JPS5930661B2 - Method of manufacturing fiber for optical communication - Google Patents

Method of manufacturing fiber for optical communication

Info

Publication number
JPS5930661B2
JPS5930661B2 JP52099710A JP9971077A JPS5930661B2 JP S5930661 B2 JPS5930661 B2 JP S5930661B2 JP 52099710 A JP52099710 A JP 52099710A JP 9971077 A JP9971077 A JP 9971077A JP S5930661 B2 JPS5930661 B2 JP S5930661B2
Authority
JP
Japan
Prior art keywords
fiber
loss
coloration
heat treatment
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52099710A
Other languages
Japanese (ja)
Other versions
JPS5433738A (en
Inventor
良三 山内
浩一 稲田
俊明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Cable Works Ltd
Original Assignee
Fujikura Cable Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Cable Works Ltd filed Critical Fujikura Cable Works Ltd
Priority to JP52099710A priority Critical patent/JPS5930661B2/en
Publication of JPS5433738A publication Critical patent/JPS5433738A/en
Publication of JPS5930661B2 publication Critical patent/JPS5930661B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】 この発明は、コアにPを含む光ファイバの製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an optical fiber containing P in its core.

発明の背景 光通信用ファイバのコアには、現在、GeおよびPをド
ープした石英が多く使われている。
Background of the Invention Quartz doped with Ge and P is currently often used in the core of optical communication fibers.

これらのうち、材料固有の損失(不純物や構造不完全に
もとづく伝送損失を引いた後の損失)は、Pドープの方
が、Geドープよりも小さい。ところが、Pドープの石
英ガラスをコアとするファイバには、カラレーシヨンの
問題がある。それは、紡糸直後のファイバに、ほとんど
例外なく、紫外〜可視光線〜近赤外の範囲に大きな吸収
損失が発生するという問題である。なお、この問題は、
Geドープの場合、ほとんど発生しない。
Among these, material-specific loss (loss after subtracting transmission loss due to impurities and structural imperfections) is smaller in P-doped than in Ge-doped. However, fibers having a P-doped silica glass core have a coloration problem. The problem is that, almost without exception, large absorption losses occur in the fiber immediately after spinning in the ultraviolet to visible light to near-infrared range. In addition, this problem is
In the case of Ge doping, almost no occurrence occurs.

このカラレーシヨン現象は、コア中のOH含有量に大き
く影響される。
This coloration phenomenon is greatly influenced by the OH content in the core.

OHにより波長0.95μmなどで吸収損失が生ずるの
は知られているが、その吸収損失を小さくするためにO
Hを少なくすると、カラレーシヨンが大になる。たとえ
ばPドープト石英ガラスをコアとするファイバに、OH
を20pμm入れたものは、紡糸直後、波長0.53μ
mを中心として、ピーク値約40dB/kmの損失(カ
ラレーシヨン)があるが、これを室温で2箇月間放置す
ると、ほとんど観測されなくなる(ただし0.95μm
などでの損失値は不変)。
It is known that OH causes absorption loss at wavelengths such as 0.95 μm, but in order to reduce this absorption loss, OH
Decreasing H increases coloration. For example, OH
The one containing 20pμm of
There is a loss (coloration) with a peak value of about 40 dB/km centered at
etc., the loss value remains unchanged).

これに対して、同じPドープトフアイバでも、低OHの
ものは、紡糸直後の波長0.53μmの損失が、上記の
倍の80dB/kmくらいもあり、室温に2箇月間放置
した後も、あまシ減少しない。発明の目的 上記のカラレーシヨンが、紡糸後のファイバを熱処理す
ることによつて、容易に低減できることが分つた。
On the other hand, the same P-doped fiber with low OH has a loss of 80 dB/km at a wavelength of 0.53 μm immediately after spinning, and even after being left at room temperature for two months. The sweetness does not decrease. OBJECTS OF THE INVENTION It has been found that the coloration described above can be easily reduced by heat-treating the fiber after spinning.

この発明は、この自然現象に対する新しい認識にもとづ
き、低OHであつて、しかも可視域でも低損失の、Pド
ープトフアイバの製造方法を提供することを目的とする
ものである。
The present invention is based on a new understanding of this natural phenomenon, and an object of the present invention is to provide a method for manufacturing a P-doped fiber that has low OH and low loss even in the visible range.

発明の構成 Pを含むコアを持つ光ファイバの製造において、ファイ
バを紡糸し、かつプライマリコートを施した後、それを
80〜100℃の雰囲気中に、10〜100時間置くこ
とを特徴とする。
In the production of an optical fiber having a core including configuration P of the invention, after the fiber is spun and a primary coat is applied, it is characterized in that it is placed in an atmosphere at 80 to 100° C. for 10 to 100 hours.

その詳しい説明 コアにPを含むフアイバは、紡糸工程でガラスに加えら
れる高熱により、ガラス構造に欠陥を生じやすい。
Detailed Description Fibers containing P in their cores are susceptible to defects in the glass structure due to the high heat applied to the glass during the spinning process.

これは他の添加物よりも激しい。カラレーシヨンは、こ
の構造欠陥によるものと考えられるが、上記のように紡
糸後、適切な熱処理を程こすと、欠陥が不活性化して、
カラレーシヨンがほとんどなくなるものと思われる。今
までもPドープトフアイバのケーブル化工程中に、カラ
レーシヨンが低減することが知られていた。
This is more intense than other additives. Coloration is thought to be due to this structural defect, but if an appropriate heat treatment is applied after spinning as described above, the defect will be inactivated.
It is thought that coloration will almost disappear. Until now, it has been known that coloration is reduced during the process of converting P-doped fibers into cables.

これは、プライマリーコーテイング、プラスチツク被覆
の押出し訃よびシースの各工程で受ける熱によると考え
られるが、これらだけでは不十分である。そこで、フア
イバを紡糸し、プライマリーコートを施して、いつたん
ドラムに巻きとつたものを、熱処理するものである。
This is believed to be due to the heat received during the primary coating, extrusion of the plastic coating, and sheathing steps, but these alone are not sufficient. Therefore, the fibers are spun, applied with a primary coat, wound onto a drum, and then heat treated.

熱処理の加熱は、プライマリコートがいたまないように
、80〜200℃で、10〜100時間ていどとする。
The heat treatment is performed at 80 to 200° C. for 10 to 100 hours so as not to damage the primary coat.

またこのていどで、十分カラレーシヨンをなくすことが
できる。実施例 第1図のフアイバ14はMCVD法で作つた。
Also, this technique can sufficiently eliminate coloration. EXAMPLE The fiber 14 shown in FIG. 1 was made by the MCVD method.

・コア140はSlO2+P2O5(5m01%)、・
クラツド142はSiO2+B2O3、・ジヤケツト1
44はSiO2、 ・各屈折率は、第1図の下に示すとおり1・伝送損失は
3dB/Km(AtO.85μm)、・コア中の0H量
は約1%、である。
・Core 140 is SlO2 + P2O5 (5m01%),・
Cladding 142 is SiO2+B2O3, Jacket 1
44 is SiO2, - Each refractive index is 1 as shown at the bottom of Figure 1, - Transmission loss is 3 dB/Km (AtO.85 μm), - The amount of OH in the core is about 1%.

2100℃で紡糸した直後のフアイバの損失波長特性を
第2図の曲線Aに示した。
The loss wavelength characteristic of the fiber immediately after spinning at 2100° C. is shown in curve A in FIG.

損失のピークは、波長0.53μm付近で90dB/K
mに近い。
The peak loss is 90 dB/K near the wavelength of 0.53 μm.
Close to m.

同じフアイバをドラムに巻いた状態で、100℃のオー
ブン中に48時間置いたところ、特性は曲線Bのように
なb1カラレーシヨンはほとんどなくなつた。
When the same fiber was wound around a drum and placed in an oven at 100°C for 48 hours, the characteristics were as shown by curve B, with almost no b1 coloration.

な卦、曲線Cは散乱損失を示す(λ−4,μm1目盛な
ので直線になる)。
Curve C shows the scattering loss (it is a straight line because it has a scale of λ-4 and 1 μm).

また参考に、低0H(17)Geドープト石英ガラスを
コアに持つフアイバの紡糸直後の特性を、曲線Dに示し
た。
For reference, curve D shows the characteristics of a fiber having a core of low 0H (17) Ge doped silica glass immediately after spinning.

次にオーブンの中に卦ける熱処理温度を変えた場合を第
3図に示した。
Next, FIG. 3 shows the case where the heat treatment temperature in the oven was changed.

横軸が時間、縦軸がカラレーシヨンによる散乱損失(吸
収帯中心波長0.53μm)である。
The horizontal axis is time, and the vertical axis is scattering loss due to coloration (absorption band center wavelength 0.53 μm).

・曲線Eは熱処理しをしないで、約20℃の室温に放置
した場合、・曲線Fは熱処理温度が70℃の場合、 ・曲線Gは熱処理温度が80℃の場合、 ・曲線Hは熱処理温度が100℃の場合、・曲線Jは熱
処理温度が200℃の場合、を示す。
・Curve E is when left at room temperature of about 20℃ without heat treatment. ・Curve F is when heat treatment temperature is 70℃. ・Curve G is when heat treatment temperature is 80℃. ・Curve H is when heat treatment temperature is used. When is 100°C, Curve J shows when the heat treatment temperature is 200°C.

80〜100℃の温度による10〜100時間ていどの
熱処理で、カラレーシヨンをなくせることがよく分る。
It is clear that coloration can be eliminated by any heat treatment at a temperature of 80 to 100° C. for 10 to 100 hours.

発明の効果 この発明は、コアにPを含みかつ低0Hのフアイバに起
るカラレーシヨン現象が、紡糸後の熱処理によつて、容
易に低減することができる、という自然現象に対する新
しい認識にもとづいて、行なわれたものである。
Effects of the Invention This invention is based on a new recognition of the natural phenomenon that the coloration phenomenon that occurs in fibers containing P in the core and having a low 0H can be easily reduced by heat treatment after spinning. It was done.

この発明により、低0Hであつて、カラレーシヨンのほ
とんどない、コアにPを含むフアイバを製造できるよう
になる。
This invention makes it possible to produce a fiber containing P in its core, which has low 0H and almost no coloration.

また初めに述べたように、Pを含むフアイバはGeを含
むものよりも、元来、低損失である。
Also, as mentioned at the outset, fibers containing P inherently have lower losses than those containing Ge.

したがつて、特に、可視領域およびその付近に卦いて非
常に低損失のフアイバが得られる。また、熱処理は、8
0〜200℃で、10〜100時間行なうのであるから
、プライマリコートをだめにする心配がない。
A fiber with very low loss is thus obtained, especially in and near the visible region. In addition, heat treatment is 8
Since the coating is carried out at 0 to 200°C for 10 to 100 hours, there is no need to worry about damaging the primary coat.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実験に使つたフイバの断面と屈折率の説明図、
第2図はフアイバの波長一損失の特性線図、第3図は実
施例に訃ける加熱時間一損失の特性図。 14:フアイバ。
Figure 1 is an explanatory diagram of the cross section and refractive index of the fiber used in the experiment.
FIG. 2 is a characteristic diagram of fiber wavelength vs. loss, and FIG. 3 is a characteristic diagram of heating time vs. loss in an example. 14: Faiba.

Claims (1)

【特許請求の範囲】[Claims] 1 Pを含むコアを持つ光ファイバの製造において、フ
ァイバを紡糸し、かつプライマリコートを施した後、そ
れを80〜100℃の雰囲気中に、10〜100時間置
くことを特徴とする、光通信用ファイバの製造方法。
1 In the production of an optical fiber having a core containing P, after the fiber is spun and a primary coat is applied, the fiber is left in an atmosphere at 80 to 100°C for 10 to 100 hours. method for manufacturing fibers for use in
JP52099710A 1977-08-19 1977-08-19 Method of manufacturing fiber for optical communication Expired JPS5930661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52099710A JPS5930661B2 (en) 1977-08-19 1977-08-19 Method of manufacturing fiber for optical communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52099710A JPS5930661B2 (en) 1977-08-19 1977-08-19 Method of manufacturing fiber for optical communication

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP59064807A Division JPS59195559A (en) 1984-03-30 1984-03-30 Manufacture of fiber for optical communication

Publications (2)

Publication Number Publication Date
JPS5433738A JPS5433738A (en) 1979-03-12
JPS5930661B2 true JPS5930661B2 (en) 1984-07-28

Family

ID=14254618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52099710A Expired JPS5930661B2 (en) 1977-08-19 1977-08-19 Method of manufacturing fiber for optical communication

Country Status (1)

Country Link
JP (1) JPS5930661B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2583480B2 (en) * 1983-12-23 1997-02-19 株式会社日立製作所 Optical switch and optical switch array
JPH0459631A (en) * 1990-06-27 1992-02-26 Sumitomo Electric Ind Ltd Drawing of optical fiber

Also Published As

Publication number Publication date
JPS5433738A (en) 1979-03-12

Similar Documents

Publication Publication Date Title
JP2634725B2 (en) Device comprising silica-based optical fiber and method for producing silica-based optical fiber
JPS6113203A (en) Single mode optical fiber
US5210816A (en) Optical fiber and process of producing same
JPH11513141A (en) Optical waveguide fiber containing titania and germania
CN107678087A (en) A kind of low attenuation large effective area single-mode fiber
CN103323908A (en) Single mode fiber and manufacturing method thereof
CN109298482A (en) A kind of large-effective area single mode fiber of low decaying and low bend loss
KR19980064732A (en) Optical fiber and how to make it
JPS62176941A (en) Optical fiber
JPS61122137A (en) Optical waveguide tube
JPS61191543A (en) Quartz base optical fiber
US4553995A (en) Process for producing image fiber
JPS5930661B2 (en) Method of manufacturing fiber for optical communication
JP5836446B2 (en) Optical fiber
JPS6245184B2 (en)
JPS62283845A (en) Doped quartz-base optical fiber
WO2020098186A1 (en) Optical fiber preform rod and preparation method thereof, and optical fiber and preparation method thereof
JPH0344604A (en) 1.55mum dispersion shift fiber
YOSHIDA et al. Optical fiber drawing and its influence on fiber loss
JP2749686B2 (en) Silica optical fiber
JPS6313946B2 (en)
JPS61132531A (en) Production of optical fiber
JP3315786B2 (en) Optical amplifier type optical fiber
JPS63185839A (en) Wire drawing of optical fiber
JPH02145448A (en) Production of preform of optical fiber