JPS5929156A - Reinforced thermoplastic resin laminate - Google Patents

Reinforced thermoplastic resin laminate

Info

Publication number
JPS5929156A
JPS5929156A JP13721982A JP13721982A JPS5929156A JP S5929156 A JPS5929156 A JP S5929156A JP 13721982 A JP13721982 A JP 13721982A JP 13721982 A JP13721982 A JP 13721982A JP S5929156 A JPS5929156 A JP S5929156A
Authority
JP
Japan
Prior art keywords
reinforced
thermoplastic resin
layer
resin
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13721982A
Other languages
Japanese (ja)
Other versions
JPS6147707B2 (en
Inventor
小南 直也
木下 全弘
紙田 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP13721982A priority Critical patent/JPS5929156A/en
Publication of JPS5929156A publication Critical patent/JPS5929156A/en
Publication of JPS6147707B2 publication Critical patent/JPS6147707B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明tit、熱可塑性樹脂成形体に繊維強化熱硬化性
樹脂層を積層し7て補強(また1すれた強度を有する強
化熱可塑性樹脂積層体に関する。 繊維強化熱硬化性樹脂を積層(−で補強i〜た熱可塑性
樹脂成形体tま、熱可塑性(fit脂が有する優れた物
性、例えば耐腐食性及び制摩耗性等、1kに繊維強化熱
硬化性樹脂が有する優れた物性、例えば耐熱性、耐候性
及び耐クリープ性等を併有し、しかも軽量かつ経済性に
優れるといった利点を有している。そのため、化学工業
用材料、水道配管用材料及びリアクター等に広く使用さ
れている。 しかしながら、該積層体の機械的強度は、熱可塑性樹脂
成形体と繊維強化熱硬化性樹脂層とのそれぞれの機械的
強度の和 シこなることが期待できるにもかかわらず、
実際には、熱可塑性樹脂成形体単独の機械的強度にも及
ばない3、機械的強度を改善するだめに 、=j$ r
iJ塑性樹脂成形体と繊維強化熱硬化性樹脂層との中間
にポリウレタノ系fライマ一層を設けたものも使用され
でいるが、一応の改11はできても必ずしも1・分とは
汀い雉い。 本発明の目的は、−に記従来技術の問題点を解決し、優
れた機械的強度を有する強化熱可塑性樹脂積層体を提供
することである。 本発明につき概説すれば、本発明の強化熱可塑性樹脂積
層体は、熱可塑性樹脂成形体を繊維強化熱硬化性樹脂層
で補強した強化熱可塑性樹脂積層体において、熱可塑性
樹脂成形体と繊維強化熱硬化性樹脂層との中間に双方に
接着性を有する、厚み保持材入りのゴム弾性体層を設け
たことを特徴とするものである。 本発明者等は、前記の目的を達成するため抽挿検討を重
ねた結果、次に示す事実を見出して本発明に到達したも
のである。 すなわち、強化熱可塑性樹脂積層体の機械的強度が、熱
可塑性樹脂成形体と繊維強化熱硬化性樹脂層とのそれぞ
れの機械的強度の和 とならないばかシでなく、熱り塑
性樹脂成形体単独の機械的強度よυも著しく劣るのは、
熱り塑性樹脂成形体に直接準硬化性樹脂層を形成、積層
するためであシ、例えばポリ塩化ビニル樹脂製試験片の
片面に直接不飽和ポリエステル樹脂を薄く塗布して硬化
、積層させたものは、その曲げ強度又Fi、@撃強度が
ポリ塩化ビニル樹脂製試験片単独よシも著しく低下した
。そして、この場合、不飽和ポリエステル樹脂を積層し
た側の伸びはt?t、とんとなく、この面を外側にして
曲げると、不飽和ポリエステル樹脂層が切断すると共に
、該試験片全体が折れてしまう。すなわち、瞬時破 剛直な不飽和ポリエステル樹脂層の切断によって、ポリ
塩化ビニル樹脂層に瞬発的なノツチ効果(ノツチ部分の
存在によシ、応力を加えたときその集中効果により強度
が低下する現象)が加わり、試験片全体が折れるのであ
り、これが、ポリ塩化ビニル樹脂成形体に直接繊維強化
不飽和ポリlステル樹脂J−を積J@(7た場合におい
ても、強化熱可塑性樹脂積層体の機械的強度が著しく弱
くなる原因となる。そして、この現象は、ポリ塩化ビニ
ル樹脂成形体以外の熱可塑性樹脂成形体に不飽和ポリエ
ステル樹脂あるいはその他の熱硬化性樹脂をf*層した
場合にも見られた一以上の事実から、本発明者等は、前
記したように中間層としてポリウレタン系等のプライマ
一層を設ける手段も試みたが、満足すべき機械的強度は
得られなかった(後記比較例参照)。 そこで、本発明者等は、更に検討を重ね、中間層として
特定の材料を用いることに着眼(1、まず、熱t3J塑
性塑性樹脂成形体、特定月料として厚み保持祠入シゴム
弾性体層を接着し、次いでその上に熱硬化性樹脂のみを
塗布、積層することにより、強化熱可塑性樹脂積層体の
曲は強度又り、衝撃強度が、熱可塑性4☆1脂製試験片
の強度と同等若しくはそれ以」二となることが認められ
た。すなわち、熱硬化性樹脂層を外1+11に17で該
積層体を曲げていくと、やがて熱硬化性樹脂層の一部に
切断面ができるが、厚み保持材入りゴム弾性体層eこに
切断は全く伝播せず、該積層体全体仁I、そのま1曲け
に対応し、折り、、 Itま生じなかった。本発明者等
は前バしi事実有−史に発展をせ、本発明を完IJv、
l、lこものであって、)11み保持イ;(入りゴノ、
弾性体を界面におき、(の片+1111 iC熱jjJ
 yej性樹脂成形体を、そ(2て他のIHllに繊維
強化熱硬1ヒ性樹脂を接着j−だところ、得られた強化
熱可塑性樹脂積層体の機械的強度txt、著1〈向ト
The present invention also relates to a reinforced thermoplastic resin laminate having a strength equal to or less than 1 by laminating a fiber-reinforced thermosetting resin layer on a thermoplastic resin molded body. Reinforced thermoplastic resin molded articles have excellent physical properties that thermoplastic resins have, such as corrosion resistance and anti-wear properties; It has the advantages of having weather resistance and creep resistance, as well as being lightweight and economical.Therefore, it is widely used in chemical industry materials, water piping materials, reactors, etc. Although the mechanical strength of the laminate can be expected to be the sum of the respective mechanical strengths of the thermoplastic resin molded body and the fiber-reinforced thermosetting resin layer,
In reality, the mechanical strength is not even close to that of a thermoplastic resin molded body alone.3 In order to improve the mechanical strength, = j$ r
A single layer of polyuretano-based F limer provided between the iJ plastic resin molding and the fiber-reinforced thermosetting resin layer has also been used, but even if it can achieve a certain degree of improvement, it is not necessarily 1 minute. stomach. An object of the present invention is to solve the problems of the prior art described in - and to provide a reinforced thermoplastic resin laminate having excellent mechanical strength. To summarize the present invention, the reinforced thermoplastic resin laminate of the present invention is a reinforced thermoplastic resin laminate in which a thermoplastic resin molded body is reinforced with a fiber-reinforced thermosetting resin layer. It is characterized in that a rubber elastic layer containing a thickness maintaining material is provided between the thermosetting resin layer and the thermosetting resin layer, which has adhesive properties on both sides. The inventors of the present invention have conducted extensive studies to achieve the above object, and as a result, have discovered the following facts and arrived at the present invention. In other words, the mechanical strength of the reinforced thermoplastic resin laminate is not the sum of the mechanical strengths of the thermoplastic resin molded body and the fiber-reinforced thermosetting resin layer, but rather the thermoplastic resin molded body alone. The reason why the mechanical strength of υ is also significantly inferior is that
For directly forming and laminating a semi-hardening resin layer on a thermoplastic resin molded body; for example, unsaturated polyester resin is applied thinly to one side of a polyvinyl chloride resin test piece, then cured and laminated. The bending strength, Fi, and impact strength of the polyvinyl chloride resin test piece were significantly lower than those of the polyvinyl chloride resin test piece alone. In this case, the elongation on the side where the unsaturated polyester resin is laminated is t? t. If the test piece is suddenly bent with this side facing outward, the unsaturated polyester resin layer will be cut and the entire test piece will break. In other words, instantaneous notch effect occurs in the polyvinyl chloride resin layer by cutting the rigid unsaturated polyester resin layer (a phenomenon in which the strength decreases due to the concentration effect when stress is applied due to the presence of notches). This causes the entire test piece to break, and even in the case where the fiber-reinforced unsaturated polyester resin J- is directly laminated onto the polyvinyl chloride resin molded body, the mechanical strength of the reinforced thermoplastic resin laminate is This phenomenon also occurs when an F* layer of unsaturated polyester resin or other thermosetting resin is applied to a thermoplastic resin molded product other than a polyvinyl chloride resin molded product. Based on one or more of the above facts, the present inventors also tried providing a single layer of primer such as polyurethane as an intermediate layer as described above, but satisfactory mechanical strength could not be obtained (comparative example described below). Therefore, the present inventors conducted further studies and focused on using a specific material for the intermediate layer (1. First, a thermal T3J plastic resin molded product, a thickness-maintaining molded rubber elastic material as a specific monthly charge). By gluing the body layer and then coating and laminating only a thermosetting resin on it, the bending strength and impact strength of the reinforced thermoplastic resin laminate are higher than that of the thermoplastic 4☆1 resin test piece. In other words, when the thermosetting resin layer was bent outward by 17 degrees (1+11), a cut surface appeared on a part of the thermosetting resin layer. However, the cut did not propagate at all to the rubber elastic layer containing the thickness retaining material, and the entire laminate corresponded to one bend, and no folding occurred. etc. have developed the present invention into a complete history,
l, l Komono,) 11 is held; (entering gono,
Place an elastic body at the interface, (piece + 1111 iC heat jj J
When the fiber-reinforced thermosetting resin was bonded to another IHL, the mechanical strength of the resulting reinforced thermoplastic resin laminate was determined by


−はぼ両者の機械的強度の総和になることが判明[また
。 本発明におりる熱i3J塑性樹脂と1.7では、ポリf
nピレン、高、中又は低密1釦ポリエチレン。 超高分子M:ポリエチレノ及びポリペ/テン等のポリオ
レフィン、ナイロン6、ナイロン11、ナイロン12、
ナイロン6,6及びナイロン6.10等ノホモ又ハコポ
リアミド、ポリエチレンテレフタレート及びポリエチレ
ンテレフタレート等の飽和ポリエステル、ポリ塩化ビニ
ル及び塩素化ポリ塩化ビニル等のJ3素系樹脂、ポリカ
ーボネート、ポリメチルメタクリレート及びポリフエニ
レノオキリイド等を挙げることができる。 又、これらの樹脂の成形体としては、シート、容器、管
、継手及びフラツジ等を挙けることができるが、本発明
の目的に沿うものであればその形状はIhに限定されな
い。 本発明における厚み保持材としては、例えばガラス、カ
ーボン、ポリアクリロニトリル、−rセターIし化ホリ
ヒ′二ルアJレコ−lしくヒ゛二11))、ナイロン及
びポリlステル等の繊維、麻、綿、絹及びセル【1−ス
等の織布又は不織布、あるいti:L ;fl+紙等の
多孔′et体を挙げることができ、これらは本発明にお
けるゴム弾性体層を構成する1′ノ、系接着剤を浸透さ
せてその骨格をなすものである。 又、本発明におけるコl、弾性体層用ゴム系接着剤どし
ては、ニトリルゴ!・接着剤、ボリク「】ロゾレノゴム
接着剤、ブチルゴム接着f「す1.5BIi系ゴ1.接
着剤、イノプ1/ノコ!、接着剤、ボリーリルファイド
ゴム接着剤、ノリ二J−ンゴム接着剤、ウレタンゴム接
着剤、天然コーム接着剤、ゴム糸アクリル酸の中、高級
エステル等を挙げることができ、その使用に際し、本発
明の強化ifi iiT塑性樹脂積層体の耐熱性及び強
度保持に更に効果を発揮さぜるだめには、熱可塑性樹脂
成形体と繊維強化熱硬化性樹脂層の両層に接着すると共
に硬化をぜておくことが望ましい。 更に又、本発明における繊維強化熱硬化1′1ミ樹脂層
形成用材料の熱硬化性樹脂としてt」21例えば不t1
!和ポリエステル樹脂、フェノール樹脂、エボキン樹脂
、尿素樹脂、メラミン(☆1脂、ジアリルフタレート樹
脂、アルキド樹脂、シリコーン樹脂及びポリイミド樹脂
等を挙げることができ、これらを常法により各種繊維で
補強することにより繊維強化熱硬化性樹脂として適用す
ることができる。 本発明において有効な役割を果す厚み保持材入りのゴム
弾性体(以下ゴノ・系接着剤という)は次の作用効果を
有している。 (1)  前記したように、これを中間層として用いる
ことにより、熱nJ塑性樹脂成形体の表向に繊維強化熱
硬化性樹脂層が直接接着ぴノすることを防止1−1熱i
jT塑性樹脂成形体の機械的強度の低下を防止できる。 (2)  ゴム系接着剤が、熱可塑性樹脂成形イ本と繊
維強化熱硬化性樹脂層とを十分な強度で接着することに
より、(1)の効果を達成さぜうる仁せることができる
。 (3)熱n]′塑性樹脂成形体の表面に二jム系接着剤
を塗布し、次いでこれが未固化の段階で繊維強化熱硬化
性樹脂層を接着するに際しては、該接着剤を加圧しなか
ら該層を41与していかないと十分な接着力が得られな
い。しかじな現象が起る。ところが、本発明における厚
み保持材は、その中に粘稠なゴム系接着剤が十分に含浸
されでいるので、その界面張力で繊維強化熱硬化性樹脂
層(ji’ RP l@ )の強い加圧にも耐え、該接
着剤層の厚みも希望通りの一定の厚みにコントロールす
ることが可能である。 (4)厚み保持材としてヤング率及び強度の妬いものを
使用することにより、ゴム弾性体層の機械的強度を向上
きせる役割を果すことができる。 本発明の強化熱可塑性樹脂積層体t」2、前t’46 
F、、。 たよりに、熱可塑性樹脂成形体と繊維強化熱硬化性樹脂
層それぞれの機械的強度の総和ない(−1が著しく改善
され、又、熱可塑性樹脂成形体の大きな膨張、収縮によ
る接合部におけるひずみ次に、本発明及びその効果を実
施例及び比較例によシ具体的に説明するが、本発明はこ
れらによシなんら限定芒れるものではない。なお、F記
実施例等におけるンヤルビー衝撃強度及び耐水圧破壊強
度傾2、次の試験方法により測定し5た。 (1)  シVルビー衝撃試験法 得られた成形品から、所定の寸法及び形状(長さ120
胴、幅10胴、厚み10門の直方体状のもの)の試験片
を作製し、これを日本工業規格(,1,[SK 711
1 ) VC規定σれだンヤルビー衝撃試験機を用い、
支点間距離60閂の支持台土、に横向きに搭載、固定1
−1支点間の中央をハンマーVCより該試験片の熱ji
J塑性樹脂成形体ntuから打撃する。試験片が破断す
るのに’A!−j’るエネIレキ−をd用足し、これを
原断面積で割り、衝撃値を求める。 (2)耐水圧破壊試験法 図面it本実施例で用いた耐水圧破壊試験装置纜の縦断
面概略図であり、1は繊維強化熱硬化性樹脂層、2は厚
み保持材入りのゴム弾性体層、6は熱り塑性樹脂酸ル体
、4tま面1水圧破壊試験用治具、5は水洩れ防止用治
具、6は水、7は水圧を示す。得られた管状成形品に図
面に示すように治具を取付け、この際該管状成形品の内
部には水(2[1’C)を(iだしでおく。又、荷重下
での試験は、該管状成形品の中央に、管状成形品の呼ひ
住50 rrrmの場合にFiso縁、75闇の場合に
は75に9.100能の場合にはILJOKgの荷重を
かけた状態で、1分間に10Kg・6m2の速H(で水
圧を上げ、管が破断した時の水圧を測定する。 実施例1 呼び径50胴、肉厚45問、長さ2mのポリ含浸させた
和紙を−N(厚みo、 5 mm )巻付け、更にその
外側に、不飽和ポリエステル樹脂(元側塗料工業社製ポ
リヤニ−h P −6845N )を含浸させたガラス
クロスを4層(厚み2門)積層した。これを20℃で4
8時間放1〜.1−で該不飽和ポリエステル樹脂を完全
に硬化σせ、目的とする強化ポリ塩化ビニル管を得た。 イ↓すられた強化ポリ塩化ビニル管のツヤルビー衝撃強
度及び耐水圧破壊強度全測定した結果を後記表1に示す
。 比較例1 呼び径50mm、肉厚4.5 mm 、長82 n+の
ポリ塩化ビニル管(旭有機材工業社製)に、ポリウレタ
ン樹脂系シーラー(光用塗料工業社製、バイオニアノー
ラー)を塗布、積層(厚み「15間)し、室温で2時間
硬化させた。次いで、その外側に、実施例1におけるも
のと同じ不飽和71′リエステルm脂を含浸烙せたガラ
スクロスを4層(厚み2 mm )積層した。これを2
0℃で48時間放置して不飽和ポリエステル樹脂を完全
に硬化させ、強化ポリfX化ビニル管′f;C得た。得
られた強化ポリ1菖化ビニ5ル管のシャルピーFii 
!強度及び耐水圧破釣強ItC,を測定した結果ケ後記
表1に示す。 実施例2〜6 使用(7たポリ塩化ビニル管の呼び径及び不飽和ポリエ
ステル樹脂ケ含浸させたガラスクロスの積rP4数′5
C後記表1に示すように変化させたトノ外は、実施例1
と同様の方法で強化ポリ塩化ビニル管ケ得た。TIられ
た強化ポリ塩化ビニル管につき実施例1と凹じ試験ケ行
った結果を後記表1に示す。 実施例7 アクリル酸エスデA5系ゴム接着剤(コニシ社馴CV 
−550) ’li7含浸させた和紙の厚みケ0.2門
とした以外ケよ、実施例1と同様の方法で強化ポリ塩化
ビー= /l−管を得た。得られた強化ポリ塩化ビニル
管につき実施f1[1と同じ試験ケ行った結果を後記表
1に示す。 比較例2〜6 使用1.たポリ喘化ビニル1′Cの叶び径及l)゛不f
・;・1゜111ポリニスデル(1■1脂欠含浸させ六
−カラスクr1スの私層数ケ移nl’、: H’−’に
示す−1つに変化さけた以外は、比較例1と同様の方法
に、(り強化ポIJ lij化ビニル管ゲイ!7た。こ
れにつき比較例1とI”l l−:試験ケ行った結Jl
i、 ?伝記表1に7jF −j’ rs比較例7〜? 後r己岩1に示す呼び伊のポリ塩化ビご一/”17中独
のシャルピー衝撃強度及び耐水圧破jr、Ij強度を?
rI11定し/こ結果金後記表1に示′ず。 /・′ 7/ 表から明らかなように、本発明による実施例の強化ポリ
塩化ビニル管はンtルビー衝撃強度及び耐水圧破壊強度
のいずれの点でも従来の比較例のものに比べて著しく優
れている。 以上説明したように、本発明によれば、従来技術の欠点
を解決し7、優れた機械的強度を有する強化熱町塑性樹
」指積層体金提供することができる。したがって、本発
明の強化熱可塑性樹脂積層体は、化学工業用、各種液体
用の配管材料及びリアクター等の大型容器等の広い技術
分野において使用することができる。
[
- It turns out that it is the sum of the mechanical strength of both [Also. In the thermal i3J plastic resin and 1.7 according to the present invention, poly f
n-pyrene, high, medium or low density 1 button polyethylene. Super polymer M: polyolefin such as polyethylene and polype/thene, nylon 6, nylon 11, nylon 12,
Homo- or polyamides such as nylon 6,6 and nylon 6.10, saturated polyesters such as polyethylene terephthalate and polyethylene terephthalate, J3 base resins such as polyvinyl chloride and chlorinated polyvinyl chloride, polycarbonate, polymethyl methacrylate and polyphenylene Oxylides and the like can be mentioned. Further, examples of molded bodies of these resins include sheets, containers, pipes, joints, and flanges, but the shape is not limited to Ih as long as it meets the purpose of the present invention. Thickness maintaining materials in the present invention include, for example, glass, carbon, polyacrylonitrile, -r setter I phosphoric acid, nylon, polyester fibers, linen, cotton, etc. , woven fabrics or non-woven fabrics such as silk and cellulose, and porous bodies such as ti:L;fl+paper, which constitute the rubber elastic layer in the present invention. The structure is formed by penetrating it with a type of adhesive. In addition, as the rubber adhesive for the elastic layer in the present invention, Nitrile Rubo!・Adhesive, Borik "] Rosoleno rubber adhesive, Butyl rubber adhesive Urethane rubber adhesives, natural comb adhesives, rubber thread acrylic acid, high grade esters, etc. can be mentioned, and when used, they can further improve the heat resistance and strength retention of the reinforced ifi II T plastic resin laminate of the present invention. It is desirable for the thermosetting resin layer to adhere to both the thermoplastic resin molded body and the fiber-reinforced thermosetting resin layer, and to prevent curing. As a thermosetting resin for the resin layer forming material, t''21, for example, t1
! Examples include Japanese polyester resin, phenol resin, Evokin resin, urea resin, melamine (☆1 resin, diallyl phthalate resin, alkyd resin, silicone resin, and polyimide resin), and by reinforcing these with various fibers in a conventional manner. It can be applied as a fiber-reinforced thermosetting resin.The rubber elastic body containing a thickness retaining material (hereinafter referred to as a gono-based adhesive), which plays an effective role in the present invention, has the following effects. (1) As mentioned above, by using this as an intermediate layer, it is possible to prevent the fiber-reinforced thermosetting resin layer from directly adhering to the surface of the thermal nJ plastic resin molding.1-1 Heat i
It is possible to prevent a decrease in the mechanical strength of the jT plastic resin molded body. (2) The effect of (1) can be achieved by using a rubber adhesive to bond the thermoplastic resin molded base and the fiber-reinforced thermosetting resin layer with sufficient strength. (3) Heat n]' When applying a thermosetting adhesive to the surface of the plastic resin molding and then bonding the fiber-reinforced thermosetting resin layer while the adhesive is still unsolidified, pressurize the adhesive. Therefore, sufficient adhesion force cannot be obtained unless the layer is given 41%. A strange phenomenon occurs. However, since the thickness maintaining material in the present invention is sufficiently impregnated with a viscous rubber adhesive, the interfacial tension of the material prevents the fiber-reinforced thermosetting resin layer (ji' RP l@) from being strongly applied. It can withstand pressure, and the thickness of the adhesive layer can be controlled to a desired constant thickness. (4) By using a material with a high Young's modulus and strength as the thickness maintaining material, it can serve to improve the mechanical strength of the rubber elastic layer. Reinforced thermoplastic resin laminate of the present invention t'2, front t'46
F... As a result, the total mechanical strength of the thermoplastic resin molded body and the fiber-reinforced thermosetting resin layer (-1) has been significantly improved, and the strain stress at the joint due to large expansion and contraction of the thermoplastic resin molded body has been significantly improved. In the following, the present invention and its effects will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to these in any way. Hydraulic fracture strength gradient 2 was measured by the following test method: (1) Civil Ruby Impact Test Method
A rectangular parallelepiped-shaped specimen with a width of 10 and a thickness of 10 gates) was prepared, and this was prepared according to the Japanese Industrial Standards (, 1, [SK 711
1) Using a VC standard σ Redan Jarby impact tester,
Mounted horizontally on a supporting base with a distance between fulcrums of 60 bolts and fixed 1
- The heat of the test piece is applied by hammer VC at the center between
Hit from the J plastic resin molded body ntu. 'A! The test piece breaks! Add the energy I for -j' to d and divide this by the original cross-sectional area to find the impact value. (2) Hydrostatic rupture test method drawing It is a longitudinal cross-sectional schematic diagram of the water pressure rupture test equipment used in this example, where 1 is a fiber-reinforced thermosetting resin layer, 2 is a rubber elastic body containing a thickness retaining material. layer, 6 is a thermoplastic resin acid body, 4t side 1 is a jig for water pressure fracture testing, 5 is a jig for preventing water leakage, 6 is water, and 7 is water pressure. A jig is attached to the obtained tubular molded product as shown in the drawing, and at this time, water (2[1'C) is placed inside the tubular molded product (i).The test under load is , in the center of the tubular molded product, with a load of Fiso edge if the tubular molded product has a nominal capacity of 50 rrrm, 75 in the case of 75 darkness, and ILJOKg in the case of 9.100 capacity. Increase the water pressure at a speed of 10 kg/6 m2 per minute (H) and measure the water pressure when the pipe breaks. (thickness o, 5 mm), and further, on the outside thereof, four layers (two layers thick) of glass cloth impregnated with an unsaturated polyester resin (Polyani h P-6845N manufactured by Motakata Toyo Kogyo Co., Ltd.) were laminated. This at 20℃
8 hours broadcast 1~. 1-, the unsaturated polyester resin was completely cured σ to obtain the intended reinforced polyvinyl chloride pipe. A↓The results of all measurements of glossy ruby impact strength and hydraulic fracture resistance of smooth reinforced polyvinyl chloride pipes are shown in Table 1 below. Comparative Example 1 A polyurethane resin sealer (manufactured by Hikari Yoki Kogyo Co., Ltd., Bionianoler) was applied to a polyvinyl chloride pipe (manufactured by Asahi Yokuzai Kogyo Co., Ltd.) with a nominal diameter of 50 mm, a wall thickness of 4.5 mm, and a length of 82 N+. , were laminated (thickness: 15 mm) and cured at room temperature for 2 hours.Next, on the outside thereof, 4 layers (thickness: 2 mm) was laminated.
The unsaturated polyester resin was left to stand for 48 hours at 0°C to completely cure the unsaturated polyester resin, thereby obtaining a reinforced polyvinyl fluoride tube 'f;C. Charpy Fii of the obtained reinforced polyvinyl chloride tube
! The results of measuring the strength and water pressure resistance ItC are shown in Table 1 below. Examples 2 to 6 Use (nominal diameter of polyvinyl chloride pipe and product rP4 number of glass cloth impregnated with unsaturated polyester resin)
C The outside of the tonneau was changed as shown in Table 1 below, as shown in Example 1.
Reinforced PVC pipes were obtained in a similar manner. Table 1 below shows the results of Example 1 and the concavity test conducted on the reinforced polyvinyl chloride pipes subjected to TI. Example 7 Acrylic Acid Esde A5 Rubber Adhesive (Konishi Company CV
-550) A reinforced polychlorinated vinyl tube was obtained in the same manner as in Example 1, except that the thickness of the Japanese paper impregnated with 'li7 was 0.2 mm. The obtained reinforced polyvinyl chloride pipe was subjected to the same test as in Example f1 [1], and the results are shown in Table 1 below. Comparative Examples 2-6 Use 1. The leaf diameter of the polyvinyl chloride 1′C and l)゛f
・;・1゜111 polynisdel (1゜1 fat-deficient impregnated six-calask r1 layer number transfer nl',: H'-' - Comparative example 1 except that one change was avoided) In a similar manner, (reinforced polyvinyl pipe) was used.
i, ? Biography Table 1 shows 7jF -j' rs comparative example 7~? What is the Charpy impact strength and water crush resistance JR, IJ strength of China and Germany?
rI11 was determined and the results are shown in Table 1 below. /・' 7/ As is clear from the table, the reinforced polyvinyl chloride pipe of the example according to the present invention is significantly superior to the conventional comparative example in terms of both ruby impact strength and hydraulic burst strength. ing. As described above, according to the present invention, it is possible to solve the drawbacks of the prior art and provide a reinforced thermoplastic resin finger laminate having excellent mechanical strength. Therefore, the reinforced thermoplastic resin laminate of the present invention can be used in a wide range of technical fields such as chemical industry, piping materials for various liquids, and large containers such as reactors.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例で用いた耐水圧破壊試験用治具の
縦断面概略図である。 1 ・ 繊維強化熱硬化性樹脂層、 2・・厚み保持材入シゴム弾性体層、 5、・熱可塑性樹脂成形体、 4  耐水圧破壊試験用治具、 5−一水洩れ防止用治具、 6・・水、   7 ・・ 水圧
The drawing is a schematic vertical cross-sectional view of a jig for a hydraulic fracture test used in an example of the present invention. 1. Fiber-reinforced thermosetting resin layer, 2. Thickness-retaining material-containing rubber elastic layer, 5. Thermoplastic resin molded article, 4. Hydraulic fracture test jig, 5.- Water leakage prevention jig. 6...Water, 7...Water pressure

Claims (1)

【特許請求の範囲】[Claims] (リ 熱可塑性樹脂成形体を繊維強化熱硬化性樹脂層で
補強した強化熱0I塑性樹脂積層体において、舶用rI
ll性樹脂成形体と繊維強化熱硬化性樹脂層との中間に
双方に接M性を有する、)V−汐・保持41入pのゴノ
、弾性体層を設けたことを特徴とする強化熱可塑性4(
f1重積層体。
(Reinforced thermal 0I plastic resin laminate in which a thermoplastic resin molded body is reinforced with a fiber reinforced thermosetting resin layer,
Reinforcement characterized by providing an elastic body layer between the resin molded body and the fiber-reinforced thermosetting resin layer, which has M-contact properties to both. Thermoplastic 4 (
f1 stacked body.
JP13721982A 1982-08-09 1982-08-09 Reinforced thermoplastic resin laminate Granted JPS5929156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13721982A JPS5929156A (en) 1982-08-09 1982-08-09 Reinforced thermoplastic resin laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13721982A JPS5929156A (en) 1982-08-09 1982-08-09 Reinforced thermoplastic resin laminate

Publications (2)

Publication Number Publication Date
JPS5929156A true JPS5929156A (en) 1984-02-16
JPS6147707B2 JPS6147707B2 (en) 1986-10-21

Family

ID=15193563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13721982A Granted JPS5929156A (en) 1982-08-09 1982-08-09 Reinforced thermoplastic resin laminate

Country Status (1)

Country Link
JP (1) JPS5929156A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8104349B2 (en) 2006-12-04 2012-01-31 Sumitomo Metal Industries, Ltd. Flaw detection tracking device for pipe or tube and automatic flaw detecting apparatus for pipe or tube using the same
CN104114467A (en) * 2012-01-27 2014-10-22 振动技术方案有限公司 Material delivery method and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8104349B2 (en) 2006-12-04 2012-01-31 Sumitomo Metal Industries, Ltd. Flaw detection tracking device for pipe or tube and automatic flaw detecting apparatus for pipe or tube using the same
CN104114467A (en) * 2012-01-27 2014-10-22 振动技术方案有限公司 Material delivery method and system
CN104114467B (en) * 2012-01-27 2016-09-07 振动技术方案有限公司 Material delivering method and system

Also Published As

Publication number Publication date
JPS6147707B2 (en) 1986-10-21

Similar Documents

Publication Publication Date Title
US3472730A (en) Heat-curable filament-reinforced resinous sheeting and laminating process using same
US4954393A (en) Polymeric films
JP2760904B2 (en) Flexible graphite laminate and method for producing the same
US3790438A (en) Ribbon-reinforced composites
Yong et al. Effect of fiber orientation on mechanical properties of kenaf-reinforced polymer composite
US3409497A (en) Adhesive sheet materials and method of making the same
GB1595358A (en) Impact-resisting composites
JPH0575007B2 (en)
JPH0515182B2 (en)
CN106881931B (en) Thermoplastic resin composite material and preparation method thereof
US3922186A (en) Method for lining surfaces with sheets of polyvinylidene fluoride
US2954803A (en) Tubular metallic foil products and method of producing them
US3255875A (en) Composite reinforced resin sheet
JPS5929156A (en) Reinforced thermoplastic resin laminate
Paesano et al. Carbon-fiber reinforced thermoplastic materials for rigidizable space systems
JPH10272699A (en) Manufacture of fiber reinforced resin tubular body
Weinberg Shear testing of neat thermoplastic resins and their unidirectional graphite composites
CN215512638U (en) Anti-static plastic coiled material structure
CN220242657U (en) Combined type temperature-resistant adhesive film
RU2078279C1 (en) Method of coating internal side of pipe line
JPH043769B2 (en)
JP3137670B2 (en) Composite material
EP0041843B1 (en) Controlled matrix contraction composites
JP2627833B2 (en) Method for producing rubber / rubber adhesive composite
Isna et al. Effect of post curing treatment on tensile properties of glass fibre/lycal composite and glass fibre/vinyl ester composite with VARI manufacturing method