JPS5929133B2 - Rectifier transformer - Google Patents

Rectifier transformer

Info

Publication number
JPS5929133B2
JPS5929133B2 JP52112151A JP11215177A JPS5929133B2 JP S5929133 B2 JPS5929133 B2 JP S5929133B2 JP 52112151 A JP52112151 A JP 52112151A JP 11215177 A JP11215177 A JP 11215177A JP S5929133 B2 JPS5929133 B2 JP S5929133B2
Authority
JP
Japan
Prior art keywords
windings
winding
group
groups
force distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52112151A
Other languages
Japanese (ja)
Other versions
JPS5446325A (en
Inventor
良朗 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP52112151A priority Critical patent/JPS5929133B2/en
Publication of JPS5446325A publication Critical patent/JPS5446325A/en
Publication of JPS5929133B2 publication Critical patent/JPS5929133B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Description

【発明の詳細な説明】 本発明は相間リアクトル付二重星形結線の整流器用変圧
器の直流巻線の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a DC winding of a double star-connected rectifier transformer with an interphase reactor.

相間リアクトル付二重星形結線の整流回路では2組の三
相群は独立した三相整流器のように動作し各陽極は(2
π/3+u)の期間動作し変圧器の各群の漏洩リアクタ
ンスによる陽極電流の重なり転流が行なわれる。ここで
uは重なり角を示す。従つて各群の漏洩リアクタンスが
異なると陽極電流が不平衡となり相間リアクトルの直流
偏磁等の障害をひき起す。そのためこの種の変圧器の直
流巻線は各群の漏洩リアクタンスの差を極力なくす構造
としなければならない。第1図及び、第2図aに従来用
いられている二重星形結線の整流器用変圧器の同心配置
形の巻線の断面を示す。
In a double star-connected rectifier circuit with an interphase reactor, the two three-phase groups operate like independent three-phase rectifiers, and each anode (2
It operates for a period of π/3+u), and overlap commutation of the anode current due to the leakage reactance of each group of transformers is performed. Here, u indicates the overlapping angle. Therefore, if the leakage reactance of each group is different, the anode current becomes unbalanced, causing problems such as direct current bias magnetization of the interphase reactor. Therefore, the DC winding of this type of transformer must be constructed to minimize the difference in leakage reactance between each group. FIG. 1 and FIG. 2a show cross sections of concentrically arranged windings of a conventionally used double star-connected rectifier transformer.

1は鉄Jレ 2は交流巻線、3a、3bは直流巻線の第
1群の巻線、4a、4bは直流巻線の第2群の巻線であ
る。
Reference numeral 1 indicates an iron J-ray; 2 indicates an AC winding; 3a and 3b indicate a first group of DC windings; and 4a and 4b indicate a second group of DC windings.

第1図の直流巻線は各群の巻線3a、4aを円板状に細
かく分割して交互に配列し並列接続した構造である。
The DC winding shown in FIG. 1 has a structure in which the windings 3a and 4a of each group are finely divided into disk shapes, arranged alternately, and connected in parallel.

第2図aの直流巻線は二群の巻線3b、4bを一括に筒
状に巻回した構造である。
The DC winding shown in FIG. 2a has a structure in which two groups of windings 3b and 4b are wound together into a cylindrical shape.

第2図bは第2図aの直流巻線を示す正面図である。以
上に述二■一■■■■■■弄一ー■一いる。
FIG. 2b is a front view showing the DC winding of FIG. 2a. There are two things mentioned above.

すなわち、第1図の巻線構造は大電流の低電圧の巻線に
多く用いられるが巻線外部での接続の手間を多く必要と
し、一般に直流巻線の外部接続の都合から交流巻線2を
内側に設けるため交流側の電圧調整タップを設けにくい
こと、直流巻線が交流巻線2に対してV1倍の巻線容量
を持つている理由から直流巻線が内側配置の場合より巻
線材料がかさむ欠点がある。第2図の構造は、中小電流
の巻線に用いられている構造であるが直流巻線の二群の
巻線3b、4bが隣接することから、二群の巻線3b、
4b間の絶縁処理を個体絶縁物で行なわなくてはならず
、絶縁処理の手間、及び絶縁材料を多く必要とする欠点
がある。
In other words, the winding structure shown in Figure 1 is often used for large current, low voltage windings, but it requires a lot of effort to connect externally to the windings, and generally, due to the external connection of DC windings, AC windings 2. Because the DC winding is placed inside, it is difficult to install a voltage adjustment tap on the AC side, and the DC winding has a winding capacity that is V1 times that of the AC winding 2. The disadvantage is that the material is bulky. The structure shown in Fig. 2 is a structure used for windings of medium and small currents, but since the two groups of windings 3b and 4b of the DC winding are adjacent to each other, the two groups of windings 3b and 4b are adjacent to each other.
The insulation between 4b must be performed using a solid insulator, which has the drawback of requiring a lot of effort and insulation material.

一方変圧器の二次側巻線を二群とする巻線構造として第
3図に示すような第一群、第二群の巻線3c、4cを同
心的に配置したものがある。この構造によれば巻線の加
工は簡単になるが以下説明する理由により第一群第二群
の巻線3c、4cの漏洩リアクタンスの差が大きく、二
重星形結線の整流器用変圧器の巻線に実施することは出
来ない。すなわち同心配置の変圧器の漏洩リアクタンス
は次式で表わされる。
On the other hand, as a winding structure in which the secondary windings of a transformer are divided into two groups, there is one in which a first group and a second group of windings 3c and 4c are arranged concentrically as shown in FIG. This structure simplifies the processing of the windings, but for the reasons explained below, there is a large difference in leakage reactance between the windings 3c and 4c of the first group and the second group. It cannot be applied to windings. In other words, the leakage reactance of a concentrically arranged transformer is expressed by the following equation.

x■ク■X1+X2・・・・・・ (1)496・ f
k X1■1O7、れ、12・Σ((n−i)ι・ rk−
gk)(2)Ik暴上式において X:漏洩リアクタンス X1:空隙部分で生じる漏洩リアクタンスX2:コイル
内部で生じる漏洩リアクタンスEg:漏洩磁束による誘
起電圧1:巻線電流 f:周波数 (n−1)k:層あたりのアンペアターンh:巻線の高
さ Rk:空隙の平均半径 Rk′:巻線の平均半径 Gk:空隙の巾 Dk:巻線の巾 である。
x■ku■X1+X2・・・・・・(1)496・f
k
gk) (2) In the Ik equation, k: Ampere turns per layer h: Height of the winding Rk: Average radius of the air gap Rk': Average radius of the winding Gk: Width of the air gap Dk: Width of the winding.

第3図aは直流巻線の二群の巻線3c,4cの各層のア
ンペアターン(n−1)kが等しく巻回された巻線構造
を示し、第3図bは交流巻線2と直流巻線の第一群の巻
線3cとの起磁力分布図、第3図cは交流巻線2と直流
巻線第二群の巻線4cとの起磁力分布を示す。(1)、
(2)、(3)式より漏洩リアクタンスは漏洩磁束に比
例し、巻線及び巻線間空隙内部の磁束分布は起磁力分布
と相似であるから、第3図の巻線構造の二群の巻線の漏
洩リアクタンスは等しくならないからである。本発明は
直流巻線の起磁力分布の操作によつて従来の直流巻線の
持つ欠点を改良した整流器用変圧器を提供することを目
的とするもので以下図面によつて説明する。第4図は本
発明の実施例を示すもので、第4図aは直流巻線の二群
の巻線13,14を同心的に配置し、各層の巻回数を変
えてアンペアターン(n−1)kを異ならせるとともに
二群の巻線13,14間の空隙の巾Gkを違えた巻線構
造を示す。
Figure 3a shows a winding structure in which the ampere turns (n-1)k of each layer of the two groups of windings 3c and 4c of the DC winding are equally wound, and Figure 3b shows the winding structure of the AC winding 2 and 4c. FIG. 3c shows the magnetomotive force distribution between the AC winding 2 and the winding 4c of the second group of DC windings. (1),
From equations (2) and (3), the leakage reactance is proportional to the leakage magnetic flux, and the magnetic flux distribution inside the windings and the air gap between the windings is similar to the magnetomotive force distribution. This is because the leakage reactances of the windings are not equal. The present invention aims to provide a rectifier transformer that improves the drawbacks of conventional DC windings by manipulating the magnetomotive force distribution of the DC windings, and will be explained below with reference to the drawings. FIG. 4 shows an embodiment of the present invention. FIG. 4a shows two groups of DC windings 13 and 14 arranged concentrically, and the number of turns of each layer is changed to give an ampere turn (n- 1) Winding structures in which k is different and the width Gk of the gap between the two groups of windings 13 and 14 is different.

第4図bは交流巻線2と直流巻線第一群13との起磁力
分布図、第4図cは交流巻線2と直流巻線第二群14と
の起磁力分布図を示す。前記(1)、(2)、(3)式
において同心配置の巻線13,14では各層巻線、空隙
の平均半径Rk′,Rkが異なるので、その値に応じて
起磁力分布を調整する。すなわち(n−1)K,gkの
値を調整すれば、二群の巻線13,14の漏洩リアクタ
ンスは等しくすることができる。このように直流巻線の
各層の巻回数と巻線間空隙の巾を変えることで二群の漏
洩リアクタンスを等しくするように構成した本発明では
直流巻線の絶縁処理が簡単になり巻線の接続個所も少な
く工作の容易な巻線を得ることができる。
FIG. 4b shows a magnetomotive force distribution diagram between the AC winding 2 and the first group of DC windings 13, and FIG. 4c shows a magnetomotive force distribution diagram between the AC winding 2 and the second DC winding group 14. In the above formulas (1), (2), and (3), since the average radii Rk' and Rk of each layer winding and air gap are different in the concentrically arranged windings 13 and 14, the magnetomotive force distribution is adjusted according to the values. . That is, by adjusting the values of (n-1)K and gk, the leakage reactances of the two groups of windings 13 and 14 can be made equal. In this way, the present invention, which is configured to equalize the leakage reactance of the two groups by changing the number of turns in each layer of the DC winding and the width of the gap between the windings, simplifies the insulation process of the DC winding and improves the winding. It is possible to obtain a winding wire that has fewer connection points and is easy to work with.

以上の説明は直流巻線が内側にあるものによつたが外側
にあるものにも実施できることは云うまでもない。
Although the above explanation was based on the case where the DC winding is on the inside, it goes without saying that it can also be applied to a case where the DC winding is on the outside.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図aは従来の巻線を示す断面図、第2図b
は第2aの直流巻線を示す正面図、第3図aは起磁力分
布を考慮しない巻線の断面図、第3図bは第一群の起磁
力分布図、第3図cは第二群の起磁力分布図、第4図a
は本発明の一実施例による巻線の断面図、第4図bは第
一群の起磁力分布図、第4図cは第二群の起磁力分布図
を示す。 1・・・・・・鉄心、2・・・・・・交流巻線、13・
・・・・・直流巻線第一群の巻線、14・・・・・・直
流巻線第二群の巻執。
Figures 1 and 2a are cross-sectional views showing conventional windings, Figure 2b
is a front view showing the DC winding of No. 2a, FIG. 3a is a cross-sectional view of the winding without consideration of magnetomotive force distribution, FIG. 3b is a magnetomotive force distribution diagram of the first group, and FIG. 3c is a diagram of the second group. Group magnetomotive force distribution diagram, Figure 4a
4B is a sectional view of a winding according to an embodiment of the present invention, FIG. 4B is a magnetomotive force distribution diagram of the first group, and FIG. 4C is a magnetomotive force distribution diagram of the second group. 1...Iron core, 2...AC winding, 13.
...Winding of the first group of DC windings, 14... Winding of the second group of DC windings.

Claims (1)

【特許請求の範囲】[Claims] 1 相間リアクトル付二重星形結線の二群の直流巻線を
それぞれ複数層に分割し、これらを同心的に配置したも
のにおいて、二群の巻線の各層の巻回数を異ならせるこ
とももに層間の巾を異ならせることによつて二群の巻線
の漏洩リアクタンスを等しくしたことを特徴とする整流
器用変圧器。
1. When the two groups of DC windings in a double star connection with an interphase reactor are each divided into multiple layers and these are arranged concentrically, the number of turns in each layer of the two groups of windings may be made different. A rectifier transformer characterized in that the leakage reactances of the two groups of windings are equalized by making the widths between the layers different.
JP52112151A 1977-09-20 1977-09-20 Rectifier transformer Expired JPS5929133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52112151A JPS5929133B2 (en) 1977-09-20 1977-09-20 Rectifier transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52112151A JPS5929133B2 (en) 1977-09-20 1977-09-20 Rectifier transformer

Publications (2)

Publication Number Publication Date
JPS5446325A JPS5446325A (en) 1979-04-12
JPS5929133B2 true JPS5929133B2 (en) 1984-07-18

Family

ID=14579501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52112151A Expired JPS5929133B2 (en) 1977-09-20 1977-09-20 Rectifier transformer

Country Status (1)

Country Link
JP (1) JPS5929133B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2755680B2 (en) * 1989-05-12 1998-05-20 株式会社東芝 Transformer coil
JP5247756B2 (en) * 2010-04-02 2013-07-24 株式会社日立産機システム Transformer for converter

Also Published As

Publication number Publication date
JPS5446325A (en) 1979-04-12

Similar Documents

Publication Publication Date Title
US3265998A (en) Compact high voltage transformer having more uniform equipotential line spacing
JPH0366108A (en) Stationary electromagnetic induction apparatus
JPH0338612U (en)
JPS5929133B2 (en) Rectifier transformer
US3129377A (en) Transformer for connecting a threephase system to a two-phase system
US4241324A (en) Magnetic core for electrical transformers
US2408212A (en) Electrical induction apparatus
JPS5946409B2 (en) rectifier transformer
JPS5929132B2 (en) rectifier transformer
JP3343945B2 (en) Transformer winding
JPH0430408A (en) Transformer
JPH0423297Y2 (en)
SU1145432A1 (en) Three-phase a.c.voltage-to-d.c.voltage converter
JP2723322B2 (en) Transformer for cyclo converter
JPS5831377Y2 (en) 3-phase butting type deformed wound core
JPH0123932B2 (en)
JPS6333804A (en) Single-phase transformer
JPS59229809A (en) Triangular three-leg type three-phase reactor
JPH05205956A (en) Transformer of converter
JPS6022490B2 (en) electromagnetic induction winding
JPS6320098Y2 (en)
US3644859A (en) Electrical winding of sheet conductor
RU2144229C1 (en) Three-phase balanced transformer
JPH0325385Y2 (en)
JPH0713203Y2 (en) Transformer winding