JPS5929533B2 - Glass fiber for optical communication - Google Patents

Glass fiber for optical communication

Info

Publication number
JPS5929533B2
JPS5929533B2 JP51134992A JP13499276A JPS5929533B2 JP S5929533 B2 JPS5929533 B2 JP S5929533B2 JP 51134992 A JP51134992 A JP 51134992A JP 13499276 A JP13499276 A JP 13499276A JP S5929533 B2 JPS5929533 B2 JP S5929533B2
Authority
JP
Japan
Prior art keywords
weight
glass
core
component
optical communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51134992A
Other languages
Japanese (ja)
Other versions
JPS5360240A (en
Inventor
国英 沢村
武止 高野
直彦 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP51134992A priority Critical patent/JPS5929533B2/en
Publication of JPS5360240A publication Critical patent/JPS5360240A/en
Publication of JPS5929533B2 publication Critical patent/JPS5929533B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/022Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from molten glass in which the resultant product consists of different sorts of glass or is characterised by shape, e.g. hollow fibres, undulated fibres, fibres presenting a rough surface
    • C03B37/023Fibres composed of different sorts of glass, e.g. glass optical fibres, made by the double crucible technique
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/50Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/54Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with beryllium, magnesium or alkaline earth metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 本発明は芯ガラスと被覆ガラスとからなるステップ型の
光通信用ガラス繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a step-type glass fiber for optical communication comprising a core glass and a coated glass.

一般に、この種の光通信用ガラス繊維は芯の周囲にそれ
よりも小さい屈折率を有する被覆が設けられているもの
で、繊維の一端から芯へ入射させた光情報を、芯と被覆
との境界面での全反射を利用して芯内に閉じ込め、他端
へ伝えようとするものである。ところで、光を利用した
通信のうち、比較的低速の通信(<30Mb/s )で
は信頼性、経済性の点から光源として発光ダイオード(
LED)が利用されている。
Generally, this type of glass fiber for optical communication has a coating around the core with a smaller refractive index, and optical information incident on the core from one end of the fiber is transferred between the core and the coating. The idea is to use total reflection at the boundary surface to confine it within the core and transmit it to the other end. By the way, among communications using light, light-emitting diodes (light-emitting diodes) are used as light sources for relatively low-speed communications (<30 Mb/s) from the viewpoint of reliability and economy.
LED) are used.

このLEDはレーザに比して比較的拡がつた発光特性を
示すため、ここに用いる光通信用ガラス繊維は高開口数
(N、A)のもの、つまり受光面が大きくそれだけ多く
のパワーを伝送可能なものが、光伝送の効率化から好ま
しい。このため、光通信用ガラス繊維として芯と被覆と
の屈折率の差が比較的大きいものが検討され、たとえば
従来SiO2、Na2OおよびPbOからなる多成分系
ガラスを用い、この多成分系ガラスの組成害恰を適宜変
えることにより芯ガラスおよび被覆ガラスとして使用し
ガラス繊維を形成していた。しかしながら、このガラス
繊維は芯ガラスにPbOを含有するため散乱損失が高く
実用性の乏しいという致命的な欠点がある。一方、ステ
ップ型の光通信用ガラス繊維の製造方法は、主として二
重ルツボ法が採用されている。
Since this LED exhibits light emission characteristics that are relatively spread out compared to lasers, the glass fiber used for optical communication is one with a high numerical aperture (N, A), meaning that the light-receiving surface is large and can transmit more power. It is preferable to use one that is possible from the viewpoint of improving the efficiency of optical transmission. For this reason, glass fibers for optical communication that have a relatively large difference in refractive index between the core and the coating have been considered. Glass fibers were formed by using it as core glass and coating glass by changing the chemical properties as appropriate. However, since this glass fiber contains PbO in the core glass, it has a fatal drawback of high scattering loss and poor practicality. On the other hand, the double crucible method is mainly adopted as a method for producing step-type glass fibers for optical communication.

この方法は同芯円状に配置した内管端部および外管端部
のオリフィスから夫々溶融した芯ガラス、被覆ガラスを
同時に自然流下させ、線引きして光通信用ガラス繊維を
造るものである。しかし、この方法は線引き作業温度、
つまり芯ガラス、被覆ガラスの溶融温度を高くして粘性
を低く抑え(通常粘度が106〜103ポイズ)、オリ
フィスからの各ガラスの自然流下を容易ならしめる必要
がある。しかし、従来の芯材料、被覆材料としての各種
多成分系ガラスを二重ルツボ法にて光通信用ガラス繊維
を製造する場合、その多成分系ガラスを上述した粘度範
囲となるように線引き作業温度を高くすると、その多成
分系ガラス固有のガラス液相温度(ガラスの結晶化温度
)は低く、その線引き作業温度に近似してくる。このた
め線引き作業に際し、ガラスの一部に結晶を生じ易くな
り、この結晶化によつて得られたガラス繊維の光伝送損
失の増加、引張り強度の低下を招く欠点があつた。この
ようなことから、本発明者は上記欠点を解消するため鋭
意研究を重ねた結果、芯材料としてSiO2、アルカリ
金属酸化物、CaO,5BaOとZnOの合量物の成分
からなり、かつこれらの成分値を限定した多成分系ガラ
スを使用し、一方被覆材料としてSiO2、Al2O3
、アルカリ金属酸化物およびCaOの成分からなり、か
つこれらの成分値を限定した多成分系ガラスを使用する
ことにより、1耐水性、耐酸性、耐アルカリ性等の耐化
学的性質が良好で、2芯用多成分系ガラスと被覆用多成
分系ガラスの各ガラス液相温度が線引き作業温度より十
分に高く、その作業時の失透を防止し、かつ線引き作業
温度(600〜1000℃)において両多成分系ガラス
の粘性が類似して線引き時の寸法安定性が優れ、3芯用
多成分系ガラスと被覆用多成分系ガラスとの膨脹係数の
差(Δα)が小さく(Δαく3X10−6)、しかも4
芯の屈折率(n1)が1.5400〜1.60001被
覆の屈折率(N2)が1。4800〜1.5250の範
囲におさめられ、開口数(NA=J??T)が大きい等
種々優れた特性を有する光通信用ガラス繊維を見い出し
た。
In this method, a molten core glass and a covering glass are simultaneously allowed to naturally flow down from orifices at the ends of an inner tube and an outer tube arranged concentrically, respectively, and drawn to produce glass fibers for optical communications. However, this method has a wire drawing working temperature,
In other words, it is necessary to raise the melting temperature of the core glass and the covering glass to keep the viscosity low (normally the viscosity is 10 6 to 10 3 poise), and to facilitate the natural flow of each glass from the orifice. However, when manufacturing optical communication glass fiber using the double crucible method using various multi-component glasses as conventional core materials and coating materials, the drawing operation temperature is When the temperature is increased, the glass liquidus temperature (glass crystallization temperature) specific to the multicomponent glass is low and becomes close to the drawing temperature. For this reason, during the drawing operation, crystals tend to form in a part of the glass, and this crystallization has the disadvantage of increasing optical transmission loss and decreasing tensile strength of the glass fiber obtained. For these reasons, the inventors of the present invention have conducted intensive research to eliminate the above-mentioned drawbacks, and have found that the core material is composed of SiO2, an alkali metal oxide, CaO, a composite of 5BaO and ZnO, and A multi-component glass with limited component values is used, while SiO2, Al2O3 are used as coating materials.
By using a multi-component glass consisting of , alkali metal oxide, and CaO, and with limited values of these components, 1) it has good chemical resistance such as water resistance, acid resistance, and alkali resistance, and 2) The glass liquidus temperatures of the multi-component glass for the core and the multi-component glass for the coating are sufficiently higher than the wire drawing temperature to prevent devitrification during the wire drawing process, and to maintain both glass at the wire drawing temperature (600 to 1000°C). The viscosity of the multi-component glass is similar and the dimensional stability during drawing is excellent, and the difference in expansion coefficient (Δα) between the multi-component glass for three cores and the multi-component glass for coating is small (Δα ), and 4
The refractive index of the core (n1) is in the range of 1.5400 to 1.60000, the refractive index of the coating (N2) is in the range of 1.4800 to 1.5250, and the numerical aperture (NA=J??T) is large, etc. We have discovered a glass fiber for optical communications that has excellent properties.

以下、本発明を詳細に説明する。The present invention will be explained in detail below.

本発明の光通信用ガラス繊維は、 (A)重量比にて、SiO235〜55%、アルカリ金
属酸化物13〜21%及びCaO2〜12%、BaO5
〜35%、ZnO5〜20%で、かつこれらCaOとB
aOとZnOの合量物27〜52%からなる芯用多成分
ガラスと、(B重量比にて、SlO27O〜78%、A
l2O3l〜5%、アルカリ金属酸化物17〜23%及
びCaOl〜5%からなる被覆用多成分ガラスと、から
形成されるものである。
The glass fiber for optical communication of the present invention has (A) weight ratio of 35 to 55% SiO, 13 to 21% of alkali metal oxide, 2 to 12% of CaO, and BaO5.
~35%, ZnO5~20%, and these CaO and B
A multi-component glass for the core consisting of a total of 27 to 52% of aO and ZnO, (B weight ratio, SlO27O to 78%, A
A multi-component coating glass consisting of l2O3l~5%, alkali metal oxides 17~23% and CaOl~5%.

次に、上記芯用多成分系ガラスの各成分値を限定した理
由について述べる。
Next, the reason for limiting the values of each component of the multi-component glass for the core will be described.

(1A) SiO2 SiO2は芯の骨格を形成する成分であり、その含有量
を35重量%未満にすると、耐水性が低下し、一方その
含有量が55重量%を越えると、他の成分との関係から
高屈折率を有する芯が得られないからであり、好ましい
範囲は45〜55重量%である。
(1A) SiO2 SiO2 is a component that forms the core skeleton, and if its content is less than 35% by weight, water resistance will decrease, while if its content exceeds 55% by weight, it will not interact with other components. This is because a core with a high refractive index cannot be obtained due to the relationship, and the preferable range is 45 to 55% by weight.

(2A) アルカリ金属酸化物 アルカリ金属酸化物はNa2O.K2O、Li2Oから
なり、線引き作業性を改善する点で有効な成分である。
(2A) Alkali metal oxide The alkali metal oxide is Na2O. It consists of K2O and Li2O, and is an effective component in improving wire drawing workability.

アルカリ金属酸化物の含有量を13重量%未満にすると
、芯が硬くなつて被覆との粘性差が大きくなり、一方そ
の含有量が21重量%を越えると、耐水性が低下して好
ましくなく、望ましい範囲は15〜19重量%である。
(3A) CaOとBaOとZnOの合量物CaOの配
合割合は、2〜12重量%であり、2重量%未満ならば
、失透し易く、12重量%を越えると均一なガラスが、
得られない。
If the alkali metal oxide content is less than 13% by weight, the core will become hard and the difference in viscosity with the coating will increase, while if the content exceeds 21% by weight, water resistance will decrease, which is undesirable. The preferred range is 15-19% by weight.
(3A) The blending ratio of CaO, which is a combination of CaO, BaO, and ZnO, is 2 to 12% by weight. If it is less than 2% by weight, devitrification tends to occur, and if it exceeds 12% by weight, a uniform glass is
I can't get it.

望ましい範囲は、3〜8重量%である。ZnOの配合割
合は、5〜20重量%であり、5重量%未満ならば、失
透し易く、20重量%を越えると均一なガラスが得られ
ない。
A desirable range is 3-8% by weight. The blending ratio of ZnO is 5 to 20% by weight; if it is less than 5% by weight, devitrification tends to occur, and if it exceeds 20% by weight, a uniform glass cannot be obtained.

望ましい範囲は、8〜15重量%である。BaOの配合
害拾は、5〜35重量%であり、5重量%未満ならば、
所期の屈折率要求を満たすことができず、35重量%を
越えると失透し易くなる。
A desirable range is 8-15% by weight. The compounding damage of BaO is 5 to 35% by weight, and if it is less than 5% by weight,
If the content exceeds 35% by weight, the desired refractive index requirement cannot be met, and devitrification tends to occur.

望ましい範囲は、10〜32重量%である。また、この
CaO.ZnO,.BaOは、特に、屈折率の増加に寄
与する成分であり、合計量で、27重量%未満であると
、所期の屈折率要求を、満たすことができず、52重量
%を越えると失透し易くなる。
A desirable range is 10-32% by weight. Moreover, this CaO. ZnO,. BaO is a component that particularly contributes to increasing the refractive index; if the total amount is less than 27% by weight, the desired refractive index requirement cannot be met, and if it exceeds 52% by weight, devitrification occurs. It becomes easier to do.

望ましい範囲は、30〜48重量%である。また、上記
被覆用多成分系ガラスの各成分を限定した理由について
述べる。
A desirable range is 30-48% by weight. In addition, the reason for limiting each component of the multi-component glass for coating will be described.

(1B) SlO2 SlO2は被覆の骨格を形成するものであり、その含有
量が70重量%未満では耐酸性が低下し、一方その含有
量が78重量%を越えると、屈折率が低くなり過ぎるか
らであり、好ましい範囲は72〜76重量%である。
(1B) SlO2 SlO2 forms the skeleton of the coating, and if its content is less than 70% by weight, acid resistance will decrease, while if its content exceeds 78% by weight, the refractive index will become too low. The preferred range is 72 to 76% by weight.

(2B) Al2O3 Al2O3は被覆の耐水性の改善化に寄与するものであ
る。
(2B) Al2O3 Al2O3 contributes to improving the water resistance of the coating.

Al2O3の含有量が1重量%未満では耐水性の改善化
が期待できず、一方その含有量が5重量%を越えると、
失透し易くなるからであり、好ましい範囲は1〜4重量
%である。(3B) アルカリ金属酸化物アルカリ金属
酸化物は主にNa2O.K2O、Li2Oからなり、線
引き作業性を改善する点で有効な成分である。
If the content of Al2O3 is less than 1% by weight, no improvement in water resistance can be expected; on the other hand, if the content exceeds 5% by weight,
This is because devitrification tends to occur, and the preferable range is 1 to 4% by weight. (3B) Alkali metal oxides Alkali metal oxides are mainly Na2O. It consists of K2O and Li2O, and is an effective component in improving wire drawing workability.

アルカリ金属酸化物の含有量が17重量%未満では高温
粘性が高く、線引き作業が困難となり、一方その含有量
が23重量%を越えると、耐水性が低下するからであり
、好ましくは17〜22重量%の範囲である。(4B)
CaOCaOは耐水性の向上化、屈折率の増加の効果
を有するものである。
If the alkali metal oxide content is less than 17% by weight, the high temperature viscosity will be high and wire drawing will be difficult, while if the content exceeds 23% by weight, the water resistance will decrease, and preferably 17 to 22% by weight. % by weight. (4B)
CaOCaO has the effect of improving water resistance and increasing refractive index.

CaOの含有量が1重量%未満では所望の効果を充分達
成できず、一方その含有量が5重量%を越えると、失透
し易くなるからであり、好ましい範囲は2〜4.5重量
%の範囲である。次に本発明の実施例を説明する。
If the CaO content is less than 1% by weight, the desired effect cannot be sufficiently achieved, whereas if the content exceeds 5% by weight, devitrification tends to occur, and the preferable range is 2 to 4.5% by weight. is within the range of Next, examples of the present invention will be described.

実施例 1〜8 下記第1表〜第4表に示す如く組成割合が夫々異なる8
種の芯用多成分系ガラスおよび被覆用多成分系ガラスを
二重ルツボ法により、790℃の温度下で線引きして8
種の光通信用ガラス繊維(芯径80μ、外径150μ)
を得た。
Examples 1 to 8 8 with different composition ratios as shown in Tables 1 to 4 below
The multi-component glass for the seed core and the multi-component glass for the coating were drawn at a temperature of 790°C using the double crucible method.
Glass fiber for optical communication (core diameter 80μ, outer diameter 150μ)
I got it.

しかして、得られた各光通信用ガラス繊維の芯※くおよ
び被覆における屈折率(n)、開口数(芯の屈折率をn
1、被覆の屈折率をN2とした場合、f汽「警Xの計算
式から求められる)、熱膨脹係数(α)、軟化温度(T
s)、耐水性、耐酸性、耐アルカリ性、103、104
、105、106ポイズになる温度、失透傾向、並びに
それらガラス繊維の800nmの光を用いた場合の伝送
損失(DB/Km)を調べた。
Therefore, the refractive index (n) and numerical aperture (the refractive index of the core is n
1. When the refractive index of the coating is N2, the coefficient of thermal expansion (α), the softening temperature (T
s), water resistance, acid resistance, alkali resistance, 103, 104
, 105 and 106 poise, devitrification tendency, and transmission loss (DB/Km) of these glass fibers when using 800 nm light were investigated.

その結果を同第1表〜第4表に併記した。なお、耐水性
、耐酸性、耐アルカリ性は次のような試験により求めた
The results are also listed in Tables 1 to 4. Note that water resistance, acid resistance, and alkali resistance were determined by the following tests.

(1)耐水性;目開き0.5mm(1)JIS標準篩に
パスし、目開き0.3闘の同標準篩にパスしない粉末試
料5.07を、100m1の蒸留水に浸し沸騰湯浴中で
、1時間加熱した後、その溶液を0.01N−HCl溶
液で滴定し、その滴定した量(ml)で耐水性の優、劣
を求める。
(1) Water resistance: mesh size 0.5 mm (1) Powder sample 5.07 that passes a JIS standard sieve but does not pass the same standard sieve with a mesh size of 0.3 mm is soaked in 100 ml of distilled water and bathed in boiling water. After heating for 1 hour, the solution was titrated with a 0.01N HCl solution, and the titrated amount (ml) was used to determine whether the water resistance was good or bad.

(支)耐酸性:20.24%濃度のHCl水溶液に20
〜30メツシユの粉末試料を加え、1時間加熱した後の
減量割合(%)を求める。
(Support) Acid resistance: 20.20% in HCl aqueous solution with a concentration of 20.24%
~30 meshes of powder sample are added and the weight loss percentage (%) after heating for 1 hour is determined.

(3)耐アルカリ性;2N−NaOH水溶液に、20〜
30メツシユの粉末試料を加え、1時間加熱した時の減
量割合(%)を求める。
(3) Alkali resistance; 20 to 20% in 2N-NaOH aqueous solution
Add 30 mesh powder samples and heat for 1 hour to determine the weight loss rate (%).

Claims (1)

【特許請求の範囲】[Claims] 1 (A)重量比にて、SiO_235〜55%、アル
カリ金属酸化物13〜21%及びCaO2〜12%、B
aO5〜35%、ZnO5〜20%で、かつこれらCa
OとBaOとZnOの合量物27〜52%からなる芯用
多成分ガラスと、(B)重量比にて、SiO_270〜
78%、Al_2O_31〜5%、アルカリ金属酸化物
17〜23%及びCaO1〜5%からなる被覆用多成分
ガラスと、から形成される光通信用ガラス繊維。
1 (A) SiO_235-55%, alkali metal oxide 13-21% and CaO2-12%, B
aO5-35%, ZnO5-20%, and these Ca
A multi-component glass for the core consisting of a total of 27 to 52% of O, BaO and ZnO, and (B) SiO_270 to 270% by weight
78% Al_2O_31-5%, alkali metal oxide 17-23% and CaO 1-5% glass fiber for optical communication.
JP51134992A 1976-11-10 1976-11-10 Glass fiber for optical communication Expired JPS5929533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51134992A JPS5929533B2 (en) 1976-11-10 1976-11-10 Glass fiber for optical communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51134992A JPS5929533B2 (en) 1976-11-10 1976-11-10 Glass fiber for optical communication

Publications (2)

Publication Number Publication Date
JPS5360240A JPS5360240A (en) 1978-05-30
JPS5929533B2 true JPS5929533B2 (en) 1984-07-21

Family

ID=15141396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51134992A Expired JPS5929533B2 (en) 1976-11-10 1976-11-10 Glass fiber for optical communication

Country Status (1)

Country Link
JP (1) JPS5929533B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152633U (en) * 1984-09-07 1986-04-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152633U (en) * 1984-09-07 1986-04-09

Also Published As

Publication number Publication date
JPS5360240A (en) 1978-05-30

Similar Documents

Publication Publication Date Title
US4367012A (en) Optical glass fiber having cover glass of sodium zinc alumino borosilicate
JPS60155551A (en) Coating glass for optical fiber
US4418985A (en) Multi-component glass optical fiber for optical communication
US3607322A (en) Light transmitting glass fibers, core and cladding glass compositions
JPS621337B2 (en)
JP2001080933A (en) Crystal glass not containing lead and barium
WO1998002389A1 (en) Ultralow-loss silica glass and optical fibers made using the same
JPS5812213B2 (en) Highly weather resistant multi-component glass fiber for optical communications
US3085887A (en) Glass composition
US4265667A (en) Step-type light-transmitting body having excellent water resistance
AU735688B2 (en) Glass fiber composition
JPH10167753A (en) Lead-free crown glass
JPS5929533B2 (en) Glass fiber for optical communication
JPS5839782B2 (en) Glass fiber for optical communication
JPS6316349B2 (en)
JPS5915100B2 (en) Glass fiber for optical communication
JPS6270245A (en) Optical fiber having environmental resistance
JPS62162649A (en) Glass composition for fiber
JPS5849499B2 (en) Highly weather resistant multi-component glass fiber for optical communications
JPS6213293B2 (en)
US3198642A (en) Glass compositions
JPS5953224B2 (en) Weather-resistant multi-component glass fiber for optical communications
JPS5929534B2 (en) Glass fiber for optical communication
JPS6010000B2 (en) Step type optical transmission body
JPS59169953A (en) Barium siicate glass having acid resistance