wall. Alternatively, a high frequency coil is installed outside the quartz reaction tube to generate plasma. The reaction gas is supplied from outside the quartz reaction tube, and the entire system is IF'
~1 (a device that creates a vacuum of about 1"" torr is also installed.Semiconductor substrate C and below, silicon substrates are taken as an example) can be heated by the same resistance heating as conventional methods, but
Heating can also be performed using a high frequency coil for plasma generation. The silicon substrate is placed in a quartz reaction tube and heated. The present invention provides an apparatus for forming an oxide film on a silicon substrate by supplying a gas such as 02 or N20 at the same time as plasma generation after the inside of a quartz reaction tube is brought to a vacuum level of 1 to 1 to 1 torr. The purpose of This invention will be explained below.

第2図はこの発明の一実施例を示すものである。FIG. 2 shows an embodiment of the present invention.

この図において、1は石英反応管、2は外部ヒータ、3
は金属もしくはSIC等からなる電極、4は外部に設置
した高周波電源であり、電極3間に高周波電源4から供
給される高周波によってプラズマを発生することができ
る。5はプラズマを発生させるのに必要な真空度を得る
ための真空ポンプ系である。6はガス供給口、7はフィ
ルタおよび純化装置である。
In this figure, 1 is a quartz reaction tube, 2 is an external heater, and 3 is a quartz reaction tube.
Reference numeral 4 indicates an electrode made of metal or SIC, and 4 is a high frequency power source installed externally. Plasma can be generated by the high frequency power supplied from the high frequency power source 4 between the electrodes 3. 5 is a vacuum pump system for obtaining the degree of vacuum necessary to generate plasma. 6 is a gas supply port, and 7 is a filter and purification device.

供給するガスは、フィルタおよび純化装置7?:介して
ガス供給口6から供給される。ガスの種類は0、 、 
NO□、CO□等の他、少量の希釈ガスな添加すること
ができる。
Is the gas supplied to the filter and purifier 7? : The gas is supplied from the gas supply port 6 through the gas supply port 6. The type of gas is 0, ,
In addition to NO□, CO□, etc., a small amount of diluting gas can be added.

次に、動作について説明すると、外部ヒータ2により例
えば600 ℃に加熱し、高周波電源4を作動させ、電
極3の間にプラズマを発生させ、このプラズマによりシ
リコン基板の表面を酸化し、所要の厚みになるまで酸化
を行い酸化膜を形成させる。
Next, to explain the operation, the silicon substrate is heated to, for example, 600° C. by the external heater 2, the high frequency power source 4 is activated, and plasma is generated between the electrodes 3. The surface of the silicon substrate is oxidized by this plasma, and the silicon substrate is heated to a desired thickness. Oxidation is performed until it becomes oxidized to form an oxide film.

第3図(a) 、(b)はシリコン基板8の加熱手段と
プラズマ発生手段をそれぞれ示したものである。
FIGS. 3(a) and 3(b) show the heating means for the silicon substrate 8 and the plasma generating means, respectively.

第3図(a)は加熱のための高周波コイル2aがプラズ
マを発生させるためのコイルを兼ねたものであり、第3
図(b)は加熱を行う外部ヒータ2とプラズマ発生用の
電極3を備えた形式を示している。
In FIG. 3(a), the high-frequency coil 2a for heating also serves as a coil for generating plasma;
Figure (b) shows a type equipped with an external heater 2 for heating and an electrode 3 for plasma generation.

シリコン基板8は、電極3間に設置さねている。A silicon substrate 8 is placed between the electrodes 3.

なお、上記第3図(a)または第3図(b)のいずれの
プラズマ発生手段を用いてもよい。
Note that either the plasma generating means shown in FIG. 3(a) or FIG. 3(b) may be used.

以上説明したようにこの発明は、所要ガスが導入される
半導体基板が収容される石英容器内に、高周波fたはマ
イクロ波を用いろプラズマ発生手段によりプラズマを発
生させて、半導体基板上に酸化膜を形成するようにした
ので、低い温度で安定性の高い酸化膜が得ら灼る利点が
ある。
As explained above, the present invention generates plasma by a plasma generating means using high frequency f or microwaves in a quartz container containing a semiconductor substrate into which a required gas is introduced, and oxidizes the semiconductor substrate. Since a film is formed, there is an advantage that a highly stable oxide film can be obtained and burnt at a low temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はプラズマ陽極酸化をした場合とプラズマ直接酸
化した場合の酸化速度を示す図、第2図はこの発明の一
実施例を示す構成図、第3図(a)。 (b)はシリコン基板の加熱手段とプラズマの発生手段
をそれぞれ示した構成図である。 図中、1は石英反応管、2は外部ヒータ、2aは高周波
コイル、3は雷、極、4は高周波電源、5は真空ポンプ
系、6はガス供給口、7はフィルタと純化装fit、8
はシリコン基板である。なお、図中の同一符号は同一ま
たは相当部分を示す。 代理人  葛 野 信 −(外1名) 第1図 酸化時間(分) 第3図 (a) り3 (b)
FIG. 1 is a diagram showing oxidation rates in the case of plasma anodic oxidation and the case of direct plasma oxidation, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIG. 3(a). (b) is a configuration diagram showing a heating means for a silicon substrate and a means for generating plasma, respectively. In the figure, 1 is a quartz reaction tube, 2 is an external heater, 2a is a high-frequency coil, 3 is a lightning pole, 4 is a high-frequency power supply, 5 is a vacuum pump system, 6 is a gas supply port, 7 is a filter and purification equipment fit, 8
is a silicon substrate. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno - (1 other person) Figure 1 Oxidation time (minutes) Figure 3 (a) Ri3 (b)

Claims (1)

【特許請求の範囲】[Claims] 内部に半導体基板が収容され内部圧力が大気圧よりも低
く保たれるとともに所定のガスが導入される石英容器と
、高周波またはマイクロ波を用いて前記石英容器内にプ
ラズマを発生させ前記半導体基板を直接酸化させるプラ
ズマ発生手段とからなることを特徴とするプラズマ酸化
膜形成装置。
A quartz container in which a semiconductor substrate is housed, the internal pressure is kept lower than atmospheric pressure, and a predetermined gas is introduced; and plasma is generated in the quartz container using high frequency or microwave to remove the semiconductor substrate. A plasma oxide film forming apparatus comprising a plasma generating means for direct oxidation.
JP57141453A 1982-08-12 1982-08-12 Plasma oxide film forming device Pending JPS5931032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57141453A JPS5931032A (en) 1982-08-12 1982-08-12 Plasma oxide film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57141453A JPS5931032A (en) 1982-08-12 1982-08-12 Plasma oxide film forming device

Publications (1)

Publication Number Publication Date
JPS5931032A true JPS5931032A (en) 1984-02-18

Family

ID=15292257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57141453A Pending JPS5931032A (en) 1982-08-12 1982-08-12 Plasma oxide film forming device

Country Status (1)

Country Link
JP (1) JPS5931032A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843876A (en) * 1971-10-06 1973-06-25
JPS547274A (en) * 1977-06-20 1979-01-19 Tokyo Daigaku Method of producing semiconductor surface oxide film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843876A (en) * 1971-10-06 1973-06-25
JPS547274A (en) * 1977-06-20 1979-01-19 Tokyo Daigaku Method of producing semiconductor surface oxide film

Similar Documents

Publication Publication Date Title
JP2687966B2 (en) Method for manufacturing semiconductor device
US5330935A (en) Low temperature plasma oxidation process
JP4694108B2 (en) Oxide film forming method, oxide film forming apparatus, and electronic device material
JPH07118855A (en) Method of depositing composite coating film
US4380865A (en) Method of forming dielectrically isolated silicon semiconductor materials utilizing porous silicon formation
JPS6051847B2 (en) How to form an oxide layer
KR920007106A (en) Solid state electronic device and manufacturing method thereof
JPH0964307A (en) Heat treatment method of oxide thin film
JPS5931032A (en) Plasma oxide film forming device
JPH0729898A (en) Manufacture of semiconductor
KR20000006202A (en) A highly resistive recrystallized silicon carbide, an anti-corrosive member, a method for producing the highly resistive recrystallized silicon carbide, and a method for producing the anti-corrosive member
JPH036826A (en) Method for forming oxide film of silicon wafer
JPH04119631A (en) Manufacture of semiconductor device
JPS6012737A (en) Manufature of silicon nitride film
JP3508321B2 (en) Method of forming insulating film
JPS5943549A (en) Method of forming aluminum wiring layer
JPS5984553A (en) Manufacture of semiconductor device
JPS61116843A (en) Manufacture of insulating thin film
JPH0439931A (en) Formation method of oxide film for semiconductor device
JPS5934639A (en) Forming device for silicon nitride film
JP4054123B2 (en) Plasma deposition method
JPH06168895A (en) Method and system for depositing insulation film
JPH0255940B2 (en)
JPH0586479A (en) Film forming method by ecr plasma cvd
JPS6070730A (en) Plasma processor