JPS5930791A - Aqueous explosive composition - Google Patents

Aqueous explosive composition

Info

Publication number
JPS5930791A
JPS5930791A JP14198882A JP14198882A JPS5930791A JP S5930791 A JPS5930791 A JP S5930791A JP 14198882 A JP14198882 A JP 14198882A JP 14198882 A JP14198882 A JP 14198882A JP S5930791 A JPS5930791 A JP S5930791A
Authority
JP
Japan
Prior art keywords
water
cellulose
added
examples
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14198882A
Other languages
Japanese (ja)
Inventor
兼松 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Priority to JP14198882A priority Critical patent/JPS5930791A/en
Publication of JPS5930791A publication Critical patent/JPS5930791A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、無機硝酸塩類を主成分とする含水爆薬組成
物に関し、詳しくは該組成物にマイクロフィブリル化セ
ルロース(以下MFOと略称する)を含有させることに
より組成物内の気泡安定性を著しく向上させかつ無機硝
酸塩類の結晶化温度を大幅に低下させることによって爆
発性を向上させた含水爆薬組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrous explosive composition containing inorganic nitrates as a main component. The present invention relates to a water-containing explosive composition which has improved explosive properties by significantly improving the bubble stability and significantly lowering the crystallization temperature of inorganic nitrates.

従来、無機硝酸塩類を主成分とする含水爆薬には気泡が
導入され、この気泡が金属アルミニウム粉末などのごと
き鋭感剤と共に含水爆薬の起爆感度の向上に重要な役割
を果していることが知られている。 この気泡を導入す
る方法としては、機械装置による導入、多孔質物質また
は中空物質を添加することによる気泡導入、発泡剤によ
る気泡導入などの方法があるが、ゲル化させた組成物の
気泡は十分に安定であるとはいえず、徐々に気泡が減少
または局在化し、完全爆発性が低下する原因となってい
る。 また含水爆薬は、水分がlO〜80チと少ないた
め硝酸アンモニウムなどの無機酸環が室温下では過飽形
状態にあシ、巨大結晶化現象が起こ一υ−不均一化して
爆発性低下の大きな原因となっている。 この問題点の
改善のために通常、硝酸カルシウムや硝酸ナトリウムな
どが添加されているが、これらは爆発時にカルシウム分
やナトリウム分がガス化に寄与しないという欠点を有し
ている。
Conventionally, air bubbles have been introduced into hydrous explosives mainly composed of inorganic nitrates, and it is known that these air bubbles, together with sensitizers such as metal aluminum powder, play an important role in improving the detonation sensitivity of hydrous explosives. ing. There are several methods for introducing air bubbles, such as introducing air bubbles using a mechanical device, introducing air bubbles by adding a porous or hollow substance, and introducing air bubbles using a blowing agent. It cannot be said that it is stable, and the bubbles gradually decrease or become localized, causing a decrease in complete explosiveness. In addition, since the water content of hydrous explosives is as low as 10 to 80%, the inorganic acid rings such as ammonium nitrate are in a supersaturated state at room temperature, resulting in huge crystallization and becoming heterogeneous, resulting in a significant drop in explosive properties. It is the cause. Calcium nitrate, sodium nitrate, etc. are usually added to improve this problem, but these have the disadvantage that the calcium and sodium components do not contribute to gasification in the event of an explosion.

このような問題点を解決するために、この発明はなされ
たものであって、無機硝酸塩類を主成分とし、水、可燃
物、および粘結剤成分、所望によシ鋭感剤、ゲル化剤等
を含有する含水爆薬組成物において、マイクロフィブリ
ル化セルロースが添加されてなることを特徴とする含水
爆薬組成物を提供するものである。
In order to solve such problems, this invention was made, and contains inorganic nitrates as the main component, water, combustible material, binder component, optionally a sensitizer, and a gelling agent. The present invention provides a hydrous explosive composition characterized in that it contains microfibrillated cellulose.

この発明に使用するMFOは、バルブを特開昭56−1
00801号明細書に示された方法で叩解することによ
シ得られるものであり、同明細書には「微小繊維状セル
ロース」として定義され、バルブが水に均一に分散され
是形態のものを意味する。 すなわち、バルブを水中に
懸濁させ、特殊なホモジナイザーを数回繰返し通過させ
ると、高圧下に剪断力が作用しバルブ繊維が叩解されて
マイクロフィブリル化(元の繊維構造が失なわれて、ラ
メラシートまたはマイクロフィブリルで構成される)し
て表面積が増大する。 この表面積の増加はホモジナイ
ザーの通過回数に依存し、初期の原料バルブの1〜2ゴ
/2の比表面積が2゜ゴ/1余シに及ぶ。 表面積の増
加によ、Q 、MFCは水又は有機溶媒を保持し易くな
シ、懸濁安定性が飛躍的に向上し、セルロース濃度で0
.5%の水分散体は24時間放置してもセルロースが沈
降分離しない状況に至る。
The MFO used in this invention has a valve manufactured by Japanese Patent Application Laid-Open No. 56-1
It is obtained by beating according to the method shown in the specification of No. 00801, and is defined in the same specification as "microfibrous cellulose", and is a cellulose in which the bulbs are uniformly dispersed in water. means. In other words, when the bulb is suspended in water and passed through a special homogenizer several times, a shearing force is applied under high pressure and the bulb fibers are beaten and become microfibrillated (the original fiber structure is lost, forming lamellae). composed of sheets or microfibrils) to increase surface area. This increase in surface area depends on the number of passes through the homogenizer, ranging from the initial specific surface area of 1-2°/2 of the raw material valve to more than 2°/1. Due to the increase in surface area, Q, MFC does not easily retain water or organic solvent, and the suspension stability is dramatically improved, and the cellulose concentration is 0.
.. A 5% aqueous dispersion leads to a situation where cellulose does not settle and separate even if left for 24 hours.

この発明の含水爆薬組成物は、上記のよりなMyaを含
有することを特徴とするものでアシ、前記の諸方法によ
シ組成物中に導入した気泡が著しく安定化し、また硝酸
塩特に硝酸アンモニウムの結晶化温度が大幅に低下する
という優れた性質を有する。
The hydrous explosive composition of the present invention is characterized in that it contains the above-mentioned more Mya, and the bubbles introduced into the composition by the above-mentioned methods are significantly stabilized. It has the excellent property of significantly lowering the crystallization temperature.

この発明の組成物に用いられるNFCが含有しうるセル
ロースは最高で約6重量%である。 従ってこの発明の
組成物に含有される全水分に対するMFC中のセルロー
ス社は最高で約6重量%であシ、この場合は水を追加す
る必要はない。 MFCは少量添加しても気泡を安定化
する作用を有するので、組成物中の水に対し乾燥セルロ
ース換算で0.05重量%以上添加するのが適切でおる
が、特に0.4重量−以上含有させると安定効果が大き
い。 −1fcMFoを添加子ると、硝酸塩とじて硝酸
アンモニウムを用いた場合にその結晶化温度を低下させ
るが、組成物中の水に対し乾燥セルロース換算で0.0
5〜2.0重量%の範囲で効果が大きい傾向がある。 
そしてM1+’Cの添加量は他の成分を考慮して適宜選
択される。
The NFC used in the compositions of this invention may contain up to about 6% by weight of cellulose. Therefore, the cellulose content in the MFC can be up to about 6% by weight based on the total water content of the composition of the invention, in which case no additional water is needed. Since MFC has the effect of stabilizing bubbles even when added in small amounts, it is appropriate to add 0.05% by weight or more based on dry cellulose based on the water in the composition, especially 0.4% by weight or more. Containing it has a great stabilizing effect. -1 fcMFo as an additive lowers the crystallization temperature when ammonium nitrate is used instead of nitrate, but 0.0
The effect tends to be large in the range of 5 to 2.0% by weight.
The amount of M1+'C added is appropriately selected in consideration of other components.

この発明に用いられるM1+’Oが含水爆薬中の気泡を
著しく安定化し、かつ硝酸アンモニウムの結晶化を大き
く抑制する理由は次の如く考えられる。
The reason why M1+'O used in this invention significantly stabilizes the bubbles in the hydrous explosive and greatly suppresses the crystallization of ammonium nitrate is considered as follows.

即ち、MFCは著しく均一に水中分散したセル口・−ス
ミクロフィブリルで1、前述のように微細なフィブリル
構造と大きな表面積及び保形性を有しているため、系内
の気泡及び硝酸アンモニウムを均一に分散し、かつ三次
元構造的に保持・安定化し得るものと考えられる。
In other words, MFC consists of cell openings and microfibrils that are extremely uniformly dispersed in water (1).As mentioned above, it has a fine fibrillar structure, a large surface area, and shape retention, so it can evenly disperse air bubbles and ammonium nitrate in the system. It is thought that it can be dispersed and maintained and stabilized in a three-dimensional structure.

含水爆薬にMFOを添加する場合、MFOOI)I(は
中性であるため、系のpHを左右せず、金属アルミニウ
ム粉末などの安定性を阻害しないこと、また、グアガム
のゲル化に対しても悪影響を及ばさず、クロム系やアン
チモン系のゲル化剤で容易にゲル化すること、更に、化
学組成上はitとんど純粋のセルロースであるため、爆
発時にはMPOの全重量が完全にガス化し、爆破力の増
大に寄与できることなどの利点も有する。
When adding MFO to a hydrous explosive, MFOOI (I) is neutral, so it does not affect the pH of the system, does not inhibit the stability of metal aluminum powder, etc., and is also effective against gelation of guar gum. It has no adverse effects and can be easily gelled with chromium-based or antimony-based gelling agents.Furthermore, in terms of chemical composition, it is almost pure cellulose, so in the event of an explosion, the entire weight of MPO is completely converted into gas. It also has the advantage of contributing to an increase in explosive force.

iたこの発明の組成物が含有する無機硝酸塩としては、
硝酸アンモニウム、硝酸カルシウム、硝酸ナトリウムな
どが挙げられる。 これらは酸化剤として作用するもの
でラシ、硝酸アンモニウムが好ましいものであるが硝酸
カルシウムおよび/または硝酸ナトリウムを併用しても
よい。 また無機硝酸塩の含有量は65〜75重i%が
適切なものである。 また水の全含有量は5〜20重量
%が適切である。 また可燃物としては澱粉、木粉、油
などが挙げられ、5〜8重量%が適切でおる。 また粘
結剤としてはグアガム、カルボキシメチルセルロース、
ヒドロキシエチルセルロースなどが挙げられ、0.5〜
1重量%含有される。
The inorganic nitrates contained in the composition of this invention include:
Examples include ammonium nitrate, calcium nitrate, and sodium nitrate. These act as oxidizing agents, and ammonium nitrate is preferred, but calcium nitrate and/or sodium nitrate may also be used in combination. The appropriate content of inorganic nitrate is 65 to 75% by weight. Further, the total water content is suitably 5 to 20% by weight. Examples of combustible materials include starch, wood flour, oil, etc., and 5 to 8% by weight is suitable. In addition, guar gum, carboxymethyl cellulose,
Examples include hydroxyethyl cellulose, and 0.5 to
Contains 1% by weight.

所望によシ添加される鋭感剤としては、トリニトロトル
エン、トリメチレントリニトラミンなどの高性能爆薬t
+はアルミニウム、−マグネシウム−アルミニウム合金
、珪素鉄などの金属粉末が挙げられる。 またスラリー
状の含水爆薬を作製するために、所望によシ添加される
、上記粘結剤のゲル化剤としては、重クロム酸ナトリウ
ム、ピロアンチモン酸ナトリウムなどが挙げられる。
As the sensitizing agent that may be added as desired, high explosives such as trinitrotoluene and trimethylenetrinitramine can be used.
Examples of + include metal powders such as aluminum, -magnesium-aluminum alloy, and silicon iron. Further, in order to prepare a slurry-like hydrous explosive, examples of the gelling agent of the above-mentioned binder, which is optionally added, include sodium dichromate, sodium pyroantimonate, and the like.

この発明の組成物は、全成分を一挙に混合しこれを通常
の攪拌機、例えば翼の形状がプロペラ形または櫂形の攪
拌機などを用いて攪拌することによって製造することが
できる。 また所定量の固体の組成物を予め混合してお
いて、これに所定量のセルロースが含有されるようにM
FOに水を添加して撹拌して均一化したものか添加しな
いままのものを、前記固体成分の混合物中に少しづつ攪
拌しながら投入して製造することもできる。 また、固
体成分の混合物にMFOを攪拌しながら混合した後、次
いで所要量の水を追加してもよく、固体成分混合物に先
に水を添加混合しfcセ禽後にMFCを混合してもよい
The composition of the present invention can be produced by mixing all the components at once and stirring the mixture using a conventional stirrer, for example, a stirrer with propeller-shaped or paddle-shaped blades. Alternatively, a predetermined amount of solid composition is mixed in advance, and M
It can also be produced by adding water to the FO and stirring to homogenize it, or adding it without adding water little by little into the mixture of the solid components while stirring. Alternatively, after mixing MFO into the solid component mixture with stirring, the required amount of water may be added, or water may be added to the solid component mixture first and MFC may be mixed after fc separation. .

次にこの発明を実施例で説明する。Next, this invention will be explained with examples.

実施例1〜4.比較例1 ビーカーに水2(1’、硝酸アンモニウム801゜硝酸
カルシウム10?、硝酸ナトリウム61?およびグアガ
ム(グロビレンオキシド付加、低粘度品)0.5Fを入
れ、マグネティックスタラ−で攪拌した。 その後この
液に、実施例1ではMFO(水97.6重量%、セルロ
ース分2.4重量%のもの)1yと水92を添加し、実
施例2では上記MFC22と水82、実施例8では上記
MFC!5Pと水5?、実施例4ではMF f:! 1
0 P、比較例1では水10りを各々加えて攪拌した。
Examples 1-4. Comparative Example 1 Water 2 (1', ammonium nitrate 801°, calcium nitrate 10°, sodium nitrate 61°) and guar gum (globylene oxide added, low viscosity product) 0.5F were placed in a beaker and stirred with a magnetic stirrer. In Example 1, MFO (water 97.6% by weight, cellulose content 2.4%) 1y and water 92 were added to the liquid, in Example 2 the above MFC22 and water 82, and in Example 8 the above MFC !5P and water 5?, MF f:!1 in Example 4
In Comparative Example 1, 10 liters of water was added and stirred.

 次いで各々をラボミキサー(約7000 rpm )
で10分間撹拌処理し、機械的に気泡を発生させた後、
xoog7のメスシリンダに移して静置し、気泡の状況
を比較観察し′fc(気泡の安定性を短期間で評価する
ためゲル化剤を添加しなかつfc)。
Then each was placed in a lab mixer (approximately 7000 rpm).
After stirring for 10 minutes and mechanically generating air bubbles,
The mixture was transferred to a measuring cylinder of xoog7 and allowed to stand, and the state of bubbles was comparatively observed.'fc (fc without adding gelling agent to evaluate the stability of bubbles in a short period of time).

結果を表1に示したが、MFOを含まない系(比較例1
)では、攪拌停止後わずか1時間でほとんどの気泡が浮
上分離してしまうのに対し、MFCを添加した系(実施
例1〜4)では、MFO添加量の増加と共に気泡が著し
く安定化され、特にMFC中のセルロース/全水分(重
量%)が0.4%以上では2週間以上も気泡が良好に分
散した状態であった。
The results are shown in Table 1, and the system containing no MFO (Comparative Example 1)
), most of the bubbles floated and separated just one hour after the stirring was stopped, whereas in the systems in which MFC was added (Examples 1 to 4), the bubbles were significantly stabilized as the amount of MFO added increased. In particular, when the cellulose/total water content (wt%) in the MFC was 0.4% or more, the bubbles remained well dispersed for more than two weeks.

(以下余白 次頁に続く) 実施例5〜8.比較例2 実施例1〜4および比較例1と同一条件で各試料を調合
したのち、ラボミキサー処理を行わずに微小中空ガラス
球(住友スリーエム製「グラス・バプルスB15タイプ
」粒径80μ前後、カサ比重0.1W/Q:)を気泡の
代替とみなして各試料に0.225’づつ添加し、マグ
ネチツクスタラーで攪拌した後100iどのメスシリン
ダーに移し、ガラス球の浮上分離状況を比較観察した。
(Below margin continues on next page) Examples 5 to 8. Comparative Example 2 After preparing each sample under the same conditions as Examples 1 to 4 and Comparative Example 1, micro hollow glass spheres ("Glass Bubbles B15 type" manufactured by Sumitomo 3M, particle size of about 80 μm, Add 0.225' of bulk specific gravity 0.1W/Q:) to each sample as a substitute for air bubbles, stir with a magnetic stirrer, then transfer to a 100i measuring cylinder and compare the flotation and separation status of glass spheres. Observed.

結果を表2に記したが、表1と同傾向を示しており、M
FC添加による著しい安定化効果を示していた。
The results are shown in Table 2, which shows the same tendency as Table 1, and M
The addition of FC showed a significant stabilizing effect.

実施例9〜17.比較例8〜? 硝酸アンモニウムの結晶化遅延効果を比較するため、次
の実験を行なった。 表8の各組成物の成分をビーカー
に入れ混合@攪拌しなから湯浴中で60℃に加熱し、完
全溶解しfc(MFOは不溶)。 得られた液を室温(
20℃)下で自然冷却しながら結晶化温度を測定した(
使用し7’CMFCはセルロース2.4重量%、水97
.6重量%のものである)。 いずれも針状結晶が板状
に配列しに形で系全体に数秒〜数十秒の時間で成長して
いくのが観察された。 その結晶化時の温度を表8の下
段に示した。 その結果、硝酸アンモニウム−水素の比
較例8の場合88.4℃で結晶化したのに比べ、実施例
9〜14のようにMFCを添加した場合には硝酸アンモ
ニウムの結晶化温度が大幅に低下し最高で6.6℃低下
した。 通常使用されている硝酸カルシウムでは比較例
4〜5の如く、1〜5℃の低下効果があるが、実施例1
0と比較例4から、明らかにMFOの方がごく少量で大
きな効果を示していた。 また実施例15〜17及び比
較例7のように硝酸カルシウムや硝酸ナトリウムの存在
下においてもMFOの添加効果が明確にあシ、最高で3
,2℃更に低下できた。 この場合もMFCの量的影響
は実施例9〜14と同傾向にあった。
Examples 9-17. Comparative example 8~? The following experiment was conducted to compare the effect of ammonium nitrate on crystallization retardation. The components of each composition in Table 8 were mixed in a beaker and heated to 60° C. in a hot water bath without stirring to completely dissolve fc (MFO is insoluble). The obtained liquid was kept at room temperature (
The crystallization temperature was measured while cooling naturally at 20°C (20°C).
The 7'CMFC used was 2.4% by weight of cellulose and 97% by weight of water.
.. 6% by weight). In both cases, needle-like crystals were observed to grow in a plate-like arrangement over the entire system over a period of several seconds to several tens of seconds. The temperature at the time of crystallization is shown in the lower part of Table 8. As a result, compared to Comparative Example 8 of ammonium nitrate-hydrogen, which crystallized at 88.4°C, when MFC was added as in Examples 9 to 14, the crystallization temperature of ammonium nitrate decreased significantly and reached the maximum temperature. The temperature decreased by 6.6℃. Calcium nitrate, which is commonly used, has a reduction effect of 1 to 5°C as shown in Comparative Examples 4 and 5, but Example 1
From Comparative Example 4 and Comparative Example 4, MFO clearly showed a greater effect with a very small amount. In addition, as in Examples 15 to 17 and Comparative Example 7, the effect of MFO addition was clearly observed even in the presence of calcium nitrate and sodium nitrate, and at most 3
, it was possible to further reduce the temperature by 2°C. In this case as well, the quantitative influence of MFC had the same tendency as in Examples 9-14.

Claims (1)

【特許請求の範囲】[Claims] 1、無機硝酸塩類を主成分とし、水、可燃物、および粘
結剤成分、所望により鋭感剤、ゲル化剤等を含有する含
水爆薬組成物において、マイクロフィブリル化セルロー
スが添加されてなることを特徴とする含水爆薬組成物。
1. Microfibrillated cellulose is added to a hydrous explosive composition containing inorganic nitrates as a main component, water, combustibles, a binder component, and optionally a sensitizing agent, a gelling agent, etc. A hydrous explosive composition characterized by:
JP14198882A 1982-08-16 1982-08-16 Aqueous explosive composition Pending JPS5930791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14198882A JPS5930791A (en) 1982-08-16 1982-08-16 Aqueous explosive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14198882A JPS5930791A (en) 1982-08-16 1982-08-16 Aqueous explosive composition

Publications (1)

Publication Number Publication Date
JPS5930791A true JPS5930791A (en) 1984-02-18

Family

ID=15304780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14198882A Pending JPS5930791A (en) 1982-08-16 1982-08-16 Aqueous explosive composition

Country Status (1)

Country Link
JP (1) JPS5930791A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652875A (en) * 1979-10-02 1981-05-12 Toray Ind Inc Fiber reinforced-material for plate of lead acid battery
JPS56100801A (en) * 1979-12-26 1981-08-13 Itt Microfibrous cellulose and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652875A (en) * 1979-10-02 1981-05-12 Toray Ind Inc Fiber reinforced-material for plate of lead acid battery
JPS56100801A (en) * 1979-12-26 1981-08-13 Itt Microfibrous cellulose and its manufacture

Similar Documents

Publication Publication Date Title
US4110134A (en) Water-in-oil emulsion explosive composition
US4394198A (en) Water-in-oil emulsion explosive composition
US4104092A (en) Emulsion sensitized gelled explosive composition
US4326900A (en) Water-in-oil emulsion explosive composition
US4383873A (en) Sensitive low water emulsion explosive compositions
US4384903A (en) Slurry explosive composition
US4097316A (en) Method for gelling nitroparaffins in explosive compositions
US4543136A (en) Water-in-oil emulsion explosive composition
CA1160052A (en) Low water emulsion explosive compositions optionally containing inert salts
JPS5992991A (en) Emulsion explosive composition and manufacture
US4008110A (en) Water gel explosives
JPS61205690A (en) Stable nitrate/slurry explosive
GB2086363A (en) Emulsion explosives containing a reduced amount of water
US4398976A (en) Water-in-oil emulsion explosive composition
US3617406A (en) Hydrocarbon oil-containing gelled aqueous inorganic oxidizer salt explosives having improved stability to syneresis
US4997494A (en) Chemically gassed emulsion explosive
US3453158A (en) Fueled inorganic oxidizer salt aqueous explosive composition containing independently dispersed gas bubbles and method of making same
US4338146A (en) Method of manufacturing emulsion explosive insensitive to a #8 detonator
JPS5930791A (en) Aqueous explosive composition
CN1228283C (en) Improved ammonium nitrate leavening agent
US6027588A (en) Method of manufacture of emulsion explosives
EP0372739A2 (en) Nitroalkane - based emulsion explosive composition
CA2163682A1 (en) Microemulsion and oil soluble gassing system
US3524777A (en) Slurry explosive containing an improved thickening agent
JPS5814397B2 (en) Water-in-oil emulsion hydrous explosive composition