JPS593059A - Manufacture of cordierite ceramic foam - Google Patents

Manufacture of cordierite ceramic foam

Info

Publication number
JPS593059A
JPS593059A JP10946182A JP10946182A JPS593059A JP S593059 A JPS593059 A JP S593059A JP 10946182 A JP10946182 A JP 10946182A JP 10946182 A JP10946182 A JP 10946182A JP S593059 A JPS593059 A JP S593059A
Authority
JP
Japan
Prior art keywords
slurry
cordierite
weight
foam
ceramic foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10946182A
Other languages
Japanese (ja)
Inventor
笠原 光一
杉山 悦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10946182A priority Critical patent/JPS593059A/en
Publication of JPS593059A publication Critical patent/JPS593059A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、自動車排気ガス処理用触媒担体等に用いるコ
ージェライト製セラミックフオームの製造方法に関する
もので、さらに詳しくは耐熱衝撃性に優れ且つ低圧損で
あるコージェライト製セラミックフオームの製法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a cordierite ceramic foam used as a catalyst carrier for automobile exhaust gas treatment, and more specifically, a cordierite ceramic foam that has excellent thermal shock resistance and low pressure loss. This relates to the foam manufacturing method.

コージェライト製セラミックフオームとは、コージェラ
イト系セラミック材料からなり、内部連通空間を有する
三次元網状のセル構造を持つものである。
The cordierite ceramic foam is made of cordierite ceramic material and has a three-dimensional network cell structure with internal communication spaces.

近年、自動車排気ガス処理用触媒担体どして、とりわけ
ディーゼルエンジンパティキュレート(粉塵)補集浄化
用担体に最適であることから、コージェライト製セラミ
ックフォ〜ムは脚光を浴びている。
In recent years, cordierite ceramic foam has been in the spotlight because it is ideal as a catalyst carrier for automobile exhaust gas treatment, especially as a carrier for collecting and purifying diesel engine particulates.

しかし、自動車に装着して使用する場合、以下のような
、重要な特性が要求される。
However, when used in a car, the following important characteristics are required.

第1の特性は耐熱衝撃性に優れていることである。これ
は、たとえば排気ガスによる加熱や触媒反応による発熱
により数十秒で600〜800℃以上に担体内部の温度
が上昇し、外側はまだ100〜300℃という温度差に
耐える性質である。この特性は、コージェライト製セラ
ミックフオームの熱膨張係数を小さくすることによって
達成される。
The first characteristic is excellent thermal shock resistance. This is because the temperature inside the carrier rises to 600 to 800°C or more in a few tens of seconds due to heating by exhaust gas or heat generated by a catalytic reaction, and the outside can withstand a temperature difference of 100 to 300°C. This property is achieved by reducing the coefficient of thermal expansion of the cordierite ceramic foam.

つぎに重要な特性として低圧損(流通上の圧力損失が小
さい)であることがあげられる。
The next important characteristic is low pressure loss (small pressure loss during circulation).

触媒が高圧損(流通上の圧力損失が大きい)であると、
自動車エンジンに過大な負荷がかかり燃費や走行性を悪
化させ、また、特にディーゼルパティキュレートの補集
浄化用として用いる場合、高圧損であるほど、それだけ
パティキュレートを少ししか補集できないため、短時間
で、触媒中のパティキュレートをスロットリング等で燃
焼再生しなければならず致命的な欠点となる。
If the catalyst has high pressure loss (high pressure loss during circulation),
Excessive load is placed on the automobile engine, deteriorating fuel efficiency and running performance.In addition, especially when used for collecting and purifying diesel particulates, the higher the pressure drop, the less particulates can be collected, and the shorter the time. Therefore, the particulates in the catalyst must be burnt and regenerated by throttling, which is a fatal drawback.

ところでコージェライトセラミックフオームはコージェ
ライト粉を水に分散させた泥漿中に連通気孔を有するウ
レタンフオーム等のフオームラバーまたはプラスチック
フオームを浸漬し、ある厚さを持った泥漿被覆とし、乾
燥焼結させることにより前記の有機フオームとほぼ同一
のセル構造を有するコージェライトレラミック多孔体が
製造されるが、有機多孔体へ所定の厚さをもって均一に
泥漿被覆させることが非常に困難であり先に記した圧力
損失を小さくするという特性を失う問題がある。
By the way, cordierite ceramic foam is produced by dipping a foam rubber such as urethane foam or plastic foam having communicating holes in a slurry made by dispersing cordierite powder in water, forming a slurry coating with a certain thickness, and drying and sintering the foam. A cordierite relamic porous body having a cell structure almost the same as that of the organic foam described above is produced by this method, but it is extremely difficult to uniformly coat the organic porous body with slurry to a predetermined thickness, and as described above. There is a problem that the characteristic of reducing pressure loss is lost.

従来この圧力損失を小さくする技術として特開昭54−
67588ではコージェライト泥漿へ浸漬し、泥漿被覆
後メズマリ部をエアーを吹きつけて除去する方法が提案
されているが、これでは内部のメズマリを除去すること
は三次元網状構造による三次元方向へのエアー吹き抜け
のため困難であり圧力損失は小さくはならなかった。
Conventionally, as a technology to reduce this pressure loss, Japanese Patent Application Laid-Open No. 1987-
No. 67588 proposes a method of soaking in cordierite slurry and blowing air to remove the mesh after coating with the slurry. However, in this method, removing the internal mesh is difficult due to the three-dimensional structure of the three-dimensional network structure. This was difficult due to air blow-through, and the pressure loss could not be reduced.

またコージェライト泥漿被覆時にメズマリしにくいよう
にコージェライト泥漿の粘度を同一固形分のまま低下さ
せる方法として泥漿中へ長石、ケイ酸ソーダ、水酸化ナ
トリウム等のアルカリ性物質を添加することが一般に知
られているが、これでは製品にコージェライト以外の成
分が残ることになりコーン1ライト特有の熱膨張係数が
低いという特性を損ってしまう。
In addition, it is generally known that alkaline substances such as feldspar, sodium silicate, and sodium hydroxide are added to the slurry as a method of reducing the viscosity of the cordierite slurry while keeping the same solid content so that it is less likely to sludge when coated with the slurry. However, this leaves components other than cordierite in the product, which impairs the characteristic of Corn 1lite, which has a low coefficient of thermal expansion.

本発明は、製造が簡単且つ高品質であり、さらに耐熱衝
撃性に優れるとともに低圧損である。すなわち熱膨張係
数の小さなコージェライトを材料とづ−るとともに所定
径の連通気孔を確保できるコージェライト製セラミック
フオームの製造方法の提供を目的とする。
The present invention is easy to manufacture, has high quality, has excellent thermal shock resistance, and has low pressure loss. That is, the object of the present invention is to provide a method for manufacturing a cordierite ceramic foam that is made of cordierite, which has a small coefficient of thermal expansion, and that can ensure communication holes of a predetermined diameter.

本発明のコージェライト製セラミックフオームの製造方
法は、三次元網状のセル構造を持つ有機多孔体を所定成
分で構成された′X−1−ジェライト泥漿中へ浸漬し、
コージェライト泥漿を表面に被覆させた後、遠心力を加
えて、余剰なコージェライト泥漿を除去せしめ、しかる
後に乾燥させる浸漬、吹き払い、乾燥の工程を数回繰り
返した後所定温度で焼結さぜることを構成とする。
The method for producing a cordierite ceramic foam of the present invention involves immersing an organic porous body having a three-dimensional network cell structure in 'X-1-gelite slurry composed of predetermined components;
After the cordierite slurry is coated on the surface, centrifugal force is applied to remove excess cordierite slurry, and then the process of dipping, blowing off, and drying is repeated several times and then sintered at a predetermined temperature. The composition consists of

つぎに本発明を図に示す実施例に基づき説明する。Next, the present invention will be explained based on embodiments shown in the drawings.

第1実施例 まず所定成分のコージェライト泥漿を製造する工程(1
)を説明する。
First Example First, a step (1) of producing cordierite slurry with predetermined components
).

工程(1)  (A)水酸化アルミニウムを1.7重量
%、滑石を31重量%、粘土を46重量%とり、混合混
錬し乾燥する。これを原料粉末と称する。
Step (1) (A) Take 1.7% by weight of aluminum hydroxide, 31% by weight of talc, and 46% by weight of clay, mix, knead, and dry. This is called raw material powder.

つぎに(B)この原料粉末を1410℃で5hrs焼成
した後、平均粒径が10μ(ミクロン)となるまで粉砕
した。この粉末の化学組成はシリカ51%、アルミナ3
6%、マグネシャ13%であり、X線回折により、結晶
系はすべてコージェライトぐあった。
Next, (B) this raw material powder was fired at 1410° C. for 5 hours, and then ground until the average particle size became 10 μ (microns). The chemical composition of this powder is 51% silica and 3% alumina.
6% and 13% magnesia, and X-ray diffraction revealed that the crystal system was all cordierite.

この粉末をコージェライト粉末と称する。This powder is called cordierite powder.

つぎに<C>コージェライ1へ粉末を70重量%、原料
粉末を30重量%とり水に分散させ、これにポリビニル
アルコール界面活性剤を加え、それぞれ固形分が59.
0重量%、63.4重量%の2種のコージェライト泥漿
2および5をつくった。粘度は各々8o 〜100cp
s、  200〜230cpsであった。
Next, 70% by weight of the powder and 30% by weight of the raw material powder were taken into <C> Corjelai 1 and dispersed in water, and a polyvinyl alcohol surfactant was added thereto so that the solid content of each was 59%.
Two types of cordierite slurries 2 and 5 were prepared, containing 0% by weight and 63.4% by weight. Viscosity is 8o~100cp each
s, 200-230 cps.

つぎに、上記コージェライ1〜泥漿2および5と連通気
孔を有づる三次元網状のウレタンフオームによりコーン
1ライト製セラミックフオームを製造する工程(2)を
説明する。2 まず第1図(D)に示すような、円柱状で1mmから3
mm本実施例では2mmの連通気孔を有する三次元網状
のウレタンフオーム1を(E)のコージェライト泥漿2
へ浸漬し、全表面へ泥漿2を付着せしめる。連通気孔の
下限を1mmとするのは1mm以下では目づまりを生じ
やすいからである。しがる後に(F)に示す如く遠心吹
き払い機3を使って、毎分約250回転で30秒間遠心
力を加え、これにより余剰の泥漿2を除去した後(G)
の乾燥工程4を行った。さらに同様な(E)、(F)、
(G)の工程を繰り返した後、つぎに(H)の泥漿5へ
の浸漬工程、(I)の遠心吹き払い機3による(F)工
程と同様な吹き払い工程、(J)の乾燥工程6の操作を
2度行った。以上のように固形分63.4%泥漿2で2
回固形分59.0%の泥漿5でさらに2回の計4回浸漬
、吹き払い、乾燥を繰り返した後、(K)の1400℃
x 5hrsの焼成工程6を行って(シ)の高密度0.
3g/CCの製品8を得た。
Next, the step (2) of manufacturing a ceramic foam made of Corn 1 Lite using a three-dimensional network-like urethane foam having communicating holes with the Corjelai 1 to Slime 2 and 5 will be described. 2 First, as shown in Figure 1 (D), use a cylindrical shape with a diameter of 1 mm to 3 mm.
mm In this example, a three-dimensional network-like urethane foam 1 having 2 mm communicating holes is coated with cordierite slurry 2 of (E).
immerse it in water to make the slurry 2 adhere to the entire surface. The lower limit of the communicating hole is set to 1 mm because if it is less than 1 mm, clogging tends to occur. After drying, as shown in (F), centrifugal force is applied for 30 seconds at approximately 250 revolutions per minute using a centrifugal blower 3, thereby removing excess slurry 2 (G).
Drying step 4 was performed. Further similar (E), (F),
After repeating step (G), next step is (H) dipping step in slurry 5, blowing off step similar to step (F) using centrifugal blower 3 in (I), and drying step (J). Operation 6 was performed twice. As shown above, the solid content is 63.4% slurry 2 and 2
After repeating immersion, blowing off, and drying two more times in slurry 5 with a solid content of 59.0%, 140°C of (K)
After performing the firing step 6 for x 5hrs, the high density 0.
Product 8 of 3g/CC was obtained.

上記の如く所定成分で構成されたコージェライト泥漿に
浸漬、吹き払い、乾燥を数回繰り返すことにより三次元
方向の連通口に目づまりが発生するのが防止されるとと
もに均一な厚さの層が形成される。
By repeating immersion, blowing off, and drying several times in the cordierite slurry made of the specified ingredients as described above, clogging in the three-dimensional communication ports is prevented and a layer of uniform thickness is formed. be done.

また第2.3図に示す如く、(F)、および(I)の余
剰の甲−ジェライト泥漿の吹き払いは、ソフトスタート
機能を組み込んだモータ8の回転を減速1181で減速
させ、回転容器9を回転させる形式の遠心吹き払い機3
でカージェライト泥漿付着後の三次元網状多孔体1を回
転容器9に所定数配置して10G〜240G望ましり5
0G〜80Qの遠心力を5〜120秒間望ましくは10
〜60秒間程度加えることによりなされる。下限をIO
Gと覆るのは、これ以下であると余剰なコージェラト泥
漿が十分吹き払えないからであり、上限を240Gとし
たのは、これ以上は無意味であるからであり、また時間
の相合もGの場合と同様である。
Further, as shown in Fig. 2.3, the excess A-gelite slurry in (F) and (I) is blown away by decelerating the rotation of the motor 8 equipped with a soft start function with a deceleration 1181, and Centrifugal blow-off machine 3
A predetermined number of three-dimensional reticulated porous bodies 1 after adhering to cargelite slurry are placed in a rotating container 9, and the desired amount is 5 to 10G to 240G.
Apply centrifugal force of 0G to 80Q for 5 to 120 seconds, preferably 10
This is done by adding for about 60 seconds. IO lower limit
The reason why it is overwritten with G is that if it is less than this, the excess Cogelato slurry cannot be sufficiently blown away, and the reason why the upper limit was set at 240G is because it is meaningless to go beyond this.Also, the combination of time is also Same as in case.

余剰なコージェライト泥漿の吹き払いは三次元網状多孔
体1のように目が直線状に通っていなくて、三次元方向
の連通口を形成しているものには遠心力を用いるのが適
切であり、従来の圧縮空気を吹き付ける方法では吹き払
えない部分が生じる。
For blowing away excess cordierite slurry, it is appropriate to use centrifugal force for materials that do not have straight lines like the three-dimensional network porous material 1 and have three-dimensional communication ports. However, there are some areas that cannot be blown away using conventional methods of blowing compressed air.

第2実施例を説明覆る。The second embodiment will be explained.

コージェライト粉末30重量%、原料粉末70重量%に
Jる以外は第1実施例と同様な方法で固形分61重量%
、55重間%の五種の泥漿をつくった。粘度は200〜
250cps 、 80〜100CpSであった。これ
へ更に第1実施例と同様な方法で泥漿被覆後焼結し嵩密
度0.3(+ /CCの製品を得た。
The solid content was 61% by weight in the same manner as in Example 1 except that the cordierite powder was 30% by weight and the raw material powder was 70% by weight.
, five types of slurry with a weight of 55% by weight were prepared. Viscosity is 200~
It was 250 cps and 80-100 CpS. This was further coated with slurry and sintered in the same manner as in the first example to obtain a product with a bulk density of 0.3 (+/CC).

つぎに上記本発明にかかる第1.2実施例に比較する第
1〜第3比較例を順番に示す。
Next, first to third comparative examples to be compared to the first to third embodiments according to the present invention will be shown in order.

第1比較例 第1実施例と同様な方法で得られた泥漿2.5へ大きさ
が211IIllの連通気孔を持つウレタンフオームを
浸漬後6kg 7cmのコンプレッサーエアーで余剰泥
漿を吹き払い乾燥した。この浸漬、エアー吹き払い、乾
燥の操作を4回繰り返した後、1400℃x 5hrs
で焼成後高密度0.3の製品を得た。
First Comparative Example A urethane foam having communicating holes of 211 IIll in size was immersed in slurry 2.5 obtained in the same manner as in the first example, and then the excess slurry was blown off and dried with 6 kg 7 cm of compressed air. After repeating this immersion, air blowing, and drying operation four times, the temperature was 1400℃ x 5 hours.
After firing, a product with a high density of 0.3 was obtained.

第2比較例 原料粉末を100重量%にする以上は第1実施例と同様
な方法で固形分56重量%、53重量%の2種の泥漿を
つくった。粘度は各々200〜250cps、 80〜
100cpsであった。この泥漿へ第1実施例と同様な
方法で泥漿被覆を56重量%で3回、53重量%で3回
おこなった後1400℃×5hrS′c焼成後、嵩密度
0.3の製品を得た。
Second Comparative Example Two types of slurry with a solid content of 56% by weight and 53% by weight were prepared in the same manner as in the first example except that the raw material powder was made 100% by weight. Viscosity is 200~250cps, 80~
It was 100 cps. This slurry was coated with slurry three times at 56% by weight and three times at 53% by weight in the same manner as in Example 1, and then baked at 1400°C for 5hrS'c to obtain a product with a bulk density of 0.3. .

第3比較例 原料粉末95重量%、長石粉末5重量%とづる以外は実
施例1と同様な方法で固形分67重量%の泥漿をつくっ
た。粘度は200〜250cpsであったこの泥漿へ実
施例1と同様な方法で泥漿被覆を4回くりかえし、13
60℃X 5hrs焼成後嵩密度0.3の製品を得た。
Third Comparative Example A slurry with a solid content of 67% by weight was prepared in the same manner as in Example 1, except that the raw material powder was 95% by weight and the feldspar powder was 5% by weight. This slurry, which had a viscosity of 200 to 250 cps, was coated with the slurry four times in the same manner as in Example 1.
After firing at 60°C for 5 hours, a product with a bulk density of 0.3 was obtained.

以上の第1.2実施例および第1.2.3比較例を担体
サイズ直径93mmx高さ66mmのもので行なった場
合の特性を表1に示す。
Table 1 shows the characteristics when the above-mentioned Example 1.2 and Comparative Example 1.2.3 were carried out using a carrier having a diameter of 93 mm and a height of 66 mm.

表1 上記表1で示されるように、泥漿成分を本発明の第1.
2実施例と同様または同等にして、焼成温度も第1.2
実施例と同じ1400℃(コージェライトの生成に最良
とされる)とし、余剰泥漿の吹き払いはコンプレツザー
エアーで行なった第1比較例、および泥漿の固形分を原
料粉末100重量%とし、その他は本発明第1実施例と
同様とした第2比較例においては、ともに圧力損失が格
段に大きく、また、泥漿の固形分を原料粉末95重量%
、長石粉末5重量%、焼成温度を1350℃とし、その
他は本発明第1実施例と同様とした第3比較例において
は、熱膨張係数が大きく、したがって熱衝撃に弱くなる
Table 1 As shown in Table 1 above, the slurry components in the first sample of the present invention.
The firing temperature was also the same as or equivalent to Example 2.
In the first comparative example, the temperature was the same as in the example, 1400°C (supposed to be the best for producing cordierite), the excess slurry was blown away with compressor air, and the solid content of the slurry was 100% by weight of the raw material powder. In the second comparative example, which was otherwise the same as the first example of the present invention, the pressure loss was significantly large in both cases, and the solid content of the slurry was reduced to 95% by weight of the raw material powder.
In the third comparative example, which contained 5% by weight of feldspar powder, the firing temperature was 1350° C., and was otherwise the same as the first example of the present invention, the coefficient of thermal expansion was large, and therefore it was susceptible to thermal shock.

以」:、述べたごとく本発明のコージェライト製セラミ
ックフオーム製造方法は、三次元網状のセル構造を持つ
有機多孔体を所定成分で構成されたコージェライト泥漿
中へ浸漬し、コージェライト泥漿を表面に被覆させた後
、遠心力を加えて、余剰なコージェライト泥漿を除去せ
しめ、しかる後に乾燥させる浸漬、吹き払い、乾燥の工
程を数回繰り返した後所定温度で焼結させることを構成
とし、三次元網状の有機多孔体の構造を利用して、直接
被覆させて製造するので製造が簡単であり、所定径の均
一な連通気孔および均一な厚さでかつ表面積の大きな綱
状壁が確保されるので低圧損であり構造も強固で高品質
であり、熱膨張係数の小さな]−ジエライ1−が十分に
生成されて、耐熱衝撃性に優れるコージェライト製セラ
ミックフオームが製造できるという効果を有する。
As described above, the method for producing a cordierite ceramic foam of the present invention involves immersing an organic porous body having a three-dimensional network cell structure in a cordierite slurry made of predetermined components, and coating the cordierite slurry on the surface. After the cordierite has been coated with a material, centrifugal force is applied to remove excess cordierite slurry, and the process of soaking, blowing off, and drying is repeated several times, and then sintering is performed at a predetermined temperature. It is easy to manufacture because it is manufactured by direct coating using the structure of a three-dimensional network-like organic porous material, and it ensures continuous pores with a predetermined diameter and a rope-like wall with a uniform thickness and large surface area. Therefore, it has the effect of producing a cordierite ceramic foam with low pressure loss, strong structure, high quality, and small coefficient of thermal expansion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる三次元網状のシェル構造をもつ
コージェライト製セラミックフオーム製造方法の工程図
、第2図は製造工程内で用いる遠心吹き払い機の一例の
断面を表わす図、第3図は遠心吹き払い機の回転容器に
コージェライト泥漿を付着せしめたウレタンフオーム製
の三次元網状多孔体を4個配設した様を表わず図、第4
図は三次元網状のセル構造をなすセラミック多孔体の斜
視図、第5図はその部分拡大図である。 図中 1・・・三次元網状多孔体 2・・・固形分が5
9.0重間%のコージェライト泥漿 3・・・遠心吹き
払いl14・・・乾燥工程 5・・・固形分が63.4
重機%のコージェライト泥漿 6・・・乾燥■稈 7・
・・焼成工程 8・・・セラミック多孔体 第1図 CD)    (E)     (F)   (G)(
)−1)    (1)    (J)  (に)(L
)第2図 第3図 第4図 手続補正自 1、事件の表示 昭和57年特訂願第109461号 2、発明の名称 コージェライト製セラミックフオームtlJ31i方法
3、補正をする者 事(!1との関係   特許出願人 ↑ツ・号 タイトウ 士ハマ 住 所 静岡県小笠郡人東町壬浜7800番地氏 名 
 キVタラー工業株式会社 71p”i’ンA 代表者 武 1)哲 男 (他1名) 4、代 埋 人 〒465電話052−773−244
96、補正の対象 明細書全文。 明細書 1、発明の名称 コージェライト製セラミックフオーム製造方法2、特許
請求の範囲 1)三次元網状のセル構造を持つ有機多孔体を所定成分
で構成されたコージェライト泥漿中へ浸漬し、]−ジェ
ライト泥漿を表面に被覆させた摂、遠心力を加えて、余
剰なコージェライト泥漿を除去せしめ、しかる後に乾燥
させる浸漬、泥漿除去、乾燥の工程を数回繰り返した後
所定温度で焼結させることを特徴とするコージェライト
製セラミックフオーム製造方法。 2)前記三次元−状のセル構iを持つ有機多孔体は、大
きさが1fflIllから3mmの連通気孔を有するウ
レタンフオームで、あることを特徴とする特許請求の範
囲第1項記載のコージェライト製セラミックフオーム製
造方法。 3)前記コージェライト泥漿は、該泥漿を構成する粉末
の化学組成がシリカ45〜55重量%、アルミナ30〜
45重量%、マグネシア11〜16重量%となるように
選ばれた滑石またはマグネサイ]・、水酸化アルミニウ
ムまたはアルミナ、および粘土よりなる調合物と、この
調合物をあらかじめ1350〜1450℃で焼成した平
均粒径5〜100μ(ミクロン)のコージェライ]−粉
末とよりなることを特徴とする特許請求の範囲第1項お
よび第2項記載のコージェライト製セラミックフオーム
製造方法。 3、発明の詳細な説明 本発明は、自動車排気ガス処理用触媒担体等に用いるコ
ージェライト製セラミックフオームの製造方法に関する
もので、さらに詳しくは耐熱衝撃性に優れ且つ低圧損で
あるコージェライト製セラミックフオームの製法に関す
るものである。 コージェライト製セラミックフA−ムとは、ニージェラ
イト系レラミック材利からなり、内部連通空間を有する
三次元網状のセル構造を持つものである。 近年、自動車排気ガス処理用触媒担体として、とりわけ
ディーゼルエンジンパティキュレート(粉塵)補集浄化
用担体に最適であることから、コージェライト製セラミ
ックフオームは脚光を浴びている。 しかし、自動車に装着して使用する場合、以下のような
、重要な特性が要求される。 第1の特性は耐熱衝撃性に優れていることである。これ
は、たとえば排気ガスによる加熱や触媒反応による発熱
により数十秒で600〜800℃以上に担体内部の温度
が上昇し、外側はまだ100〜300℃という温度差に
耐える性質である。この特性は、コージェライト製セラ
ミックフA−ムの熱膨張係数を小さくすることによって
達成される。 つぎに重要な特性として低圧損(流通上の圧力損失が小
さい)であることがあげられる。 触媒が高圧損(流通上の圧力損失が大きい)であると、
自動車エンジンに過大な負荷がかかり燃費や走行性を悪
化させ、また、特にディービルパティキュレートの補集
浄化用として用いる場合、高圧損であるほど、それだけ
パティ4−ユレートを少ししか補集できないため、短時
間で、触媒中のパティキュレートをスロツI〜リング等
で燃焼内生しなければならず致命的な欠点となる。 ところで]−ジェライトセラミックフオームはコージェ
ライ]−粉を水に分散させた泥漿中に連通気孔を有づる
ウレタンフオーム等のフオームラバーまIcはプラスチ
ックフオームを浸漬し、ある厚さを持つIC泥漿被覆と
し、乾燥焼結さけることにより前記の有機フオームとほ
ぼ同一のセル構造を有するコージェライトセラミック多
孔体が製造されるが、有機多孔体へ所定の厚さをもって
均一に泥漿被覆させることが非常に困難であり先に記し
た圧力損失を小さくするという特性を失う問題がある。 従来この圧力損失を小さくする技術として特開昭54−
67588ではコージェライ1−泥漿へ浸漬し、泥漿被
覆後メズマリ部をエアーを吹ぎつりて除去する方法が提
案されているが、これでは内部のメズマリを除去するこ
とは三次元網状構造による三次元方向へのエアー吹き専
【ノのため困難であり圧力損失は小さくはならなかった
。 またコージェライト泥漿被覆時にメズマリしにくいよう
にコージェライト泥漿の粘度を同一固形分のまま低トさ
せる方法として泥漿中へ長石、ケイ酸ソーダ、水酸化ナ
トリウム等のアルカリ性物質を添加4ることが一般に知
られているが、これでは製品にコージェライト以外の成
分が残ることになりコージェライ1〜特有の熱膨張係数
が低いという特性を損ってしまう。 本発明は、製造が簡単且つ高品質であり、さらに耐熱衝
撃性に優れるとともに低尺損である。すなわち熱膨張係
数の小さなコージエライI−を材料と覆るとともに所定
径の連通気孔を確保できるコージェライト製セラミック
フオームの製造方法の提供を目的とづる。 本発明の=1−ジI5イI〜製セラミックフオームの製
造方法は、三次元網状のセル構造を持つ有機多孔体を所
定成分で構成されたコージェライト泥漿中へ浸漬し、」
−ジエライ1へ泥漿を表面に被覆させた後、遠心力を加
えて、余剰な=1−ジェライト泥漿を除去せしめ、しか
る後に乾燥させる浸漬、泥漿除去、乾燥の工程を数回繰
り返した後所定温度で焼結させることを構成とする。 つぎに本発明を図に示づ実施例に基づき説明Jる。 第1実施例 まず所定成分の]−ジェライト泥漿を製造する工程(1
)を説明する。 工程(1)  (A)水酸化アルミニウムを17重量%
、滑石を31重量%、粘土を46重量%とり、混合混錬
し乾燥する。これを原料粉末と称する。 つぎに(B)この原料粉末を1410℃で5hrs焼成
した後、平均粒径が10μ(ミクロン)となるまで粉砕
した。この粉末の化学組成はシリカ51%、アルミナ3
G%、マグネシャ13%であり、X線回折により、結晶
系はすべてコーラ1ライ1−であった。 この粉末をコージェライト粉末と称りる。 つぎに(C)コージェライト粉末を10重量%、原料粉
末を30重量%とり水に分散させ、これにポリビニルア
ルコールと界面活性剤を加え、それぞれ固形分が59.
0重量%、63.4重量%の2種の]−ジェライト泥漿
2および5をつくった。粘度は各々80〜100cps
、  200〜230cpsであった。 つぎに、上記コージエライ]・泥漿2および5と連通気
孔を有する三次元網状のウレタンフオームによりコージ
ェライト製セラミックフオームを製造する1程(2)を
説明する。 まず第1図(D)に示すような、円柱状で1mmから3
mm本実施例では2mmの連通気孔を有する三次元網状
のウレタンフオーム1を(E)のコージェライト泥漿2
へ浸漬し、全表面へ泥漿2を付着せしめる。連通気孔の
下限を1mmとするのは1mm以下では目づまりを生じ
やすいからである。しかる後に(F)に承り如く遠心吹
き払い機3を使って、毎分的250回転で30秒間遠心
力を加え、これにより余剰の泥漿2を除去した後(G)
の乾燥−[程4を行った。さらに同様な([)、(F)
、(G)の]−稈を繰り返した後、つぎに(+−1>の
泥漿5への浸漬工程、(1)の遠心吹き払い機3による
(F)工程と同様な吹き払い工程、(J)の乾燥工程6
の操作を2度行った。以上のように固形分63゜4%泥
漿2で2回固形分59.0%の泥漿5eさらに2回のa
+ 4回浸漬、吹き払い、乾燥を繰り返した後、(K)
の1400℃X 5hrsの焼成]L稈6を行って(し
)の高密度0.3 g/ccの製品8を得た。 上記の如く所定成分で構成されたコージェライト泥漿に
浸漬、吹き払い、乾燥を数回繰り返すことにより三次元
方向の連通[1に目づまりが発生づるのが防止されると
ともに均一な厚さの層が形成される。 また第2.3図に示す如く、(F)、および(I)の余
剰のコージエライ]・泥漿の吹き払いは、ソフトスター
]へ機能を組み込んだモータ8の回転を減速11811
1−減速させ、回転容器9を回転させる形式の遠心吹き
払い機3でコージェライト泥漿付着後の三次元網状多孔
体1を回転容器9に所定数配置して遠心力を加えること
によりなされる。 余剰なコージェライ1〜泥漿の除去は三次元網状多孔体
1のように目が直線状に通っていなくて、三次元方向の
連通口を形成しているものには遠心力を用いるのが適切
であり、従来の圧縮空気を吹き付ける方法では吹き払え
ない部分が生じる。第2実施例を説明する。 コーラlライト粉末30重量%、原料粉末70重量%に
する以外は第1実施例と同様な方法で固形分61重量%
、55重量%の二種の泥漿をつくった。粘度は200〜
250cps 、 80〜100CpSであった。これ
へ更に第1実施例と同様な方法で泥漿被覆後焼結し嵩密
度0.3o /ccの製品を得た。 つぎに」配本発明にかかる第1.2実施例に比較する第
1〜第3比較例を順番に示す。 第1比較例 第1実施例と同様な方法で得られた泥漿2.5へ大きさ
が2mmの連通気孔を持つウレタンフ71−ムを浸漬後
6に!J / cmのコンプレツーIJ−−]ニア−で
余剰泥漿を吹き払い乾燥した。この浸漬、−I−iノー
吹き払い、乾燥の操作を4回繰り返した後、1400℃
X5hrsで焼成後高密度0.3g /cco)製品を
得た。 第2比較例 原料粉末を100重量%にする以上は第1実施例と同様
な方法で固形分56重量%、53重量%の2種の泥漿を
つくつ/j。粘度は各々200〜250cps、80〜
100cpsであった。この泥漿へ第1実施例と同様な
方法で泥漿被覆を56重量%で3回、53重量%で3回
J3こなった後1400℃x 5hrsで焼成後、嵩密
度0.30/ccの製品を得た。 第3比較例 原料粉末95重量%、長石粉末5重量%とリ−る以外は
実施例1と同様な方法で固形分67重量%の泥漿をつく
った。粘度は200〜250cpsであったこの泥漿へ
実施例1と同様な方法で泥漿被覆を4回くりかえし、1
360℃X 5hrs焼成後嵩密度0.3g /ccの
製品を1qだ。 以上の第1.2実施例および第1.2.3比較例を担体
サイズ直径93開×高さ66mmのもので行なった場合
の特性を表1に示づ。 表1 上記表1で示されるように、泥漿成分を本発明の第1.
2実施例と同様または同等にして、焼成温度も第1.2
実施例と同じ1400℃(コージェライトの生成に最良
とされる)とし、余剰泥漿の吹き払いはコンプレッサー
エアーで行なった第1比較例、および泥漿の固形分を原
料粉末100重量%とし、その伯は本発明第1実施例と
同様とし1〜第2比較例においては、ともに圧力損失が
格段に大きく、また、泥漿の固形分を原料粉末95重量
%、長石粉末5重量%、焼成温度を1350℃とし、そ
の他は本発明第1実施例と同様とした第3比較例におい
ては、熱膨張係数が大きく、したがって熱衝撃に弱くな
る。 以上、述べたごとく本発明の」−ジェライト製セラミツ
クツA−ム製造方法は、三次元網状のセル構造を持つ有
機多孔体を所定成分で構成されたコージエライI−泥漿
中へ浸漬し、コーラ1ライト泥漿を表面に被覆させた後
、遠心力を加えて、余剰なコージェライ1−泥漿を除去
せしめ、しかる後に乾燥させる浸漬、泥漿除去、乾燥の
1程を数回繰り返した後所定温度で焼結させることを構
成とし、三次元網状の有機多孔体の構造を利用して、直
接被覆させて製造するので製造が簡単であり、所定径の
均一な連通気孔および均一な厚さでかつ表面積の大きな
綱状壁が確保されるので低圧損であり構造も強固で高品
質であり、熱膨張係数の小さなコージェライトが十分に
生成されて、耐熱衝撃性に優れる]−ジェライト製セラ
ミックフオームが製造できるという効果を有する。 4、図面の簡単な説明 第1図は本発明にかかる三次元網状のシェル構造をもつ
コージェライト製セラミックフオーム製造方法の工程図
、第2図は製造工程内で用いる遠心吹き払い機の一例の
断面を表わす図、第3図は遠心吹き払い機の回転容器に
コージェライト泥漿を付着せしめたウレタンフオーム製
の三次元網状多孔体を4個配設しIC様を表わす図、第
4図は三次元網状のセル構造をなすセラミック多孔体の
斜視図、第5図はその部分拡大図である。 図中 1・・・三次元網状多孔体 2・・・固形分が5
9.0重量%のコージェライト泥漿 3・・・遠心吹き
払い機 4・・・乾燥工程 5・・・固形分が63.4
ii1%のコージェライト泥漿 6・・・乾燥■稈 7
・・・焼成工程 8・・・セラミック多孔体
Fig. 1 is a process diagram of the method for manufacturing a cordierite ceramic foam having a three-dimensional mesh shell structure according to the present invention, Fig. 2 is a cross-sectional view of an example of a centrifugal blower used in the manufacturing process, and Fig. 3 The figure does not show how four three-dimensional reticular porous bodies made of urethane foam to which cordierite slurry is attached are arranged in the rotating container of a centrifugal blower.
The figure is a perspective view of a ceramic porous body having a three-dimensional network cell structure, and FIG. 5 is a partially enlarged view thereof. In the figure 1...Three-dimensional network porous material 2...Solid content is 5
Cordierite slurry of 9.0% by weight 3...Centrifugal blowing off l14...Drying process 5...Solid content is 63.4
Heavy machinery% cordierite slurry 6...Dried culm 7.
... Firing process 8 ... Ceramic porous body Figure 1 CD) (E) (F) (G) (
)-1) (1) (J) (ni) (L
) Figure 2 Figure 4 Figure 4 Procedural amendments 1, Indication of the case 1981 Special revision application No. 109461 2, Name of invention Cordierite ceramic foam tlJ31i method 3, Person making the amendment (!1 and Relationship Patent applicant ↑ Tsu・No. Taito Shihama Address 7800 Mihama, Hitohigashi-cho, Ogasa-gun, Shizuoka Prefecture Name
Ki V Taller Industries Co., Ltd. 71p"i'nA Representative Takeshi 1) Tetsuo (1 other person) 4. Dai Umihito 465 Telephone 052-773-244
96, the entire text of the specification subject to amendment. Description 1, Name of the invention Method for manufacturing cordierite ceramic foam 2, Claims 1) An organic porous body having a three-dimensional network cell structure is immersed in a cordierite slurry composed of predetermined components,]- After the gelite slurry is coated on the surface, centrifugal force is applied to remove excess cordierite slurry, and then the process of drying is repeated several times, followed by sintering at a predetermined temperature. A method for producing cordierite ceramic foam characterized by: 2) The cordierite according to claim 1, wherein the organic porous body having the three-dimensional cell structure i is a urethane foam having continuous pores having a size of 1fflIll to 3mm. Ceramic foam manufacturing method. 3) The cordierite slurry has a chemical composition of powder constituting the slurry of 45 to 55% by weight of silica and 30 to 30% by weight of alumina.
45% by weight of talc or magnesia selected to be 11-16% by weight of magnesia], aluminum hydroxide or alumina, and clay, and an average of this preparation previously calcined at 1350-1450°C. 3. The method for producing a cordierite ceramic foam according to claims 1 and 2, wherein the cordierite ceramic foam has a particle size of 5 to 100 μm (microns). 3. Detailed Description of the Invention The present invention relates to a method for producing a cordierite ceramic foam used as a catalyst carrier for automobile exhaust gas treatment, and more specifically to a cordierite ceramic foam that has excellent thermal shock resistance and low pressure loss. This relates to the foam manufacturing method. The cordierite ceramic film A is made of Nigelrite-based Relamic material and has a three-dimensional network cell structure with internal communication spaces. In recent years, cordierite ceramic foam has been in the spotlight because it is ideal as a catalyst carrier for treating automobile exhaust gas, especially as a carrier for collecting and purifying diesel engine particulates. However, when used in a car, the following important characteristics are required. The first characteristic is excellent thermal shock resistance. This is because the temperature inside the carrier rises to 600 to 800°C or more in a few tens of seconds due to heating by exhaust gas or heat generated by a catalytic reaction, and the outside can withstand a temperature difference of 100 to 300°C. This property is achieved by reducing the coefficient of thermal expansion of the cordierite ceramic film A-film. The next important characteristic is low pressure loss (small pressure loss during circulation). If the catalyst has high pressure loss (high pressure loss during circulation),
Excessive load is placed on the automobile engine, deteriorating fuel efficiency and running performance. In addition, especially when used for collection and purification of devil particulates, the higher the pressure drop, the less particulate matter can be collected. However, the particulates in the catalyst must be combusted in the slot I-ring etc. in a short period of time, which is a fatal drawback. By the way] - Gelite ceramic foam is made from Corjerite] - Foam rubber such as urethane foam that has communicating holes in a slurry made by dispersing powder in water, or IC is made by dipping a plastic foam and forming an IC slurry coating with a certain thickness. By avoiding dry sintering, a cordierite ceramic porous body having almost the same cell structure as the organic foam described above can be produced, but it is extremely difficult to uniformly coat the organic porous body with slurry to a predetermined thickness. However, there is a problem in that the property of reducing pressure loss mentioned above is lost. Conventionally, as a technology to reduce this pressure loss, Japanese Patent Application Laid-Open No. 1987-
No. 67588 proposes a method in which the mesuri part is immersed in Corjelai 1-sludge, covered with the slurry, and then air is blown to remove it. This was difficult because only air was blown into the air, and the pressure loss could not be reduced. In addition, to reduce the viscosity of cordierite slurry while keeping the same solid content so that it is less likely to sludge when coated with cordierite slurry, it is common practice to add alkaline substances such as feldspar, sodium silicate, and sodium hydroxide to the slurry. Although this is known, components other than cordierite remain in the product, which impairs the low coefficient of thermal expansion characteristic of cordierite 1. The present invention is easy to manufacture, has high quality, has excellent thermal shock resistance, and has low loss. That is, the object of the present invention is to provide a method for manufacturing a cordierite ceramic form that covers cordierite I-, which has a small coefficient of thermal expansion, with a material and that can ensure communication holes of a predetermined diameter. The method for producing a ceramic foam made of =1-diI5-I of the present invention involves immersing an organic porous body having a three-dimensional network cell structure in cordierite slurry made of predetermined components.
- After the slurry is coated on the surface of gelite 1, centrifugal force is applied to remove excess =1-gelite slurry, and then it is dried. After repeating the steps of dipping, removing slurry, and drying several times, a predetermined temperature is set. The structure consists of sintering with Next, the present invention will be explained based on embodiments shown in the drawings. First Example First, a process of producing gelite slurry (1) of predetermined components.
). Step (1) (A) 17% by weight of aluminum hydroxide
31% by weight of talcum and 46% by weight of clay were mixed, kneaded, and dried. This is called raw material powder. Next, (B) this raw material powder was fired at 1410° C. for 5 hours, and then ground until the average particle size became 10 μ (microns). The chemical composition of this powder is 51% silica and 3% alumina.
G% and Magnesia 13%, and X-ray diffraction revealed that the crystal system was all cola 1 rye 1-. This powder is called cordierite powder. Next, (C) 10% by weight of cordierite powder and 30% by weight of raw material powder were dispersed in water, and polyvinyl alcohol and a surfactant were added thereto, so that the solid content of each was 59% by weight.
Two types of ]-gelite slurries 2 and 5 were prepared, 0% by weight and 63.4% by weight. Viscosity is 80~100cps each
, 200-230 cps. Next, Step 1 (2) of manufacturing a cordierite ceramic foam using a three-dimensional reticular urethane foam having communicating holes with the cordierite slurry 2 and 5 will be described. First, as shown in Figure 1 (D), it is cylindrical and has a diameter of 1 mm to 3 mm.
mm In this example, a three-dimensional network-like urethane foam 1 having 2 mm communicating holes is coated with cordierite slurry 2 of (E).
immerse it in water to make the slurry 2 adhere to the entire surface. The lower limit of the communicating hole is set to 1 mm because if it is less than 1 mm, clogging tends to occur. After that, as in (F), using centrifugal blower 3, centrifugal force was applied at 250 revolutions per minute for 30 seconds to remove excess slurry 2 (G).
Drying - [Step 4 was performed. Further similar ([), (F)
, (G)] - culm is repeated, then (+-1> immersion step in the slurry 5, blowing off step similar to step (F) using the centrifugal blowing machine 3 of (1), ( J) Drying step 6
This operation was performed twice. As shown above, slurry 2 with a solid content of 63°4% is used twice, slurry 5e with a solid content of 59.0% is added twice, and a further two times
+ After repeating immersion, blowing off, and drying 4 times, (K)
[Calcination at 1400° C. for 5 hrs] L culm 6 was performed to obtain product 8 with a high density of 0.3 g/cc. By repeating immersion, blowing off, and drying several times in the cordierite slurry made of predetermined components as described above, clogging in the three-dimensional communication [1] is prevented and a layer of uniform thickness is formed. It is formed. In addition, as shown in Fig. 2.3, the rotation of the motor 8 which has a soft star function is decelerated to blow off the surplus cordieri of (F) and (I).
1- A predetermined number of three-dimensional reticular porous bodies 1 to which cordierite slurry has been adhered are arranged in a rotating container 9 using a centrifugal blower 3 that rotates the rotating container 9 at reduced speed, and centrifugal force is applied thereto. To remove excess cordierai 1~sludge, it is appropriate to use centrifugal force for materials like the three-dimensional network porous material 1, where the eyes do not pass in a straight line and form communication ports in three-dimensional directions. However, there are some areas that cannot be blown away using conventional methods of blowing compressed air. A second embodiment will be explained. The solid content was 61% by weight in the same manner as in Example 1 except that the Cora light powder was 30% by weight and the raw material powder was 70% by weight.
, 55% by weight two slurries were made. Viscosity is 200~
It was 250 cps and 80-100 CpS. This was further coated with slurry and sintered in the same manner as in the first example to obtain a product with a bulk density of 0.3 o/cc. Next, first to third comparative examples to be compared with the first to third embodiments according to the present invention will be shown in order. 1st Comparative Example A urethane foam 71- having a communicating hole of 2 mm in size was immersed in slurry 2.5 obtained in the same manner as in the first example. The excess slurry was blown off and dried using a Completo IJ--]Nia of J/cm. After repeating this immersion, -I-i no blowing off, and drying operations four times,
After firing at X5hrs, a high density product (0.3g/cco) was obtained. Second Comparative Example Two types of slurry with a solid content of 56% by weight and 53% by weight were prepared in the same manner as in the first example except that the raw material powder was made 100% by weight. Viscosity is 200~250cps and 80~
It was 100 cps. This slurry was coated with J3 three times at 56% by weight and three times at 53% by weight in the same manner as in the first example, and then baked at 1400°C for 5 hours, resulting in a product with a bulk density of 0.30/cc. I got it. Third Comparative Example A slurry having a solid content of 67% by weight was prepared in the same manner as in Example 1, except that the raw material powder was 95% by weight and the feldspar powder was 5% by weight. This slurry, which had a viscosity of 200 to 250 cps, was coated with the slurry four times in the same manner as in Example 1.
After firing at 360°C for 5 hours, 1q of product has a bulk density of 0.3g/cc. Table 1 shows the characteristics when the above-mentioned Example 1.2 and Comparative Example 1.2.3 were carried out using a carrier having a diameter of 93 mm and a height of 66 mm. Table 1 As shown in Table 1 above, the slurry components in the first sample of the present invention.
The firing temperature was also the same as or equivalent to Example 2.
In the first comparative example, the temperature was the same as in the example, 1400°C (supposed to be the best for cordierite production), and the excess slurry was blown away with compressed air, and in the first comparative example, the solid content of the slurry was 100% by weight of the raw material powder. is the same as that of the first embodiment of the present invention, and in the first to second comparative examples, the pressure loss was significantly large, and the solid content of the slurry was 95% by weight of the raw material powder, 5% by weight of the feldspar powder, and the firing temperature was 1350%. In the third comparative example, which was set at .degree. C. and was otherwise the same as the first embodiment of the present invention, the coefficient of thermal expansion was large, and therefore it was susceptible to thermal shock. As described above, the method for producing gelite ceramics A according to the present invention involves immersing an organic porous body having a three-dimensional network cell structure in Cordierite I slurry made of predetermined components. After the slurry is coated on the surface, centrifugal force is applied to remove excess cordierai slurry, and then it is dried. Steps 1 of immersion, slurry removal, and drying are repeated several times, and then sintered at a predetermined temperature. It is easy to manufacture because it is manufactured by direct coating using the structure of a three-dimensional network-like organic porous material. As a shaped wall is secured, the pressure drop is low, the structure is strong and high quality, and a sufficient amount of cordierite with a small coefficient of thermal expansion is produced, resulting in excellent thermal shock resistance] - The effect of being able to manufacture gelite ceramic foam has. 4. Brief explanation of the drawings Figure 1 is a process diagram of the method for manufacturing a cordierite ceramic foam having a three-dimensional mesh shell structure according to the present invention, and Figure 2 is an example of a centrifugal blower used in the manufacturing process. Figure 3 is a diagram showing a cross section, and Figure 3 is a diagram showing an IC-like structure in which four three-dimensional reticular porous bodies made of urethane foam with cordierite slurry attached are arranged in a rotating container of a centrifugal blower, and Figure 4 is a diagram depicting an IC. FIG. 5 is a perspective view of a ceramic porous body having an original network cell structure, and FIG. 5 is a partially enlarged view thereof. In the figure 1...Three-dimensional network porous material 2...Solid content is 5
9.0% by weight cordierite slurry 3...Centrifugal blower 4...Drying process 5...Solid content is 63.4
ii 1% cordierite slurry 6...Dried Culm 7
... Firing process 8 ... Ceramic porous body

Claims (1)

【特許請求の範囲】 1)三次元網状のセル構造を持つ有機多孔体を所定成分
で構成されたコージェライト泥漿中へ浸漬し、コージェ
ライト泥漿を表面に被覆させた後、遠心力を加えて、余
剰なコージェライト泥漿を除去せしめ、しかる後に乾燥
させる浸漬、吹き払い、乾燥の工程を数回繰り返した後
所定温度で焼結させることを特徴とするコージェライト
製セラミックフオーム製造方法。 2)前記三次元網状のセル構造を持つ有機多孔体は、大
きさが1開から3mmの連通気孔を有するウレタンフオ
ームであることを特徴とする特許請求の範囲第1項記載
のコージェライト製セラミックフオーム製造方法。 3)前記コージェライト泥漿は、該泥漿を構成する粉末
の化学組成がシリカ45〜55重量%、アルミナ30〜
45重量%、マグネシア11〜16重量%となるように
選ばれた滑石またはマグネサイト、水酸化アルミニウム
またはアルミノ、および粘土よりなる調合物と、この調
合物をあらかじめ1350〜1450℃で焼成した平均
粒径5〜100μ(ミクロン)のコージェライト粉末と
よりなることを特徴とする特許請求の範囲第1項および
第2項記載のコージェライト製セラミックフオーム製造
方法。
[Claims] 1) An organic porous body having a three-dimensional network cell structure is immersed in cordierite slurry composed of predetermined components, the cordierite slurry is coated on the surface, and centrifugal force is applied. A method for producing a cordierite ceramic foam, which comprises removing excess cordierite slurry and then drying the foam, repeating the steps of dipping, blowing off, and drying several times, and then sintering at a predetermined temperature. 2) The cordierite ceramic according to claim 1, wherein the organic porous body having a three-dimensional network cell structure is a urethane foam having continuous pores with a size of 1 to 3 mm. Form manufacturing method. 3) The cordierite slurry has a chemical composition of powder constituting the slurry of 45 to 55% by weight of silica and 30 to 30% by weight of alumina.
A mixture of talc or magnesite, aluminum hydroxide or alumino, and clay selected to have a concentration of 45% by weight, 11 to 16% by weight of magnesia, and an average grain obtained by pre-calcining this mixture at 1350 to 1450°C. The method for manufacturing a cordierite ceramic foam according to claims 1 and 2, characterized in that the cordierite ceramic foam is made of cordierite powder having a diameter of 5 to 100 μm (microns).
JP10946182A 1982-06-24 1982-06-24 Manufacture of cordierite ceramic foam Pending JPS593059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10946182A JPS593059A (en) 1982-06-24 1982-06-24 Manufacture of cordierite ceramic foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10946182A JPS593059A (en) 1982-06-24 1982-06-24 Manufacture of cordierite ceramic foam

Publications (1)

Publication Number Publication Date
JPS593059A true JPS593059A (en) 1984-01-09

Family

ID=14510814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10946182A Pending JPS593059A (en) 1982-06-24 1982-06-24 Manufacture of cordierite ceramic foam

Country Status (1)

Country Link
JP (1) JPS593059A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141682A (en) * 1984-12-12 1986-06-28 東芝セラミツクス株式会社 Ceramic foam and manufacture
JPH04104975A (en) * 1990-08-23 1992-04-07 Tokai Carbon Co Ltd Production of porous ceramic material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179063A (en) * 1981-04-28 1982-11-04 Nippon Soken Manufacture of structural article for exhaust gas purification

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179063A (en) * 1981-04-28 1982-11-04 Nippon Soken Manufacture of structural article for exhaust gas purification

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141682A (en) * 1984-12-12 1986-06-28 東芝セラミツクス株式会社 Ceramic foam and manufacture
JPH058148B2 (en) * 1984-12-12 1993-02-01 Toshiba Ceramics Co
JPH04104975A (en) * 1990-08-23 1992-04-07 Tokai Carbon Co Ltd Production of porous ceramic material

Similar Documents

Publication Publication Date Title
EP0278749B1 (en) Cordierite honeycomb-structural body and a method for producing the same
EP1486243B1 (en) Honeycomb filter
JP4246475B2 (en) Manufacturing method of honeycomb structure
JP2003269132A (en) Exhaust emission control filter
JP2005199179A (en) Cell structure and manufacturing method therefor
JP4393199B2 (en) Honeycomb structure and manufacturing method thereof
JP2001269585A (en) Filter for cleaning exhaust gas
WO2003048072A1 (en) Honeycomb structure body and method for manufacturing the same
US3923940A (en) Process for the manufacture of ceramic honeycomb structures
JP2003154264A (en) Catalytic body and manufacturing method thereof
JP2010502547A (en) Cordierite honeycomb body having high strength and substantially no microcrack and manufacturing method
CN112423858A (en) Outlet coated ceramic honeycomb body and method for producing same
EP2143694B1 (en) Honeycomb structure
JP2003001029A (en) Porous ceramic honeycomb filter
JPS593059A (en) Manufacture of cordierite ceramic foam
JP2651170B2 (en) Ceramics porous body
US20090010817A1 (en) Honeycomb filter
JP2019171244A (en) Honeycomb filter
JP7408462B2 (en) honeycomb filter
JP2004051674A (en) Coating material, honeycomb structure, and preparation method thereof
CN112437763B (en) Ceramic honeycomb body with high strength skin and method of making same
CN113332808B (en) Honeycomb filter
CN219159046U (en) Honeycomb filter
JPS63147875A (en) Porous ceramic structure
CN219672708U (en) Honeycomb filter