JPS5929172B2 - Reductive addition reaction method for aromatic hydrocarbons - Google Patents

Reductive addition reaction method for aromatic hydrocarbons

Info

Publication number
JPS5929172B2
JPS5929172B2 JP55048760A JP4876080A JPS5929172B2 JP S5929172 B2 JPS5929172 B2 JP S5929172B2 JP 55048760 A JP55048760 A JP 55048760A JP 4876080 A JP4876080 A JP 4876080A JP S5929172 B2 JPS5929172 B2 JP S5929172B2
Authority
JP
Japan
Prior art keywords
acid
benzene
catalyst
reaction
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55048760A
Other languages
Japanese (ja)
Other versions
JPS55162727A (en
Inventor
裕 安原
賢貴 西野
誠吉 松久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP55048760A priority Critical patent/JPS5929172B2/en
Publication of JPS55162727A publication Critical patent/JPS55162727A/en
Publication of JPS5929172B2 publication Critical patent/JPS5929172B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はベンゼンまたは低級アルキルベンゼン(以下総
称して芳香族炭化水素と称する)に、周期律表第■族貴
金属触媒、強酸ならび水または低級アルキルカルボン酸
(以下単に有機酸と称する)の存在下で、水素添加して
シクロヘキサノール誘導体を得る方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides benzene or lower alkylbenzenes (hereinafter collectively referred to as aromatic hydrocarbons), a noble metal catalyst from group Ⅰ of the periodic table, a strong acid and water or a lower alkylcarboxylic acid (hereinafter simply referred to as an organic acid). The present invention relates to a method for obtaining cyclohexanol derivatives by hydrogenation in the presence of cyclohexanol derivatives.

シクロヘキサノール類、あるいはそのエステル類は溶剤
や合成高分子材料の原料など極めて重要な化学工業の素
原料である。
Cyclohexanols or their esters are extremely important raw materials for the chemical industry, such as solvents and raw materials for synthetic polymer materials.

従来までは、シクロヘキサノールを例にすれば、ベンゼ
ンから出発する場合にはベンゼンを周期表第■族金属触
媒を用いてシクロヘキサンまで完全水素添加して、しか
るのちにホウ酸触媒または遷移金属化合物触媒を用いて
酸素で酸化してシクロヘキサノールとシクロヘキサノン
の混合物を得るとか、ベンゼンを硫酸でスルホン化して
アルカリ融解にするとか、ベンゼンに酸触媒の存在下プ
ロピレンを付加させてクメンとし、酸素で酸化してクメ
ンハイドロペルオキシドとして、さらに酸触媒で分解す
るとかによりー旦フェノールを得て、第■族金属触媒に
より水素添加してシクロヘキサノールを得るなどの方法
で製造されてきた。
Conventionally, using cyclohexanol as an example, when starting from benzene, benzene was completely hydrogenated to cyclohexane using a metal catalyst from Group I of the periodic table, and then hydrogenated using a boric acid catalyst or a transition metal compound catalyst. A mixture of cyclohexanol and cyclohexanone is obtained by oxidizing with oxygen using sulfuric acid, sulfonating benzene with sulfuric acid to form an alkaline melt, or adding propylene to benzene in the presence of an acid catalyst to form cumene, which is then oxidized with oxygen. It has been produced as cumene hydroperoxide by decomposing it with an acid catalyst to first obtain phenol, and then hydrogenating it with a Group I metal catalyst to obtain cyclohexanol.

これらの従来工業的に実施されてきた方法は、いずれも
水素添加工程を含み、その工程に関する限りは原料の転
化率は十分高く、かつ生成物の選択率は極めて高く、ほ
とんど定量的という好結果が得られている。しかしシク
ロヘキサン類あるいはベンゼン核に水酸基を導入する工
程は、複雑な工程の組み合わせを必要とするとか、比較
的低転化率に抑えなければ生成物の選択率を高く維持で
きないとかの理由で決して満足すべきものでなく、より
合理的なシクロヘキサノールの製造法の開発が強く望ま
れている。一方、ベンゼンを水素添加する場合に、還元
反応の中間体であるシクロヘキセンを効率よく取り出す
ことができれば、シクロヘキセンは硫酸触媒を用いて比
較的効率よく水和でき、ベンゼンから効率のよいシクロ
ヘキサノール製造法となり得るのでベンゼンからシクロ
ヘキセンまでの選択的部分還元法の試みも数多くある。
たとえばナイロンあるいはポリアクリロニトリルに担持
させた白金触媒を用いたり、低級アルコール共存下にル
テニウム触媒を用いたり、あるいは水およびアルカリ剤
と周期表第族元素を含有する複雑な触媒組成物を用いる
ことが提案されている。しかし、これらの従来公知の方
法ではシクロヘキセンの選択率を高めるためには、通常
シクロヘキセンはベンゼンよりも容易に還元されるので
、転化率を著しく低く抑えることが必須であつたり、複
雑な触媒生成物を用いるために工業的に連続使用するこ
とが著しく困難であつたりして、いずれも実用的なシク
ロヘキセンあるいはシクロヘキサノールの経済的製造法
とはなつていない。かかる現状に鑑み、発明者らはシク
ロヘキサノール誘導体類の新規かつ経済的な製造法を鋭
意検討し、ベンゼンまたは低級アルキルベンゼンを、強
酸ならびに水または低級アルキルカルボン酸の媒体中、
周期表族の貴金属触媒の存在下に水素で還元して、次の
一般式で表わすシクロヘキサノール誘導体を製造するこ
とを特徴とする芳香族炭化水素の還元的付加反応法を完
成した。
All of these conventional industrially implemented methods include a hydrogenation step, and as far as that step is concerned, the conversion rate of the raw material is sufficiently high, and the selectivity of the product is extremely high, resulting in almost quantitative results. is obtained. However, the process of introducing hydroxyl groups into cyclohexanes or benzene nuclei is never satisfactory because it requires a complex combination of steps and it is not possible to maintain high product selectivity unless the conversion rate is kept relatively low. There is a strong desire to develop a more rational method for producing cyclohexanol. On the other hand, if cyclohexene, which is an intermediate in the reduction reaction, can be efficiently removed when benzene is hydrogenated, cyclohexene can be hydrated relatively efficiently using a sulfuric acid catalyst, and this is an efficient method for producing cyclohexanol from benzene. Therefore, there are many attempts at selective partial reduction of benzene to cyclohexene.
For example, it has been proposed to use a platinum catalyst supported on nylon or polyacrylonitrile, a ruthenium catalyst in the coexistence of a lower alcohol, or a complex catalyst composition containing water, an alkaline agent, and a group element of the periodic table. has been done. However, in order to increase the selectivity of cyclohexene in these conventionally known methods, it is necessary to keep the conversion rate extremely low because cyclohexene is usually reduced more easily than benzene, and it is necessary to keep the conversion rate extremely low, or to increase the selectivity of cyclohexene. Because of the use of cyclohexene or cyclohexanol, it is extremely difficult to use them continuously on an industrial scale, and none of them has become a practical and economical method for producing cyclohexene or cyclohexanol. In view of the current situation, the inventors have intensively studied a new and economical method for producing cyclohexanol derivatives, and have prepared benzene or lower alkylbenzene in a medium of strong acid and water or lower alkyl carboxylic acid.
We have completed a reductive addition reaction method for aromatic hydrocarbons, which is characterized by producing a cyclohexanol derivative represented by the following general formula by reducing it with hydrogen in the presence of a noble metal catalyst from the periodic table group.

ただし、前記一般式においてAcは水素または低級アル
キルカルボン酸残基であり、Rは低級アルキル基であり
、そしてnは011または2の整数である。
However, in the general formula, Ac is hydrogen or a lower alkyl carboxylic acid residue, R is a lower alkyl group, and n is an integer of 011 or 2.

本発明の反応のメカニズムの詳細は必ずしも明確ではな
いが、本発明が従来公知の技術、特にベンゼンからシク
ロヘキセンへの選択的部分還元法よりも、さらに実用的
に有利である点について次のように説明される。ベンゼ
ンの水素化反応のメカニズムは次のように考えられる。
通常ベンゼン水素化触媒では1〜5の反応が6の反応に
比較して十分速く、シクロヘキセン()の生成がほとん
ど認められないが、上述の特殊な触媒系では1〜5の反
応、とくに4の反応速度に比較して6の反応速度も早め
られ、若干のの生成が認められる。
Although the details of the reaction mechanism of the present invention are not necessarily clear, the practical advantages of the present invention over conventionally known techniques, particularly the selective partial reduction method from benzene to cyclohexene, are as follows. explained. The mechanism of the hydrogenation reaction of benzene is thought to be as follows.
Normally, with a benzene hydrogenation catalyst, reactions 1 to 5 are sufficiently fast compared to reaction 6, and almost no cyclohexene () is produced, but with the above-mentioned special catalyst system, reactions 1 to 5, especially The reaction rate of 6 was also accelerated compared to the reaction rate, and some formation of 6 was observed.

しかし、ベンゼン(1)の転化率を高め、目的生成物の
収量を高めようとすると6の逆反応7も無視できなくな
るのでの収量を高めることは困難である。しかるに本発
明では、このようなルートで生成するには勿論のこと、
さらに反応性の高い還元中間体(および)にも酸または
水を付加させるので目的としない完全水素化生成物シク
ロヘキサン()の生成は抑えられる。さらに生成物シク
ロヘキサノール誘導体はかかる反応条件下で比較的安定
であつて、逆反応7も抑えられるので、Iの転化率を高
め、目的生成物のシクロヘキサノール誘導体の収量を高
めることも可能となる。このほか、生成物としてシクロ
ヘキセンよりも有用性の高いシクロヘキサノール誘導体
が一段の反応で直接得られることや、原料のベンゼンや
副生するシクロヘキサンとの分離が容易であることもま
た利点である。次に本発明の実施態様について説明する
However, if an attempt is made to increase the conversion rate of benzene (1) and the yield of the desired product, the reverse reaction 7 of 6 cannot be ignored, making it difficult to increase the yield. However, in the present invention, it goes without saying that it is possible to generate by such a route,
Furthermore, since acid or water is added to the highly reactive reduced intermediate (and), the production of the unintended completely hydrogenated product cyclohexane () can be suppressed. Furthermore, the product cyclohexanol derivative is relatively stable under such reaction conditions, and the reverse reaction 7 can be suppressed, making it possible to increase the conversion rate of I and increase the yield of the desired product, the cyclohexanol derivative. . Other advantages include that a cyclohexanol derivative, which is more useful than cyclohexene, can be directly obtained as a product in a single reaction, and that it can be easily separated from the raw material benzene and the by-product cyclohexane. Next, embodiments of the present invention will be described.

本発明に用い得る出発原料の芳香族炭化水素は前記した
とおり、ベンゼンやトルエン、エチルベンゼン、クメン
およびキシレン等の低級アルキルベンゼンで、特にベン
ゼンが好ましい。また触媒の第族貴金属触媒の活性を著
しく被毒させる成分を有しないものであれば、その品質
に特に制限はなく、通常の水素化に用いられる程度のも
のが好ましく用いられる。次に芳香族炭化水素の水素化
中間体への付加反応に用いられる触媒の強酸としては2
5℃の水中における酸性解離定数Pkaが3.0より小
さいプロトン酸または反応条件下でこれと同程度以上の
酸触媒能を有するルイス酸が好ましい。さらに具体的な
好ましい強酸を例示すれば、硫酸、リン酸、硫酸水素ナ
トリウム、硫酸水素カリウム、硫酸水素アンモニウム、
ト1ノフルオル酢酸、トリフルオルメタンスルホン酸、
ベンゼンスルホン酸、トルエンスルホン酸、アルカンス
ルホン酸、カチオン交換樹脂、三フツ化ホウ素、リンタ
ングステン酸、ケイタングステン酸、リンモリブデン酸
、ケイモリプデン酸などのヘテロポリ酸およびアルミナ
、シリカ、シリカアルミナ、チタニア、各種ゼオライト
などの固体酸あるいはこれらの混合物を挙げることがで
きる。また付加反応試薬としては水および有機酸が用い
られる。有機酸、即ち低級アルキルカルボン酸としては
炭素数6以下のギ酸、酢酸、プロピオン酸、イソ酪酸、
カプロン酸、グリコール酸、ε−オキシカプロン酸、シ
ユウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸
を挙げることができ、特に酢酸が最も好ましい。強酸の
使用量は強酸と水または有機酸の全モル数を基準に0.
01モル%以上、好ましくは2モル%以上とする。なお
、プロトン性酸素酸の濃度が高い場合には生成物中に強
酸のシクロヘキシルエステルの割合が多い傾向がみられ
る。
As described above, the aromatic hydrocarbons that can be used as starting materials in the present invention are lower alkylbenzenes such as benzene, toluene, ethylbenzene, cumene, and xylene, and benzene is particularly preferred. There is no particular restriction on the quality of the catalyst as long as it does not contain components that significantly poison the activity of the group noble metal catalyst, and those of the level used in ordinary hydrogenation are preferably used. Next, the strong acid of the catalyst used in the addition reaction of aromatic hydrocarbons to the hydrogenation intermediate is 2
A protic acid having an acidic dissociation constant Pka in water at 5° C. of less than 3.0 or a Lewis acid having an acid catalytic ability of the same level or higher under the reaction conditions is preferred. More specific examples of preferred strong acids include sulfuric acid, phosphoric acid, sodium hydrogen sulfate, potassium hydrogen sulfate, ammonium hydrogen sulfate,
trifluoroacetic acid, trifluoromethanesulfonic acid,
Heteropolyacids such as benzenesulfonic acid, toluenesulfonic acid, alkanesulfonic acid, cation exchange resin, boron trifluoride, phosphotungstic acid, silicotungstic acid, phosphomolybdic acid, silicomolybdic acid, and alumina, silica, silica alumina, titania, various Solid acids such as zeolites or mixtures thereof can be mentioned. Furthermore, water and organic acids are used as addition reaction reagents. Organic acids, that is, lower alkyl carboxylic acids having 6 or less carbon atoms, include formic acid, acetic acid, propionic acid, isobutyric acid,
Mention may be made of caproic acid, glycolic acid, ε-oxycaproic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, and adipic acid, with acetic acid being most preferred. The amount of strong acid to be used is 0.00000000000000000000000000000000,000.
01 mol% or more, preferably 2 mol% or more. Note that when the concentration of protic oxyacid is high, there is a tendency for the proportion of cyclohexyl ester of a strong acid to be high in the product.

また反応系中の原料の芳香族炭化水素の濃度は0.1〜
70m01%が好ましく、さらに2.0〜40m01%
が特に好ましい。本発明で用いられる周期表第族貴金属
触媒はルテニウム、ロジウム、パラジウム、オスミウム
、イリジウムおよび白金のいずれでもよいが、特にルテ
ニウムおよびロジウムが好ましい。またその形状には特
に制限はなく通常の芳香族炭化水素の水素化に用い得る
ものであればよく、スポンジ状のもの、白金黒やルテニ
ウム黒のような微粉末状のもの、コロイド歌のもの、あ
るいは活性炭、アルミナ、シリカ、シリカアルミナ、ポ
リア、ゼオライト、石綿、硫酸バリウム、イオン交換樹
脂、固体酸などの担体付のもの、さらに銅、銀、金など
との合金となつたものなどが好ましく用い得る。また上
述のように周期表第族貴金属が金属状に遊離したものば
かりでなく、酸化物や塩化物のように化合物として反応
系に使用することも可能である。本発明で用いられる強
酸が、反応系中で不溶である場合には、この不溶性強酸
を、強酸触媒として用いると同時に、水素化触媒の担体
として用いることも十分可能である。
In addition, the concentration of aromatic hydrocarbons as raw materials in the reaction system is 0.1~
70m01% is preferable, and further 2.0 to 40m01%
is particularly preferred. The periodic table group noble metal catalyst used in the present invention may be any of ruthenium, rhodium, palladium, osmium, iridium and platinum, with ruthenium and rhodium being particularly preferred. There are no particular restrictions on the shape, as long as it can be used for the hydrogenation of ordinary aromatic hydrocarbons, such as sponge-like, fine powder like platinum black or ruthenium black, and colloidal. Alternatively, those with carriers such as activated carbon, alumina, silica, silica-alumina, polyas, zeolites, asbestos, barium sulfate, ion exchange resins, solid acids, and alloys with copper, silver, gold, etc. are preferable. Can be used. In addition, as mentioned above, noble metals of Group Group of the Periodic Table can be used in the reaction system not only as free metals but also as compounds such as oxides and chlorides. When the strong acid used in the present invention is insoluble in the reaction system, it is fully possible to use the insoluble strong acid as a strong acid catalyst and at the same time as a carrier for the hydrogenation catalyst.

さらに本発明を実施するに当り、原料の芳香族炭化水素
、付加反応試薬およびその触媒の強酸ならびに水および
有機酸、および周期表第族貴金属元素を含む水素化触媒
のほかに、シクロヘキサン、n−オクタン、ジエチルエ
ーテル、メタノール、エタノールなどの溶媒や硫酸アル
ミニウム、硫酸第二鉄、硫酸亜鉛、酢酸亜鉛などの塩類
を共存させても差支えない。
Furthermore, in carrying out the present invention, in addition to the aromatic hydrocarbon as the raw material, the addition reaction reagent and its catalyst as a strong acid, water and an organic acid, and the hydrogenation catalyst containing a group noble metal element of the periodic table, cyclohexane, n- Solvents such as octane, diethyl ether, methanol, and ethanol, and salts such as aluminum sulfate, ferric sulfate, zinc sulfate, and zinc acetate may coexist.

本発明に用いられる水素の品質についても特に水素化触
媒の活性を著しく被毒する成分を含有しないものであれ
ばよく、必ずしも純粋であることを要せず、窒素、ヘリ
ウム、アルゴン、炭酸ガス、メタンなどの不活性気体を
含有していても差支えない。
Regarding the quality of hydrogen used in the present invention, it is sufficient that it does not contain any components that significantly poison the activity of the hydrogenation catalyst, and does not necessarily need to be pure, such as nitrogen, helium, argon, carbon dioxide, etc. There is no problem even if it contains an inert gas such as methane.

また、使用される水素圧(分圧)は反応の本質には影響
はないので特に制限はないが、反応速度の面と装置の耐
圧性の面から0.01〜500k9/Cri(絶対圧)
が好ましく、さらに0.5〜150kg/Cd(絶対圧
)が特に好ましい。反応温度についても同様で0〜30
0℃が好ましく、特に20〜200℃が好ましい。また
本発明で得られるシクロヘキサノール誘導体は本発明の
条件下では、より緩慢ではあるが、さらに水素化される
。したがつて、シクロヘキサノール誘導体の選択性を高
く保つためには反応系中に未反応の芳香族炭化水素を常
に残存させておくことが良く、芳香族炭化水素の転化率
を80%以下とすることが望ましい。本発明で得られる
主要な生成物は、目的物のシクロヘキサノール誘導体と
、完全に水素化されたシクロヘキサン誘導体である。
In addition, the hydrogen pressure (partial pressure) used is not particularly limited as it does not affect the essence of the reaction, but from the viewpoint of reaction rate and pressure resistance of the equipment, the hydrogen pressure (partial pressure) is 0.01 to 500k9/Cri (absolute pressure).
is preferable, and 0.5 to 150 kg/Cd (absolute pressure) is particularly preferable. The same goes for the reaction temperature, 0 to 30.
0°C is preferred, particularly 20-200°C. The cyclohexanol derivatives obtained according to the invention are also further hydrogenated, albeit more slowly, under the conditions of the invention. Therefore, in order to maintain high selectivity of cyclohexanol derivatives, it is better to always leave unreacted aromatic hydrocarbons in the reaction system, and the conversion rate of aromatic hydrocarbons should be kept at 80% or less. This is desirable. The main products obtained in the present invention are the target cyclohexanol derivative and the fully hydrogenated cyclohexane derivative.

その他に、部分水素化生成物であるシクロヘキセン誘導
体あるいはフエニルシクロヘキサン誘導体の生成も認め
られる場合もあるが、通常の条件下ではこれらの副生物
は無視できるので、これらの分離、特に目的生成物の分
離は他の生成物と性質が著しく異なつており極めて容易
に、従来公知の方法で達成される。また副生するシクロ
ヘキサン誘導体、シクロヘキセン誘導体あるいはフエニ
ルシクロヘキサン誘導体もまた原料の芳香族炭化水素よ
りも高価値の場合が多く、有効に利用され得る。なお、
反応は回分式、連続式のいずれでも実施することができ
、また反応方式としては、固定床、流動床、移動床、懸
濁床などの任意の方式を採ることができる。
In addition, the formation of cyclohexene derivatives or phenylcyclohexane derivatives, which are partial hydrogenation products, may also be observed, but since these by-products can be ignored under normal conditions, their separation, especially the desired product, is important. Separation can be accomplished very easily by conventional methods, as the properties are significantly different from those of other products. Furthermore, by-produced cyclohexane derivatives, cyclohexene derivatives, and phenylcyclohexane derivatives are often more valuable than the raw aromatic hydrocarbons and can be effectively utilized. In addition,
The reaction can be carried out either batchwise or continuously, and any reaction method such as fixed bed, fluidized bed, moving bed, suspended bed, etc. can be adopted.

本発明は次の実施例について具体的に説明するが、本発
明はその要旨を越えない限り、これらの実施例に限定さ
れるものではない。
The present invention will be specifically described with reference to the following Examples, but the present invention is not limited to these Examples unless the gist thereof is exceeded.

なお、これらの実施例で用いる転化率、収率および選択
率は次式で定義される。
In addition, the conversion rate, yield, and selectivity used in these Examples are defined by the following formula.

実施例 1 マグネチツクスターラ一でかきまぜできる内容積約10
0m1の平底フラスコに酢酸10m1、ベンゼン4m1
1三フツ化ホウ素一酢酸コンプレツクス(BF3・2A
c0H)1mjおよびルテニウム(5%)活性炭触媒5
00Tf19を入れ、通常の常圧用水素添加装置を用い
て、常圧水素ふん囲気下70℃の条件で10時間反応さ
せた。
Example 1 Internal volume that can be stirred with one magnetic stirrer is approximately 10
10 ml of acetic acid and 4 ml of benzene in a 0 ml flat bottom flask.
1 Boron trifluoride monoacetic acid complex (BF3・2A
c0H) 1mj and Ruthenium (5%) activated carbon catalyst 5
00Tf19 was added, and the mixture was reacted for 10 hours at 70° C. under a hydrogen atmosphere at normal pressure using a normal hydrogenation device for normal pressure.

生成物を10%炭酸ナトリウム水溶液で中和し、エーテ
ル60m1で抽出しエーテル層をガスクロマトグラフイ
一(25%DOP−C22、120℃、2m.He30
m1/Mi)で分析したところ、ベンゼンの転化率1.
2%、酢酸シクロヘキシルおよびシクロヘキセンの選択
率それぞれ4%および1%の結果が得られた。実施例
2 実施例1と同様に酢酸13m11ベンゼン5m11三フ
ツ化ホウ素一酢酸コンプレツクス1m1およびルテニウ
ムブラツク200m9を常圧水素下で、75℃の条件で
12時間反応させた。
The product was neutralized with a 10% aqueous sodium carbonate solution, extracted with 60 ml of ether, and the ether layer was subjected to gas chromatography (25% DOP-C22, 120°C, 2 m.He30
m1/Mi), the benzene conversion rate was 1.
2%, selectivities for cyclohexyl acetate and cyclohexene of 4% and 1%, respectively, were obtained. Example
2 In the same manner as in Example 1, 13 ml of acetic acid, 5 ml of benzene, 1 ml of boron trifluoride monoacetic acid complex and 200 ml of ruthenium black were reacted under normal pressure hydrogen at 75° C. for 12 hours.

生成物のガスクロマトグラムからベンゼン転化率0。8
%、酢酸シクロヘキシルおよびシクロヘキセンの選択率
それぞれ5%および2%の結果が得られた。
From the gas chromatogram of the product, the benzene conversion rate was 0.8.
%, cyclohexyl acetate and cyclohexene selectivities of 5% and 2%, respectively, were obtained.

実施例 3実施例1と同様に酢酸10m1、ベンゼン4
m1、三フツ化ホウ素一酢酸コンプレツクス1m1およ
びパラジウム(9%)一活性炭触媒500ηを常圧、7
0℃の条件で6時間反応させた。
Example 3 Same as Example 1, 10ml of acetic acid, 4ml of benzene
ml, boron trifluoride monoacetic acid complex 1ml and palladium (9%)-activated carbon catalyst 500η at normal pressure, 7
The reaction was carried out at 0°C for 6 hours.

生成物のガスクロマトグラムからベンゼン転化率4%、
酢酸シクロヘキシルの選択率1%の結果が得られた。実
施例 4実施例1と同様に酢酸10m11ベンゼン4m
11三フツ化ホウ素一酢酸コンプレツクス1m′および
酸化白金(PtO2)200ηを常圧、70℃の条件で
6時間反応させた。
From the gas chromatogram of the product, the benzene conversion rate was 4%.
A result with a selectivity of 1% for cyclohexyl acetate was obtained. Example 4 Same as Example 1: acetic acid 10ml 11 benzene 4ml
1 m' of boron trifluoride monoacetic acid complex and 200 η of platinum oxide (PtO2) were reacted at normal pressure and 70°C for 6 hours.

生成物のガスクロマトグラムからベンゼン転化率12%
、酢酸シクロヘキシルの選択率0.6%の結果が得られ
た。実施例 5 実施例1と同様に50(重量)%硫酸13m1、ベンゼ
ン5m1およびルテニウム(5%)活性炭触媒500η
を常圧、70℃の条件で12時間反応させた。
From the gas chromatogram of the product, the benzene conversion rate was 12%.
, a selectivity of cyclohexyl acetate of 0.6% was obtained. Example 5 Same as Example 1, 13 ml of 50% (by weight) sulfuric acid, 5 ml of benzene, and 500 η of ruthenium (5%) activated carbon catalyst.
were reacted at normal pressure and 70°C for 12 hours.

生成物のガスクロマトグラムからベンゼン転化率1.1
%、シクロヘキサノールの選択率1.8%の結果を得た
。実施例 6 マグネテイツクスターラ一でかきまぜのできる内容積約
100m1の試験管型耐圧ガラス容器に、酢酸10m′
、ベンゼン4.07、三フツ化ホウ炭酢酸コンプレツク
ス1m2およびルテニウム(5%)活性炭触媒200η
を入れ、水素圧(ゲージ圧)5気圧、温度75℃、反応
時間1時間で反応させた。
From the gas chromatogram of the product, the benzene conversion rate was 1.1.
%, and the selectivity for cyclohexanol was 1.8%. Example 6 10 m' of acetic acid was placed in a test tube-type pressure-resistant glass container with an internal volume of about 100 m1 that could be stirred with a magnetic stirrer.
, benzene 4.07, 1 m2 of borotrifluoride carbonacetic acid complex and 200 η of ruthenium (5%) activated carbon catalyst
was added, and the reaction was carried out at a hydrogen pressure (gauge pressure) of 5 atm, a temperature of 75° C., and a reaction time of 1 hour.

反応液をガスクロマトグラフイ一で分析した結果、ベン
ゼン転化率5.2%、シクロヘキセン選択率0.8%、
酢酸シクロヘキシル選択率3.4%であつた。実施例
7 実施例6と同様にベンゼン4.07、55%硫酸水溶液
8m1、ルテニウム(5%)一活性炭触媒200〜を水
素圧5気圧、70℃で4.5時間反応させた。
As a result of analyzing the reaction solution by gas chromatography, the benzene conversion rate was 5.2%, the cyclohexene selectivity was 0.8%,
The selectivity for cyclohexyl acetate was 3.4%. Example
7 In the same manner as in Example 6, 4.07 g of benzene, 8 ml of a 55% sulfuric acid aqueous solution, and 200 g of a ruthenium (5%) monoactivated carbon catalyst were reacted at a hydrogen pressure of 5 atm and at 70° C. for 4.5 hours.

ガスクロマトグラフイ一による分析の結果、ベンゼン転
化率6%、シクロヘキサノール選※〈択率1.5%であ
つた。実施例 8 実施例6と同様に、トルエン4.07、酢酸10m′、
三フツ化ホウ素一酢酸コンプレツクス1meおよびルテ
ニウム(5%)一活性炭触媒200ηを水素圧7気圧、
70℃で3.0時間反応させた。
Analysis by gas chromatography showed that the benzene conversion rate was 6% and the cyclohexanol selection rate was 1.5%. Example 8 Same as Example 6, toluene 4.07, acetic acid 10m',
Boron trifluoride monoacetic acid complex 1me and ruthenium (5%) monoactivated carbon catalyst 200η were heated at a hydrogen pressure of 7 atm.
The reaction was carried out at 70°C for 3.0 hours.

ガスクロマトグラフイ一による分析の結果、トルエン転
化率4.3%、酢酸メチルシクロヘキシル選択率5.1
%であつた。実施例 9〜26 実施例6と同様に、酢酸1m1、ベンゼン1y、三フツ
化ホウ素一酢酸コンプレツクス0.5m1と次表に示す
種々の水素化触媒50ηを水素圧5kg/CrAG、7
5℃で反応させた。
As a result of analysis by gas chromatography, the toluene conversion rate was 4.3%, and the selectivity for methylcyclohexyl acetate was 5.1.
It was %. Examples 9 to 26 In the same manner as in Example 6, 1 ml of acetic acid, 1 y of benzene, 0.5 ml of boron trifluoride monoacetic acid complex, and 50 η of various hydrogenation catalysts shown in the following table were mixed at a hydrogen pressure of 5 kg/CrAG, 7
The reaction was carried out at 5°C.

反応結果は表1にまとめた。なお、ベンゼンの転化率は
、 で表示されるので、表1ではシクロヘキサンの収率と酢
酸シクロヘキシルの選択率をもつて表示した。
The reaction results are summarized in Table 1. In addition, since the conversion rate of benzene is expressed as follows, Table 1 shows the yield of cyclohexane and the selectivity of cyclohexyl acetate.

また、以下の表においても、目的物の収率の表示がない
表においては、同様に表示した。実施例 27イオン交
換樹脂に貴金属を担持した触媒を次のように調製した。
Furthermore, in the tables below, where the yield of the target product is not indicated, it is indicated in the same way. Example 27 A catalyst in which a noble metal was supported on an ion exchange resin was prepared as follows.

テトラアミンパラジウムクロライド、 Pd(NH3)4C12、3.57とNa型の
!1Amber1yst151(ロームアンドハース
社製カチオン交換樹脂)を300mjの水中で90分間
混合する。
Tetraamine palladium chloride, Pd(NH3)4C12, 3.57 and Na type
! 1Amber1yst151 (cation exchange resin manufactured by Rohm and Haas) is mixed in 300 mj of water for 90 minutes.

樹脂を沢別後、水でよく洗浄し、次いでエタノールで洗
つて、減圧下100℃で乾燥する。
After removing the resin, it is thoroughly washed with water, then with ethanol, and dried at 100° C. under reduced pressure.

この !樹脂を、水300m1と80%抱水ヒドラジン
80m1中に加え80℃で40分間攪拌し、パラジウム
化合物を還元する。次いで、▲別後水で十分洗浄し、5
%塩酸でカラム法によりイオン交換した樹脂を、塩素イ
オンがなくなるまで水で洗い、さらにアルコールで洗浄
し、最後にエーテルで洗つた後、減圧下100℃で2時
間乾燥する。このよう※?にして還元したパラジウムを
イオン交換樹脂(H型)に担持させた触媒を得る。この
触媒は水素化触媒としての機能と、酸触媒としての機能
を同時に有するものである。次に、この触媒を用いて本
発明の反応への適用例を示す。
this ! The resin is added to 300 ml of water and 80 ml of 80% hydrazine hydrate, and stirred at 80° C. for 40 minutes to reduce the palladium compound. Next, wash thoroughly with water after ▲, and
The resin, which has been ion-exchanged with % hydrochloric acid by a column method, is washed with water until no chloride ions are present, further washed with alcohol, and finally washed with ether, and then dried at 100° C. under reduced pressure for 2 hours. like this※? A catalyst is obtained in which palladium, which has been reduced in the following manner, is supported on an ion exchange resin (H type). This catalyst simultaneously functions as a hydrogenation catalyst and an acid catalyst. Next, an application example of the present invention to a reaction will be shown using this catalyst.

実施例6と同様に、酢酸3m1、ベンゼン27と上記の
触媒0.27を水素圧5k9/CdG下、110℃で2
時間反応させた。この結果は、ガスクロマトグラフイ一
の分析により、ベンゼンの転化率は4.6%で酢酸シク
ロヘキシルの選択率は0.3%であることがわかつた。
実施例 28〜32 実施例27と同様にして、種々の貴金属を担持したイオ
ン交換樹脂触媒を調製し、この触媒を用いて反応を行な
つた。
In the same manner as in Example 6, 3 ml of acetic acid, 27 ml of benzene, and 0.27 ml of the above catalyst were mixed at 110° C. under a hydrogen pressure of 5 k9/CdG.
Allowed time to react. The results were analyzed by gas chromatography, and it was found that the conversion rate of benzene was 4.6% and the selectivity of cyclohexyl acetate was 0.3%.
Examples 28 to 32 Ion exchange resin catalysts supporting various noble metals were prepared in the same manner as in Example 27, and reactions were carried out using these catalysts.

酢酸3m11ベンゼン27と0.27の触媒を水素圧5
kg/Cd下で反応させた。その結果を次に示す。実施
例 33〜38 実施例6と同様に、酢酸37、ベンゼン27、水素化触
媒0.17およびヘテロポリ酸0.1yを水素圧5kg
/Cd下95℃で反応した。
3ml of acetic acid, 27ml of benzene and 0.27ml of catalyst under hydrogen pressure of 5
The reaction was carried out under kg/Cd. The results are shown below. Examples 33 to 38 In the same manner as in Example 6, 37 acetic acid, 27 benzene, 0.17 hydrogenation catalyst and 0.1y heteropolyacid were heated under a hydrogen pressure of 5 kg.
/Cd at 95°C.

反応結果は次表の通りである。なお、これらの実施例の
いずれでも、副生物として、シクロヘキサノールとフエ
ニルシクロヘキサンが微量生成していることが認められ
た。
The reaction results are shown in the table below. In addition, in all of these Examples, it was observed that cyclohexanol and phenylcyclohexane were produced in trace amounts as by-products.

実施例 39〜47実施例6と同様に、ベンゼン27、
酢酸3m1を種々の固体酸に貴金属を担持した触媒0.
27の存在下、5k9/CdGの水素圧のもとで95℃
で反応を行なつた。
Examples 39-47 Same as Example 6, benzene 27,
3 ml of acetic acid was mixed with 0.0 ml of a catalyst in which precious metals were supported on various solid acids.
95°C under a hydrogen pressure of 5k9/CdG in the presence of 27
The reaction was carried out.

反応結果は次の通りであつた。触媒は、所定量の貴金属
ハロゲン化物を固体酸に混練法により担持させた後、空
気中110℃で乾燥し、次いで、水素気流中150′C
5時間還元して調製した。NeObeadMSC,.N
eObeadP、SilbeadWは水沢化学工業(株
)製のシリカ・アルミナ系固体体酸である。実施例45
のTiO2−Al2O3はモル比1:9の二元系金属酸
化物で、共沈法により調製した。
The reaction results were as follows. The catalyst is prepared by supporting a predetermined amount of a noble metal halide on a solid acid by a kneading method, then drying it in air at 110°C, and then drying it at 150°C in a hydrogen stream.
It was prepared by reducing for 5 hours. NeObeadMSC,. N
eObeadP and SilbeadW are silica-alumina solid acids manufactured by Mizusawa Chemical Industry Co., Ltd. Example 45
TiO2-Al2O3 is a binary metal oxide with a molar ratio of 1:9, and was prepared by a coprecipitation method.

実施例 48〜52実施例6と同様に、ギ酸を出発原料
として反応を行なつた。
Examples 48 to 52 Similar to Example 6, a reaction was carried out using formic acid as the starting material.

反応生成物はギ酸シクロヘキシルのみで、シクロヘキサ
ノンの生成は、ほとんど認められなかつた。反応条件と
結果を次表に示す。このときの反応時間はすべて48時
間であつた。
The reaction product was only cyclohexyl formate, and almost no cyclohexanone was observed. The reaction conditions and results are shown in the table below. The reaction time in all cases was 48 hours.

実施例48の触媒は、酸化モリブデンとリンタングステ
ンの重量比4:1の混合物に1%(重量)のパラジウム
を担持されたものである。
The catalyst of Example 48 had 1% (by weight) of palladium supported on a mixture of molybdenum oxide and phosphotungsten in a weight ratio of 4:1.

実施例 53〜55 実施例6と同様に、芳香族炭化水素2Vとカルボン酸4
m1を5%Ru−炭素0.11および酸触媒存在下で、
5kg/Cdの水素圧下、75℃で反応させた。
Examples 53-55 Similar to Example 6, aromatic hydrocarbon 2V and carboxylic acid 4
m1 in the presence of 5% Ru-carbon 0.11 and an acid catalyst,
The reaction was carried out at 75° C. under a hydrogen pressure of 5 kg/Cd.

この結果を次表に示す。実施例 56〜59 実施例6と同様に、ベンゼン1y、50%硫酸2m1と
水素化触媒20〜を50k9/CniGの水素圧下70
℃で反応させた。
The results are shown in the table below. Examples 56 to 59 In the same manner as in Example 6, 1y of benzene, 2ml of 50% sulfuric acid, and 20~ of hydrogenation catalyst were heated under a hydrogen pressure of 50k9/CniG at 70°C.
The reaction was carried out at ℃.

この結果を次表に示す。実施例 60〜64実施例6と
同様に、ベンゼンIV、50%硫酸2m1と水素化触媒
20即に種々の有機溶媒を加え}て、50kg/CwL
の水素圧下、70℃で反応を行なつた。
The results are shown in the table below. Examples 60 to 64 In the same manner as in Example 6, benzene IV, 2 ml of 50% sulfuric acid, and 20 hydrogenation catalysts were immediately added with various organic solvents to produce 50 kg/CwL.
The reaction was carried out at 70° C. under a hydrogen pressure of 70°C.

結果は次表にまとめた。実施例 65〜66 実施例6と同様に、ベンゼン2m1と水5meをリンタ
ングステン酸と2%Rh−WO3触媒0.2Vの存在下
、10kg/CrAGの水素圧下、95℃で反応を行な
つた。
The results are summarized in the table below. Examples 65 to 66 In the same manner as in Example 6, 2 ml of benzene and 5 me of water were reacted with phosphotungstic acid and 2% Rh-WO3 catalyst in the presence of 0.2 V under a hydrogen pressure of 10 kg/CrAG at 95°C. .

その結果は次表の通りであつた。実施例 67〜77実
施例6と同様にベンゼン1y、50%硫酸2m1とメタ
ノール0.4m1を水素化触媒20〜の存在下70℃で
反応させた。
The results were as shown in the table below. Examples 67 to 77 In the same manner as in Example 6, 1 y of benzene, 2 ml of 50% sulfuric acid, and 0.4 ml of methanol were reacted at 70° C. in the presence of 20 to 20 hydrogenation catalysts.

反応結果は次表の通りであつた。実施例 78〜89 実施例6と同様に、ベンゼンIV、50%硫酸2m1、
水素化触媒20Tn9に所定量の硫酸塩を加えて、5k
9/CdGの水素下70℃で反応させた。
The reaction results were as shown in the following table. Examples 78-89 Same as Example 6, benzene IV, 2 ml of 50% sulfuric acid,
Add a predetermined amount of sulfate to hydrogenation catalyst 20Tn9 to make 5k
9/CdG under hydrogen at 70°C.

結果は次の通りであつた。実施例 90〜95 実施例6と同様に、ベンゼン17、50%硫酸※〈2m
1と水素化触媒0.17を5k9/CdGの水素圧下で
反応させた。
The results were as follows. Examples 90 to 95 Same as Example 6, benzene 17, 50% sulfuric acid *<2 m
1 and a hydrogenation catalyst of 0.17 were reacted under a hydrogen pressure of 5k9/CdG.

Claims (1)

【特許請求の範囲】 1 ベンゼンまたは低級アルキルベンゼンを、強酸なら
びに水または低級アルキルカルボン酸の触体中、周期表
VIII族の貴金属触媒の存在下に水素で還元して、次の一
般式で表わすシクロヘキサノール誘導体を製造すること
を特徴とする芳香族炭化水素の還元的付加反応法;▲数
式、化学式、表等があります▼ ただし、前記一般式においてAcは水素または低級アル
キルカルボン酸残基であり、Rは低級アルキル基であり
、そしてnは0、1または2の整数である。
[Scope of Claims] 1. Benzene or lower alkylbenzene in a contact with a strong acid and water or a lower alkylcarboxylic acid according to the periodic table.
A reductive addition reaction method for aromatic hydrocarbons, characterized by producing a cyclohexanol derivative represented by the following general formula by reducing it with hydrogen in the presence of a group VIII noble metal catalyst; ▲Mathematical formulas, chemical formulas, tables, etc. ▼ However, in the above general formula, Ac is hydrogen or a lower alkyl carboxylic acid residue, R is a lower alkyl group, and n is an integer of 0, 1 or 2.
JP55048760A 1980-04-15 1980-04-15 Reductive addition reaction method for aromatic hydrocarbons Expired JPS5929172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55048760A JPS5929172B2 (en) 1980-04-15 1980-04-15 Reductive addition reaction method for aromatic hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55048760A JPS5929172B2 (en) 1980-04-15 1980-04-15 Reductive addition reaction method for aromatic hydrocarbons

Publications (2)

Publication Number Publication Date
JPS55162727A JPS55162727A (en) 1980-12-18
JPS5929172B2 true JPS5929172B2 (en) 1984-07-18

Family

ID=12812231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55048760A Expired JPS5929172B2 (en) 1980-04-15 1980-04-15 Reductive addition reaction method for aromatic hydrocarbons

Country Status (1)

Country Link
JP (1) JPS5929172B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252437A (en) * 1984-05-28 1985-12-13 Asahi Chem Ind Co Ltd Production of alcohol by hydration of olefin

Also Published As

Publication number Publication date
JPS55162727A (en) 1980-12-18

Similar Documents

Publication Publication Date Title
EP0689872B2 (en) Pd and Ag containing catalyst for the selective hydrogenation of acetylene
US3580970A (en) Dehydrogenation of cycloaliphatic ketones and alcohols
US4780552A (en) Preparation of furan by decarbonylation of furfural
US4933507A (en) Method of dehydrogenating cyclohexenone
JPH09141097A (en) Catalyst with carrier containing palladium for selective catalytic hydrogenation of acetylene in hydrocarbon current
Keresszegi et al. Selective transfer dehydrogenation of aromatic alcohols on supported palladium
JP4090885B2 (en) Method for producing cyclohexanone oxime
EP0214530B1 (en) A method for producing cycloolefins
EP3604260A1 (en) Single-stage method of butadiene production
JP2015129151A (en) Continuous method for producing substituted cyclohexylmethanols
JPH09227431A (en) Hydrogenation of aromatic compound and catalyst for the same
US4508918A (en) Method of producing cyclohexane derivatives directly from aromatic hydrocarbons
JP3046865B2 (en) Method for producing chloroform from carbon tetrachloride and catalyst composition used therefor
JP4198052B2 (en) Method for producing cyclohexanone oxime
JP5296549B2 (en) Method for producing alkylated aromatic compound and method for producing phenol
JPS5929172B2 (en) Reductive addition reaction method for aromatic hydrocarbons
Kamiyama et al. HYDROALKYLATION OF BENZENES WITH Pd–Al2O3 AND NaCl–AlCl3
JPH0524141B2 (en)
JPH09100244A (en) Production of olefin compound and dehydration reaction catalyst therefor
JPH069481A (en) Production of alpha,beta-unsaturated carbonyl compound
US5958823A (en) Hydrocarbon conversion catalyst composition and processes therefor and therewith
JPH0436142B2 (en)
JPH0152373B2 (en)
CN116020431A (en) Zirconium-containing catalyst, preparation method and application thereof, and method for preparing butadiene from ethanol and acetaldehyde
Paczkowski et al. Synthesis of 3-benzyloxy-2, 2-dimethyl-propan-1-ol by hydrogenation of 5, 5-dimethyl-2-phenyl-[1, 3] dioxane using copper catalysts. Part II: investigations in the liquid phase