JPS5929282B2 - Automatic operation method of dehydrator - Google Patents

Automatic operation method of dehydrator

Info

Publication number
JPS5929282B2
JPS5929282B2 JP7225777A JP7225777A JPS5929282B2 JP S5929282 B2 JPS5929282 B2 JP S5929282B2 JP 7225777 A JP7225777 A JP 7225777A JP 7225777 A JP7225777 A JP 7225777A JP S5929282 B2 JPS5929282 B2 JP S5929282B2
Authority
JP
Japan
Prior art keywords
sludge
dehydrator
amount
time
calculation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7225777A
Other languages
Japanese (ja)
Other versions
JPS547673A (en
Inventor
忠 加藤
修 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7225777A priority Critical patent/JPS5929282B2/en
Publication of JPS547673A publication Critical patent/JPS547673A/en
Publication of JPS5929282B2 publication Critical patent/JPS5929282B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、汚泥(スラッジとも云う)の脱水作業をお
こなう脱水機の自動運転方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic operation system for a dehydrator that dewaters sludge.

近年廃棄物の量が急激に増加し、その効果的な処理方式
の開発が社会的に重要な課題になっているが、浄水場、
下水処理場、めっき工場などの産業排水処理プラントか
ら出てくる汚泥もこの対象になっている。
The amount of waste has increased rapidly in recent years, and the development of effective treatment methods has become a socially important issue.
Sludge from industrial wastewater treatment plants such as sewage treatment plants and plating factories is also subject to this system.

これらの汚泥は含水率90%以上のコロイド性懸濁物で
あり、その処理としては、二次公害を出さぬように脱水
減量をおこなう必要がある。
These sludges are colloidal suspensions with a water content of 90% or more, and their treatment requires dehydration to reduce the amount of sludge so as not to cause secondary pollution.

そこで従来は、汚泥の脱水作業は次のようにしておこな
われてきた。
Conventionally, sludge dewatering work has been carried out as follows.

先ず汚泥の含水率を手作業で分析することにより適幽な
濾過時間を想定、し、脱水機に取付けたタイマーを設定
して脱水作業をおこなわせる。
First, by manually analyzing the water content of the sludge, an appropriate filtration time is estimated, and a timer attached to the dehydrator is set to perform the dewatering process.

その上でまた脱水機から取り出されている脱水後の汚泥
ケーキの含水率を調べ、それが不充分な値であれば更に
タイマーをセットし直して脱水作業を継続する。
Then, the moisture content of the dehydrated sludge cake taken out from the dehydrator is checked, and if it is found to be an insufficient value, the timer is reset and the dewatering operation is continued.

最適な濾過時間となるようにこのような試行錯誤をくり
かえしながら脱水機の運転をおこなっていた。
The dehydrator was operated through repeated trial and error in order to achieve the optimal filtration time.

だから汚泥の性質が一定であれば、試行錯誤をくりかえ
して得た経験が役立つが、汚泥の性質が異なってしまう
と、またーから試行錯誤をくりかえすことになりきわめ
て繁雑であった。
Therefore, if the properties of the sludge were constant, the experience gained through repeated trial and error would be useful, but if the properties of the sludge were different, trial and error would have to be repeated over and over again, which was extremely tedious.

また脱水の前処理としておこなわれる薬品の注入量が適
正なものであったか否かとも関連して濾過時間は定まる
ので、脱水作業の管理は困難なものがあった。
In addition, the filtration time is determined depending on whether the amount of chemicals injected as a pre-treatment for dehydration is appropriate, making it difficult to manage the dehydration work.

この発明は、以上の点にかんがみてなされたものであっ
て、脱水機の最適運転を計算機制御により可能としたと
ころの自動運転方式を提供せんとするものである。
The present invention has been made in view of the above points, and aims to provide an automatic operation system that enables optimal operation of a dehydrator through computer control.

この発明の一実施例を図によって説明する。An embodiment of the invention will be described with reference to the drawings.

図において、1は汚泥供給配管、2は汚泥脱水機、3は
ろ液排出管、4は汚泥流量検出端、5は汚泥流量発信器
、6は汚泥濃度検出端、7は汚泥濃度発信器、8はろ液
流量検出端、9は発信器又はカウンタ、10は計算装置
、11は脱水機運転制御回路、12は汚泥供給ポンプを
それぞれ示す。
In the figure, 1 is a sludge supply pipe, 2 is a sludge dehydrator, 3 is a filtrate discharge pipe, 4 is a sludge flow rate detection end, 5 is a sludge flow rate transmitter, 6 is a sludge concentration detection end, 7 is a sludge concentration transmitter, and 8 1 shows a filtrate flow rate detection end, 9 a transmitter or counter, 10 a calculation device, 11 a dehydrator operation control circuit, and 12 a sludge supply pump.

次に動作を説明する。Next, the operation will be explained.

脱水機2の運転は、汚泥が汚泥供給配管1から脱水機2
へ所定量供給されたところで所定時間だけ脱水運転をお
こない、この後、脱水されて残った汚泥ケーキを排出す
るというサイクルで繰返しおこなわれる。
During operation of the dehydrator 2, sludge is transferred from the sludge supply pipe 1 to the dehydrator 2.
When a predetermined amount of sludge is supplied to the tank, a dewatering operation is performed for a predetermined period of time, and then the remaining sludge cake is discharged after dewatering, and the cycle is repeated.

脱水過程で生じる涙液は排出管3を通して排出される。The lachrymal fluid produced during the dehydration process is drained through the drain tube 3.

脱水機は例えば加圧濾過式、回転分離式など、任意適宜
のものであってよい。
The dehydrator may be of any suitable type, such as a pressure filtration type or a rotary separation type.

この方式において、汚泥流量検出端4から汚泥流量発信
器5を経て得られた汚泥流量信号と、汚泥濃度検出端6
から汚泥濃度発信器7を経て得られた汚泥濃度信号と、
P液流量検出端8から発信器(又はカウンタ)9を経て
得られた涙液排水量信号と、を用いて計算装置10にお
いて所要の演算がおこなわれて、脱水機2の最適運転を
実現するタイムスケジュールが作り出され、そしてこの
タイムスケジュールは運転制御回路11を介して脱水機
2を稼動させるのである。
In this method, the sludge flow rate signal obtained from the sludge flow rate detection end 4 via the sludge flow rate transmitter 5 and the sludge concentration detection end 6
a sludge concentration signal obtained from the sludge concentration transmitter 7;
The necessary calculations are performed in the calculation device 10 using the lachrymal fluid drainage amount signal obtained from the P liquid flow rate detection terminal 8 via the transmitter (or counter) 9, and the time required to realize the optimal operation of the dehydrator 2 is determined. A schedule is created, and this time schedule is used to operate the dehydrator 2 via the operation control circuit 11.

計算装置10でおこなわれる最適制御演算手順(サイク
ルタイム制御)の一例を第2図のフローチャートを参照
して説明する。
An example of the optimal control calculation procedure (cycle time control) performed by the calculation device 10 will be explained with reference to the flowchart of FIG. 2.

一般に脱水機において脱水開始から時間θ後に至るまで
の涙液総量を■とすると、Ruthの式として知られて
いるように次の式が成り立つ。
In general, if the total amount of lachrymal fluid from the start of dehydration to after a time θ in a dehydrator is represented by ■, then the following equation, known as Ruth's equation, holds true.

θ/V−(V/K)+2Vo/K (1)ここ
において K:定圧沢過係数X濾過面積2またはVoは
次の式で与えられる。
θ/V-(V/K)+2Vo/K (1) where K: constant pressure filtration coefficient X filtration area 2 or Vo is given by the following formula.

■o−A−Rm/(αC) (2)但
し、A:濾過面積、Rm: P布の抵抗、α:汚泥ケー
キの比抵抗、C:汚泥の比重、である。
(2) o-A-Rm/(αC) (2) However, A: filtration area, Rm: resistance of P cloth, α: specific resistance of sludge cake, C: specific gravity of sludge.

先ずフローチャートに示されているように、脱水運転過
程において2点以上のθと■の測定値を用いてKとVo
の値を(1)式から決定する。
First, as shown in the flowchart, K and Vo are determined using the measured values of θ and ■ at two or more points during the dehydration operation process.
The value of is determined from equation (1).

次に、汚泥ケーキの含水率βを一定に保つことを目標と
し、βの値を人為的に設定する。
Next, the value of β is artificially set with the goal of keeping the water content β of the sludge cake constant.

βの値がきまれば、次の(3)式と(4)式により、予
想される涙液総量Vsと標準濾過時間θ8とを求める。
Once the value of β is determined, the expected total amount of tear fluid Vs and standard filtration time θ8 are determined using the following equations (3) and (4).

V s’ −Q (σ。V s' −Q (σ.

−Cs/(1−β))/σ (3)θs −(’V2S
+ 2 VoVs ) / K (4)但
し Q:汚泥量 C8:汚泥SS濃度 σ。
-Cs/(1-β))/σ (3)θs -('V2S
+ 2 VoVs ) / K (4) However, Q: Sludge amount C8: Sludge SS concentration σ.

:汚泥密度 σ:P液密度ここでQは汚泥流量検出端
4で測定され、Csは汚泥濃度検出端6で測定される。
: Sludge density σ: P liquid density Here, Q is measured at the sludge flow rate detection end 4, and Cs is measured at the sludge concentration detection end 6.

σ。とσは固定的な物性値である。σ. and σ are fixed physical property values.

そこで標準濾過時間θSにより脱水機の運転をおこない
、そのときの■の値をF液量検出端9にて測定する。
Therefore, the dehydrator is operated according to the standard filtration time θS, and the value of ■ at that time is measured at the F liquid amount detection terminal 9.

その結果、V −Vsであれば、脱水時間θの変更は不
要であるが、V\Vsであれば。
As a result, if it is V - Vs, there is no need to change the dehydration time θ, but if it is V\Vs.

θSと■の値から次の式(5)によってKの値を変更す
る。
The value of K is changed using the following equation (5) from the values of θS and ■.

変更後のKの値をに′とすればに′=(■2+2■■o
)/θ5(5) 次に、このに′を用いて濾過時間の変更を次の式(6)
によりおこなう。
If the value of K after change is ′, then ′=(■2+2■■o
)/θ5 (5) Next, using this value, change the filtration time using the following equation (6).
This is done by

変更後のp遅時間をθ′とすれば θ′=(V%+2VoVs)/に’ (6
)以下同様の手順を繰り返して最適制御に達する。
If the p delay time after change is θ', then θ' = (V% + 2VoVs)/' (6
) The same procedure is then repeated to reach optimal control.

以上説明したように、この発明による自動運転方式によ
るときは、従来おこなわれていた如き、手作業による汚
泥ケーキの含水率分析が不要になることは勿論であるが
、そのほか、運転方式が計算機による最適化制御である
ため、脱水機の運転のタイムスケジュールを自動的に変
更できるような制御が可能であり、さらにまた脱水作業
の前処理としておこなわれる薬品の注入の比率が変化し
てもその変化に対応した最適の沢過時間を求めることが
できるので、常に安定した脱水処理をおこなうことがで
きる。
As explained above, when using the automatic operation method according to the present invention, it goes without saying that there is no need to manually analyze the water content of sludge cake as was done in the past. Since it is an optimization control, it is possible to automatically change the time schedule of the dehydrator operation, and even if the ratio of chemical injection performed as pre-treatment for dehydration changes. Since it is possible to find the optimum drainage time corresponding to

この発明による運転方式は、下水の終末処理場の汚泥と
か、浄水場の汚泥、或は工場排水から出てくる汚泥など
の比較的大規模な処理設備における脱水機の制御に適用
して効果がある。
The operating method according to the present invention can be effectively applied to control dehydrators in relatively large-scale treatment facilities for treating sludge from sewage treatment plants, sludge from water treatment plants, and sludge from industrial wastewater. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す図であり、第2図は
、この発明の自動運転方式において計算装置内でおこな
われる最適制御演算手順(サイクルタイム制御)の一例
を示すフローチャートである。 図において、1は汚泥供給配管、2は汚泥脱水機、3は
ろ液排出管、4は汚泥流量検出端、5は汚泥流量発信器
、6は汚泥濃度検出端、Tは汚泥濃度発信器、8はろ液
流量検出端、9は発信器又はカウンタ、10は計算装置
、11は運転制御回路。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a flowchart showing an example of the optimal control calculation procedure (cycle time control) performed within the computing device in the automatic driving system of the present invention. . In the figure, 1 is a sludge supply pipe, 2 is a sludge dehydrator, 3 is a filtrate discharge pipe, 4 is a sludge flow rate detection end, 5 is a sludge flow rate transmitter, 6 is a sludge concentration detection end, T is a sludge concentration transmitter, and 8 1 is a filtrate flow rate detection terminal, 9 is a transmitter or counter, 10 is a calculation device, and 11 is an operation control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 脱水機と、この脱水機の運転を制御する運転制御回
路と、脱水機に供給する汚泥の濃度および量ならびに脱
水機から排出されるP液量をそれぞれ検出する手段と、
この検出手段により検出された汚泥濃度、汚泥量、P液
量および外部から設定された汚泥ケーキの含水率を入力
として、脱水機の標準濾過時間およびこの標準ア過時間
に基づく予想P液量を算出して前記運転制御回路に運転
タイムスケジュールを与える計算装置とからなり、各運
転過程で前記計算装置から与えられる予想ろ液量と前記
検出手段で検出された実際のF液量とを比較し、偏差が
ある場合には、前記計算装置により前記標準濾過時間を
修正しながら運転を続けることにより、最適濾過時間を
求めるようにしたことを特徴とする脱水機の自動運転方
式。
1. A dehydrator, an operation control circuit that controls the operation of the dehydrator, and means for detecting the concentration and amount of sludge supplied to the dehydrator and the amount of P liquid discharged from the dehydrator,
By inputting the sludge concentration, sludge amount, P liquid amount detected by this detection means, and the water content of the sludge cake set from the outside, the standard filtration time of the dehydrator and the expected P liquid amount based on this standard drying time are calculated. and a calculation device that calculates and provides an operation time schedule to the operation control circuit, and compares the expected filtrate amount given from the calculation device and the actual F liquid amount detected by the detection means in each operation process. . If there is a deviation, the standard filtration time is corrected by the calculation device and the operation is continued to find the optimum filtration time.
JP7225777A 1977-06-20 1977-06-20 Automatic operation method of dehydrator Expired JPS5929282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7225777A JPS5929282B2 (en) 1977-06-20 1977-06-20 Automatic operation method of dehydrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7225777A JPS5929282B2 (en) 1977-06-20 1977-06-20 Automatic operation method of dehydrator

Publications (2)

Publication Number Publication Date
JPS547673A JPS547673A (en) 1979-01-20
JPS5929282B2 true JPS5929282B2 (en) 1984-07-19

Family

ID=13484051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7225777A Expired JPS5929282B2 (en) 1977-06-20 1977-06-20 Automatic operation method of dehydrator

Country Status (1)

Country Link
JP (1) JPS5929282B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127609A (en) * 1983-01-07 1984-07-23 Kubota Ltd Method for supplying sludge of press dehydrator

Also Published As

Publication number Publication date
JPS547673A (en) 1979-01-20

Similar Documents

Publication Publication Date Title
US4465593A (en) Recovery of metal from waste water by chemical precipitation
DE2914145C3 (en) Process for reducing the demand for process water and the amount of wastewater from thermal power plants
JPS5929282B2 (en) Automatic operation method of dehydrator
DE2641369A1 (en) PROCESS FOR DESULFURATION OF EXHAUST GASES USING THE LIME PLASTER PROCESS
JP7335160B2 (en) Sludge coagulation dewatering device and its control method
JPH09290273A (en) Method for adjusting amount of flocculant to be added and device therefor
JPS61259709A (en) System for operation control of electroosmotic dehydrator
KR100502192B1 (en) A pre-treatment apparatus of high efficiency for sludge dewatering
JPH04305206A (en) Flocculating and filtration tank for water treatment
Cox et al. Chemical dosing philosophies for a water treatment plant: results of some pilot plant experimentation
CN219342001U (en) Device for controlling accurate dosing of sludge centrifugal dehydration
JPH10180239A (en) Waste water monitoring system and waste water treating system
RU2712665C1 (en) Method of automatic control of gas drying process at plants for complex gas treatment in conditions of the north
JPS60197300A (en) Method and apparatus for dehydrating sludge
JPH08294603A (en) Coagulation treating apparatus
JPS61125415A (en) Flocculating sedimentation apparatus
KR200219763Y1 (en) Dehydrator of waste sludge
JP3414162B2 (en) Control performance evaluation method for automatic control systems
RU2229445C2 (en) Method of automatic control of process of industrial waste water purification
JPS5524518A (en) Analysis and estimate control method for activated sludge process waste water treatment
JPS5884090A (en) Treatment of water containing fluorine
JPS6071088A (en) Treatment of acid washed concentrated sludge waste liquid
JPS6329639B2 (en)
SU724171A1 (en) Method of automatic control of ion-exchange filter washing operation
KR19980073145A (en) Automatic control device of flocculant using gauss-fuzzy logic