JPS593033A - Manufacture of base material for optical fiber - Google Patents

Manufacture of base material for optical fiber

Info

Publication number
JPS593033A
JPS593033A JP10961882A JP10961882A JPS593033A JP S593033 A JPS593033 A JP S593033A JP 10961882 A JP10961882 A JP 10961882A JP 10961882 A JP10961882 A JP 10961882A JP S593033 A JPS593033 A JP S593033A
Authority
JP
Japan
Prior art keywords
base material
optical fiber
gas
temperature
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10961882A
Other languages
Japanese (ja)
Other versions
JPS6121178B2 (en
Inventor
Tetsuo Miyanochi
宮後 哲夫
Hiroaki Takimoto
滝本 弘明
Hisao Sato
久雄 佐藤
Tamio Tsurita
民男 釣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10961882A priority Critical patent/JPS593033A/en
Publication of JPS593033A publication Critical patent/JPS593033A/en
Publication of JPS6121178B2 publication Critical patent/JPS6121178B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To manufacture a base material for a high-quality optical fiber having uniform quality in the growing direction when a base material for an optical fiber is grown by hydrolyzing gaseous starting materials, by controlling the surface temp. of a base material so as to keep it constant. CONSTITUTION:Oxygen, hydrogen, an inert gas and gaseous starting materials for a base material for an optical fiber are spouted from a burner 2 for an oxyhydrogen flame in a reactor 1, and a base material 10 for an optical fiber is grown on a support rod 3 by hydrolyzing the gaseous starting materials. The temp. of the surface 6 of the base material 10 is measured with an infrared thermometer 18, and the signal is inputted in a control circuit 19. The circuit 19 controls the output power of a heater 9 so as to make the difference between the measured value and the set temp. value to zero, and the surface temp. of the growing base material 10 is kept constant by regulating the temp. of excess gas 7 passing through the heater 9. A base material for a high-quality optical fiber having uniform quality in the growing direction can be manufactured.

Description

【発明の詳細な説明】 発明の技術分野 本発明は光フアイバ用母材の製造方法の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD OF THE INVENTION The present invention relates to an improvement in a method for manufacturing optical fiber preforms.

技術の背景 光フアイバ用母材の製造は、図に示すように反応容器1
の下方に配置された複数のノズルを有する酸水素炎バー
ナ2からガラス原料およびその屈折率を変える屈折率制
御用原料を所定の空間分布となるよう上方に向けて吹き
出させ、これを加水分解し該酸水素炎バーナ2と対向す
る支持棒3の下端部に反応によって生成したガラス微粒
子を付着堆積させ、成長に従って支持棒3を回転させつ
つ引き上げて光フアイバ用母材10を得るものである。
Background of the technology The production of the base material for optical fiber is carried out in a reaction vessel 1 as shown in the figure.
A glass raw material and a refractive index control raw material for changing its refractive index are blown upward to achieve a predetermined spatial distribution from an oxyhydrogen flame burner 2 having a plurality of nozzles arranged below, and are hydrolyzed. Glass fine particles produced by the reaction are deposited on the lower end of the support rod 3 facing the oxyhydrogen flame burner 2, and as they grow, the support rod 3 is rotated and pulled up to obtain the optical fiber preform 10.

従来技術と問題点 図に示す光フアイバ用母材10の生成過程においては、
販母材10の表面、特にまさにガラス微粒子の堆積が行
なわれつつある母材下端部の母材成長面6の表面の温度
を均一に保つことが高品質の母材を得るための非常に有
効な手段となる。然し、ガラス微粒子が堆積中の母材表
面における母材成長面6の温度は、酸水素炎バーナ2が
形成する炎4のゆらぎ9反応容器1の外表面の外気によ
る冷却作用の変化に起因する反応容器1内部のガスの温
度の変化2反応容器1内部のガスの流れ状態の変化によ
る母材10周囲のガスの温度分布の変化1反応容器1か
ら排気管5を経由して外部へ排出される排気ガス8の流
量の変化等の影響を受は変動する。従来からこの変動を
一定に抑える手段として、酸水素炎バーナ2から供給さ
れる水素量または酸素量を操作することにより、または
外部からタングステンランプ、  CO,レーザ岬の熱
源を利用して直接母材成長面6の温度を制御する方法が
提案されているが、前者は炎4内で起っているガラス微
粒子生成反応と炎の形状自体に直接影響を与えてしまう
ので好ましくなく、後者についてはその影響が局部的で
あること、また社装置として組込むことに操作上の安定
性、反応容器1の形状、材質に対する制約が大きく好ま
しくないとい′う問題があった。
In the production process of the optical fiber base material 10 shown in the prior art and problem diagram,
It is very effective to maintain a uniform temperature on the surface of the base material 10, especially on the surface of the base material growth surface 6 at the bottom end of the base material where glass fine particles are being deposited, in order to obtain a high quality base material. It becomes a means. However, the temperature of the base material growth surface 6 on the base material surface during which glass particles are being deposited is due to fluctuations in the flame 4 formed by the oxyhydrogen flame burner 2 9 and changes in the cooling effect of the outside air on the outer surface of the reaction vessel 1. Change in the temperature of the gas inside the reaction vessel 1 2 Change in the temperature distribution of the gas around the base material 10 due to a change in the flow state of the gas inside the reaction vessel 1 The influence of changes in the flow rate of the exhaust gas 8, etc. will vary. Conventionally, as a means to keep this fluctuation constant, it has been possible to control the base material directly by manipulating the amount of hydrogen or oxygen supplied from the oxyhydrogen flame burner 2, or by using an external heat source such as a tungsten lamp, CO, or laser cape. A method of controlling the temperature of the growth surface 6 has been proposed, but the former is undesirable because it directly affects the glass particle generation reaction occurring within the flame 4 and the shape of the flame itself. There are problems in that the influence is local, and that it is undesirable to incorporate it into a company's equipment because there are significant restrictions on operational stability, shape, and material of the reaction vessel 1.

発明の目的 本発明の目的は、反応容器内へガラス原料を吹きつける
バーナとは別の個所から供給されるガス(以下余剰ガス
と云う)の温度を操作することによシ、反応容器内にて
生成中の光フアイバ用母材の表面温度を一定に制御する
ことによ多光ファイバ用母材の長手方向、すなわち生長
方向の品質を均一に維持し良質の光フアイバ用母材を得
ることにある。以下図によシ説明する。
Purpose of the Invention The purpose of the present invention is to control the temperature of gas (hereinafter referred to as surplus gas) supplied from a location different from the burner that blows glass raw materials into the reaction container. By controlling the surface temperature of the optical fiber base material being produced at a constant level, the quality of the multi-optic fiber base material in the longitudinal direction, that is, the growth direction, can be maintained uniformly, and a high quality optical fiber base material can be obtained. It is in. This will be explained below with reference to the figures.

発明の実施例 本発明は、図において反応容器1内へ供給される余剰ガ
ス7の温度を加熱器9によって操作することにより母材
成長面6の温度を一定に制御するものである。本発明の
方法によれば母材成長面6の温度を炎4を介して、また
は母材成長面60周辺から母材10の熱伝導によって間
接的に制御できるため、先に述べた従来の方法に呵る次
点は存在しない。図において11α乃至11dは酸水素
炎バーナ2に酸素、水素および原料ガス、さらに不活性
ガス等を供給するポートである。12は排気ガス8に含
まれる主として塩化水素ガスを中和するための洗浄塔で
あり、16は中和液を噴霧するノズル、14は中和液を
ノズル16へ送るポンプ、15は中和液の受槽である。
Embodiments of the Invention In the present invention, the temperature of the base material growth surface 6 is controlled to be constant by controlling the temperature of the excess gas 7 supplied into the reaction vessel 1 using a heater 9 as shown in the figure. According to the method of the present invention, the temperature of the base material growth surface 6 can be controlled indirectly via the flame 4 or by heat conduction of the base material 10 from the vicinity of the base material growth surface 60. There is no runner-up to worry about. In the figure, 11α to 11d are ports for supplying oxygen, hydrogen, raw material gas, and inert gas to the oxyhydrogen flame burner 2. 12 is a cleaning tower for neutralizing mainly hydrogen chloride gas contained in the exhaust gas 8; 16 is a nozzle that sprays a neutralizing liquid; 14 is a pump that sends the neutralizing liquid to the nozzle 16; 15 is a neutralizing liquid It is a receiving tank.

16は排気ファンで排気ガス8はもとよシ余剰ガス7も
すべて該排気77ン16に吸引される。17はチャック
で支持棒6を回転させつつガラス微粒子の堆積速度に合
わせて上方に移動する。18は母材成長面6の温度を検
出する温度計であシ、通常は赤外放射温度計を用いる。
16 is an exhaust fan, and not only the exhaust gas 8 but also all the surplus gas 7 are sucked into the exhaust fan 16. A chuck 17 rotates the support rod 6 and moves it upward in accordance with the deposition rate of the glass particles. 18 is a thermometer for detecting the temperature of the base material growth surface 6, and usually an infrared radiation thermometer is used.

19は制御回路で加熱器9の出力パワを、温度計18の
出力値と設定値との偏差が零になるよう制御する。なお
加熱器9の熱慣性を小さくすることは制御の応答性を早
めるうえで重要であるが構造上限度がある。従って応答
の非常に早い制御系が必要な場合には図の破線内に示す
構成による方法が有利である。加熱器9と反応容器1を
接続する配管20の途中にガスの合流部21を設け、加
熱器9を通過する余剰ガス7αと加熱器9を通らない余
剰ガス7bを合流させる。余剰ガス7aと7bの混合比
を、余剰ガス7bの配管中に設けた流量調節弁22の開
度によって変えることによシ、結果的に反応容器1内に
流入する余剰ガス7の温度を制御する。26は流量調節
弁22を駆動するモータ、24は余剰ガス7aと7bを
効率的に混合するアジテータである。この方法によれば
応答の非常に早い制御系を実現できることは明らかであ
る。
A control circuit 19 controls the output power of the heater 9 so that the deviation between the output value of the thermometer 18 and the set value becomes zero. Although it is important to reduce the thermal inertia of the heater 9 in order to speed up control responsiveness, there is a structural upper limit. Therefore, when a control system with very quick response is required, the method using the configuration shown within the broken line in the figure is advantageous. A gas merging section 21 is provided in the middle of a pipe 20 connecting the heater 9 and the reaction vessel 1, and surplus gas 7α passing through the heater 9 and surplus gas 7b not passing through the heater 9 are merged. By changing the mixing ratio of the surplus gases 7a and 7b by changing the opening degree of the flow rate control valve 22 provided in the pipe for the surplus gas 7b, the temperature of the surplus gas 7 flowing into the reaction vessel 1 is controlled as a result. do. 26 is a motor that drives the flow control valve 22, and 24 is an agitator that efficiently mixes the surplus gases 7a and 7b. It is clear that this method makes it possible to realize a control system with very quick response.

次に母材成長面6の温度制御を実施するに際して、破線
部内の構成を用いない場合(CASB 、()と、該構
成を用いた場合(CASEB)及び全く温度制御を実施
しない場合(CASE C)の6条件で光ファイバ用°
母材を製造した結果を表に示す。表は品質の安定性を帯
域特性で示すとともに、参考として各CASHにおける
母材成長面6の温度変動幅を示す。
Next, when performing temperature control on the base material growth surface 6, there are cases in which the configuration within the dashed line is not used (CASB), a case in which this configuration is used (CASEB), and a case in which no temperature control is performed at all (CASE C). ) for optical fibers under 6 conditions.
The results of manufacturing the base material are shown in the table. The table shows the stability of quality in terms of band characteristics, and also shows the temperature fluctuation range of the base material growth surface 6 in each CASH for reference.

余剰ガス7.7α、76は空気を用いた。Air was used as the surplus gases 7.7α and 76.

なお表中CASE A、Bにおいて余剰空気の反応容器
入口での温度は20乃至50°Cを示し、CASEA。
In CASE A and B in the table, the temperature of the excess air at the inlet of the reaction vessel is 20 to 50°C.

E、Cにおいて余剰空気の量は50tA+であった。ま
た次の条件はCASE A、E、Cにおいて同一とした
In E and C, the amount of surplus air was 50 tA+. Furthermore, the following conditions were the same for CASE A, E, and C.

(1)マツフル形状: 300鴫’°” ×800mm
 H′’(Jh’(2)バーナ供給ガス:H,,4V分
*os+7t1分y Ar ;21/分+ 5tC14
: 1.7町/分子 G a C70: 0−3 V分
(3) e 財形状: 50mm ”=x 400 m
mLe″′Lg”(4)成長速度: Q、5ft’/分 発明の効果 以上述べたように本発明は生成中の母材のまさに粒状ガ
ラスの堆積しつつある部分またはその近傍の表面温度を
、ガラス材料を吹きつけるバーナの設置個所とは異なる
個所から余剰ガスを供給し、訳余剰ガスの温度を操作し
て一定温度に制御することによシ、安定な操作で光フア
イバ用母材の成長方向の品質を均一に維持することがで
き、良質の光フアイバ用母材を得ることができその効果
顕著である。
(1) Matsuful shape: 300'°" x 800mm
H''(Jh' (2) Burner supply gas: H,, 4V min*os+7t1miny Ar; 21/min+5tC14
: 1.7 town/molecule G a C70: 0-3 V min (3) e Property shape: 50mm ”=x 400 m
mLe'''Lg'' (4) Growth rate: Q, 5 ft'/min Effects of the Invention As described above, the present invention can reduce the surface temperature of the forming base material at or near the area where the granular glass is being deposited. By supplying surplus gas from a location different from the location where the burner that blows the glass material is installed, and controlling the temperature of the surplus gas to a constant temperature, the base material for optical fiber can be heated in a stable manner. The quality in the growth direction can be maintained uniformly, and a high-quality optical fiber base material can be obtained, which is a remarkable effect.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の光フアイバ用母材の製造方法を示す概略図
である。 1・・・反応容器、2・・・酸水素炎バーナ、3・・・
支持棒、4・・・炎、5・・・排気管、6・・・母材成
長面、7゜7a、7b・・・余剰ガス、8・・・排気ガ
ス、9・・・加熱器、10・・・母材、11cL乃至1
1d・・・ボート、12・・・洗浄塔、16・・・中和
液噴霧用ノズル、14・・・ポンプ、15・・・受槽、
16・・・排気ファン、17・・・チャック、18・・
・温度計、19・・・制御回路、20・・・配管、21
・・・ガス合流部、22・・・流量調節弁、23・・・
モータ、24・・・アジテータ 特許出願人住友電気工業株式会社 代理人弁理士 玉 蟲、久 五 部
The figure is a schematic diagram showing a method for manufacturing an optical fiber base material of the present invention. 1... Reaction vessel, 2... Oxyhydrogen flame burner, 3...
Support rod, 4... Flame, 5... Exhaust pipe, 6... Base metal growth surface, 7° 7a, 7b... Surplus gas, 8... Exhaust gas, 9... Heater, 10... Base material, 11 cL to 1
1d... Boat, 12... Washing tower, 16... Neutralizing liquid spray nozzle, 14... Pump, 15... Receiving tank,
16...Exhaust fan, 17...Chuck, 18...
・Thermometer, 19... Control circuit, 20... Piping, 21
...Gas confluence section, 22...Flow rate control valve, 23...
Motor, 24... Agitator patent applicant Sumitomo Electric Industries Co., Ltd. Patent attorney Tamamushi, Hisa Gobe

Claims (2)

【特許請求の範囲】[Claims] (1)  ガラス原料の気体を酸水素バーナから噴出さ
せて火炎加水分解し、該火炎加水分解によって生成する
粒状ガラスを棒状に堆積させて多孔質の光フアイバ用母
材を反応容器内で製造する光フアイバ用母材の製造方法
において、前記生成中の母材のまさに粒状ガラスの堆積
しつつある部分または該部分の近傍の表面温度を検出し
、核表面温度を前記反応容器に前記酸水素バーナの噴出
個所とは異なる個所から供給するガスの温度によって制
御することを特徴とする光7アイパ用母材の製造方法。
(1) A glass raw material gas is ejected from an oxyhydrogen burner to undergo flame hydrolysis, and granular glass produced by the flame hydrolysis is deposited in a rod shape to produce a porous optical fiber base material in a reaction vessel. In the method for manufacturing an optical fiber base material, the surface temperature of the part of the forming base material where the granular glass is being deposited or the vicinity of the part is detected, and the core surface temperature is measured in the reaction vessel by the oxyhydrogen burner. 1. A method for manufacturing a base material for Hikari 7 Eyepa, characterized in that the temperature is controlled by the temperature of gas supplied from a location different from the ejection location.
(2)前記表面温度の制御は、前記ガスを加熱または冷
却する手段と、該ガスを加熱または冷却する手段と前記
反応容器とを接続する配管の途中から前記ガスと伏異な
るガスを合流する手段と、骸異なるガスの流量を調節す
る手段°とからなることを特徴とする特許請求の範囲第
1項記載の光フアイバ用母材の製造方法。
(2) Control of the surface temperature includes means for heating or cooling the gas, and means for merging gas different from the gas from the middle of piping connecting the means for heating or cooling the gas and the reaction vessel. 2. The method of manufacturing an optical fiber preform according to claim 1, further comprising: and means for adjusting the flow rate of the different gases.
JP10961882A 1982-06-25 1982-06-25 Manufacture of base material for optical fiber Granted JPS593033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10961882A JPS593033A (en) 1982-06-25 1982-06-25 Manufacture of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10961882A JPS593033A (en) 1982-06-25 1982-06-25 Manufacture of base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS593033A true JPS593033A (en) 1984-01-09
JPS6121178B2 JPS6121178B2 (en) 1986-05-26

Family

ID=14514853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10961882A Granted JPS593033A (en) 1982-06-25 1982-06-25 Manufacture of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS593033A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372283U (en) * 1989-11-10 1991-07-22
WO2003062159A1 (en) * 2002-01-24 2003-07-31 Sumitomo Electric Industries, Ltd. Method of manufacturing glass particulate sedimentary body, and method of manufacturing glass base material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372283U (en) * 1989-11-10 1991-07-22
WO2003062159A1 (en) * 2002-01-24 2003-07-31 Sumitomo Electric Industries, Ltd. Method of manufacturing glass particulate sedimentary body, and method of manufacturing glass base material
US7143612B2 (en) 2002-01-24 2006-12-05 Sumitomo Electric Industries, Ltd. Method of manufacturing glass particulate sedimentary body, and method of manufacturing glass base material

Also Published As

Publication number Publication date
JPS6121178B2 (en) 1986-05-26

Similar Documents

Publication Publication Date Title
US3957474A (en) Method for manufacturing an optical fibre
US4062665A (en) Continuous optical fiber preform fabrication method
JP2809905B2 (en) Method and apparatus for producing porous glass preform
US5211732A (en) Method for forming a porous glass preform
CN1227171C (en) Process and apparatus for manufacturing a glass ingot from synthetic silica
JP4043768B2 (en) Manufacturing method of optical fiber preform
JPH10114535A (en) Production of optical fiber base material
EP0231022B1 (en) Apparatus for the production of porous preform of optical fiber
US4414008A (en) Process for producing optical fiber preform
JPH10245242A (en) Apparatus for producing porous glass base material for optical fiber
JPS593033A (en) Manufacture of base material for optical fiber
KR101157662B1 (en) Fabrication Apparatus of Porous Glass preform and Glass Preform For Optical Fiber Fabricated Thereby
JPH02102146A (en) Production of glass fine particle deposit
US5207813A (en) Method for producing glass article
JP5655418B2 (en) Method and apparatus for producing porous glass base material
JP7170555B2 (en) Manufacturing method of porous glass base material for optical fiber
JPH0480860B2 (en)
JPS6081035A (en) Manufacture of base material for optical fiber
JPH0971430A (en) Production of preformed material for optical fiber and production unit therefor
RU2245853C2 (en) Method of production of a porous billet of glass (alternatives)
JPS6041627B2 (en) Manufacturing method of optical fiber base material
JPS63307137A (en) Production of glass preform for optical fiber
KR101556635B1 (en) Constant weight powder feeding equipment for manufacturing quartz glass ingot
KR20190017078A (en) Automatic powder feeding method and system for manufacturing quartz glass ingot
JPH05319849A (en) Production of silica porous preform