JPS5928807A - Control device for electric motor coach - Google Patents

Control device for electric motor coach

Info

Publication number
JPS5928807A
JPS5928807A JP57140406A JP14040682A JPS5928807A JP S5928807 A JPS5928807 A JP S5928807A JP 57140406 A JP57140406 A JP 57140406A JP 14040682 A JP14040682 A JP 14040682A JP S5928807 A JPS5928807 A JP S5928807A
Authority
JP
Japan
Prior art keywords
series
motors
control device
shunt
chopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57140406A
Other languages
Japanese (ja)
Inventor
Shinzo Hirao
平尾 新三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57140406A priority Critical patent/JPS5928807A/en
Publication of JPS5928807A publication Critical patent/JPS5928807A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/298Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature and field supplies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

PURPOSE:To reduce the size of a control device by placing a plurality of shunt DC motors connected in series with each other in an electric motor coach which has a plurality of trucks and providing series field coils of the prescribed small turns in series with the plurality of motors to control the current flow rate of a voltage terminal. CONSTITUTION:Shunt DC motors M1-M4 and M5-M8 are respectively placed in individual trucks respectively in the same vehicle, and connected in series with each other. Series field coils SF1-SF4 and SF5-SF8 of the prescribed small turns are respectively connected in series with each other, and the current flow rate is controlled by chopper controllers 1a, 1b. Shung field coils F1-F4 and F5-F8 are connected in series with each other, the coils F1-F4 of the motors M1-M4 are energized by a rouge of an field chopper unit FTh2 from an inverter RV1(2) under the control of the current flow rate of the field chopper unit (FTh)1 as designated by an arrow A, series characteristics are obtained at the power drive time, and the motors M5-M8 are similarly controlled. Regenerative power brake can also be performed. In this manner, the control device can be reduced in size.

Description

【発明の詳細な説明】 本発明は電気車の制御装置に関するものである。[Detailed description of the invention] The present invention relates to a control device for an electric vehicle.

電気車用H1制御装置においては、従来より直流直巻電
動機を電気車の主電動機として電機子チョッパ制御装置
により制御する方式が広く採用されているが、近年、直
流分巻電動機を?lT、気車の主電動機として用いる(
lJi向がある。これは主電動機の分巻特性によって高
粘着特性が得られること、電力回生ブレーキ領域を拡げ
ることができること等の長所があるためであるが、その
反面 次のような短所がある。
In the H1 control system for electric cars, a method in which a DC series-wound motor is controlled by an armature chopper control device as the main motor of the electric car has been widely adopted, but in recent years, DC shunt-wound motors have been widely used. lT, used as the main motor of a steam train (
There is a direction for lJi. This is because the shunt-winding characteristic of the traction motor provides advantages such as high adhesion characteristics and the ability to expand the power regenerative braking area, but on the other hand, it has the following disadvantages.

(1)電気車の車輪径に差がある場合、各主電動機のト
ルク分担に大きな差が発生する。これは分巻電動機の速
度−トルク特性が垂直であることから容易に理解できる
(1) If there is a difference in the wheel diameter of the electric vehicle, a large difference will occur in the torque sharing of each main motor. This can be easily understood from the fact that the speed-torque characteristic of the shunt motor is vertical.

一般に電気車の車輪径差は同一台車内において6〜10
m程度、同−車両内において/l〜13■程度の範囲内
に管理されているが、同一台車内の車輪径差は、分巻電
動機を主電動機とする場合、より一層車輪径差を小さく
厳密に管理する必要がある。
Generally, the difference in wheel diameter of electric cars is 6 to 10 within the same bogie.
The difference in wheel diameter within the same bogie is controlled within the range of approximately 1.0 m, and within the same vehicle, within a range of approximately 13 cm. However, when a shunt motor is used as the main motor, the difference in wheel diameter within the same bogie can be further reduced. Must be strictly managed.

(,2)  TIY気車領事の主電動機3台を/Miの
チョッパ制御装置で制御する、いわゆるg台モータ制御
方式の場合、車両間の車輪径差は規制されていないので
、分巻上’fli dlil+機を適用する場合、トル
ク分担−にそのアンバランスを制御するのが難しい。
(, 2) In the case of the so-called G motor control system, in which the three main motors of the TIY Consul are controlled by the /Mi chopper control device, the difference in wheel diameter between vehicles is not regulated, so When applying a fli dlil+ machine, it is difficult to control the imbalance in torque sharing.

第1図は従来の分巻電動機を主事、動(ルとしたチョッ
パーl1li制御装置の回路図である。図において/は
チョッパー制御装置で、その〕山流率制御により9台の
主’rlf、 !IiI+機M/、、の端子重圧を!l
i制御して、宙、領事の速度制御な行なうものである。
Fig. 1 is a circuit diagram of a chopper l1li control system using a conventional shunt motor as the main motor. !IiI+ machine M/,, heavy terminal pressure!l
It controls the speed of the consul in the air.

λはカ行接触器で、カ行時に閉じ、電力回生ブレーキ時
に開放される接触器である。主型5’lJI 42) 
M 、〜Mqの分巻界磁巻線F/およびF2並びにFJ
およびFyはそれぞれ別個の界磁チョッパ制御装置3並
びにVで制御さね、カ行時は直流直巻特性を与えるよ5
に111機子電6iC及び界磁電流が比例制御される。
λ is a power contactor, which is closed during power flow and opened during power regenerative braking. Main type 5'lJI 42)
M, ~Mq shunt field windings F/ and F2 and FJ
and Fy are controlled by separate field chopper controllers 3 and V, respectively, and give direct current series winding characteristics when running.
The 111 machine electric 6iC and the field current are proportionally controlled.

Sはフリーホイーリングダイオードであり、電力回生ブ
レーギ時にはカ行接触器、2を開放すると、回生エネル
キーはブレーキダイオード6を通って電源側に回生され
る。
S is a freewheeling diode, and when the contactor 2 is opened during power regeneration braking, regenerative energy is regenerated to the power source side through the brake diode 6.

更に、7は主フイルタリアクトル、ざはフィルタコンデ
ンザ、りは主ヒユーズ、そして10は主平滑りアクドル
を示している。
Furthermore, 7 indicates a main filter reactor, 1 indicates a filter capacitor, 1 indicates a main fuse, and 10 indicates a main flat-sliding axle.

第1図の分巻”+4j: fiJJ機My及びIA、2
は1つの台車内の主電動機であり、MJ及びM+1は同
−車両内の他の台車内の主電動機であるが、この制御方
式では、一台の車両で削g台の主電動機を7組のチョッ
パー制御装置ガで制御することは、前述した車輪径差の
問題があるので、主電動機間のトルク分担差が大きくな
り、困難である。この関係を第3図で説明すると、横軸
(速度)に垂直な破線7は7台の分巻主電動機の速度特
性、破線y′は他の7台の分巻主電動機の速度特性を示
し、車輪径差、主電動様特性差等によって、この差が現
われる。今、分巻主電動機の制御特性が曲線V−Tに示
す直巻特性であったとしても、個々の分巻主電動機のト
ルク特性は分巻特性であり、破線で示すガ、y′のよう
になり、1に領事の速度Ntで見ると特性X′に係る分
巻主電動機の分担トルクは700%で、特性y′に係子
分巻主車III機の分担トルクは零である。
Volume “+4j” in Figure 1: fiJJ machine My and IA, 2
is the traction motor in one bogie, and MJ and M+1 are the traction motors in other bogies in the same vehicle, but with this control method, one vehicle can control seven sets of traction motors. It is difficult to control the chopper control device using the chopper control device because the difference in torque sharing between the main electric motors becomes large due to the problem of the wheel diameter difference mentioned above. To explain this relationship in Figure 3, the broken line 7 perpendicular to the horizontal axis (speed) shows the speed characteristics of the seven shunt traction motors, and the broken line y' shows the speed characteristics of the other seven shunt traction motors. This difference appears due to differences in wheel diameters, differences in main motor characteristics, etc. Now, even if the control characteristic of the shunt-wound traction motor is a series-wound characteristic as shown by the curve V-T, the torque characteristics of each shunt-wound traction motor are shunt-wound characteristics, and are as shown by the broken lines y and y'. Therefore, when looking at the consul's speed Nt in 1, the shared torque of the shunt main motor with respect to characteristic X' is 700%, and the shared torque of the shunt main motor with characteristic y' is zero.

従ってトルクの差はΔTiという極端訛場合がありイリ
 る 。
Therefore, the torque difference may be as extreme as ΔTi.

本発明は一1二記の従来装置の欠点を除去するためにl
、Cさ第1たもので、本発明では、端的に言うと、電(
セ!・子とM列に所定少巻数の直巻界磁巻線を設Oて分
巻主電動機の速度−トルク特性に若干の傾斜特性をり、
えることにより上記欠点を解消している。
The present invention aims to eliminate the drawbacks of the conventional devices listed in 112.
, C is the first thing, and in the present invention, to put it simply, the electric (
Se!・Set up a series field winding with a predetermined small number of turns in the child and M rows to create a slight slope characteristic in the speed-torque characteristic of the shunt-wound traction motor.
By doing so, the above drawbacks are resolved.

以下、本発明を、その好ましい実施例に渚って詳1、 
<説、明す石。
Hereinafter, the present invention will be described in detail with reference to its preferred embodiments.
<Explanation, Akashi.

本発明では分巻電動(郷の特性を車輪径差を許容できる
程度にFr1i動機の速度−トルク特性に傾斜を仁 もづぜるため、直巻界磁@線SF/% 5Fffを図示
の如く設け、分巻界磁巻線p /〜FりおよびFt−’
p”tは/ jlj両内の主1(電動(幾V台毎に制御
可能にすることにより7組の、2相/重チョッパ制御装
置でもって、宙、気]r、 、2両で帽g台の主電動機
を制御可能で))す、さらに再粘着特性のすぐねた′F
It気車の領事i制御装置を堤供するものである。
In the present invention, in order to increase the slope of the speed-torque characteristics of the Fr1i motor to the extent that the characteristics of the shunt-wound motor can tolerate the wheel diameter difference, the series-wound field @line SF/% 5Fff is set as shown in the figure. Provided, shunt field winding p/~F and Ft-'
p"t is / jlj main 1 (electric (by making it controllable for each V unit, 7 sets of 2-phase/heavy chopper control devices, air, air) r, , 2 cars) It is possible to control the traction motor of the g series), and it also has a quick re-adhesive property.
It provides a consular control device for the vehicle.

図において/a及び/bはチョッパー制御装置1.2a
及び2bはカ行接触器、5a及び、tbはフリーホイー
リングダイオード、6a及び6bはブレーキダイオード
、RV/及びRVjは逆転器1.20及びユ/は高速度
しゃ断器1.2.2は充電4!(抗器、FTh/〜FT
hヶは界磁チョッパー装置、23〜+2乙は界磁フリー
ホイーリングダイオード、そしてRV/l功Fは前進時
に閉じる逆転器RV/又はRV、2の接点同時動作なの
で統一して図示されている、RV/i舶は後退時に閉じ
る逆転器RV/又はRVuの接点(同時動作なので統一
して図示されている)である。尚、図中、チョッパー制
御装fPJ、 / a、カ行接触器、2a1フリーホイ
ーリングターイオードja及びブレーキダイオードAa
は二台の車両のうちの一方の車両に係るものであり、そ
れぞれ81¥/図に示されたチョッパー制御装置/、カ
行接触器コ、フリーホイーリングダイオードS、及びブ
レーキダイオード6と同じ機能を有しており、これは他
方の車両のチョッパー制御装f/b、カ行接触器、2b
1フリーボイーリングダイオード5b、及びブレーキダ
イオード4bKついても同様である。
In the figure /a and /b are chopper control device 1.2a
and 2b are row contactors, 5a and tb are freewheeling diodes, 6a and 6b are brake diodes, RV/ and RVj are reversers 1.20, and U/ is a high speed breaker 1.2.2 is a charging 4! (antigen, FTh/~FT
h is a field chopper device, 23 to +2 is a field freewheeling diode, and RV/1 F is a reversing device RV/or RV, which closes when moving forward, and the contacts of RV and 2 operate simultaneously, so they are all shown together. , RV/i is the contact point of the reversing device RV/or RVu that closes when reversing (they are shown together because they operate simultaneously). In addition, in the figure, chopper control system fPJ, /a, row contactor, 2a1 freewheeling diode ja, and brake diode Aa
is related to one of the two vehicles, and each has the same functions as the chopper control device/, the contactor, the freewheeling diode S, and the brake diode 6 shown in the figure. This includes the other vehicle's chopper control device f/b, row contactor, 2b
The same applies to the 1 free-boiling diode 5b and the brake diode 4bK.

動作において、カ行時主電動機の電機子M / −M 
lおよびM !r % )、A I  の端子電圧は、
それぞれ別個のチョッパーflt制御装置/a及び/b
により連続して通流率制御きれる。カ行時、高速度しゃ
断器、20、カ行接触器、2a及び−すは閉じており、
力行型5流は、一方の車両の市、抱子)、A/〜Mpに
ついては、チョッパー制御装置/aが通流期間中は1.
2a−M/〜M4’ −RV/ −8F/〜SF+’−
RVt−/ aなる経路を電流が流れ、次いで、チョッ
パー制御装置/aが非油?ノ1し期間中は、IJ i〜
M l −RV / −S F /−8F Ll−RV
 /−、ta−,2aなろ経路で電流が流れる。従って
チョッパー制御装置/aの通流+側′@に、rつて主型
mh l良の1「抱子M / −M uの端子電圧およ
び電磯子電Mlfflの平均値は連続的に制御される。
In operation, the main motor armature M/-M when moving
l and M! r %), the terminal voltage of A I is
Separate chopper flt controllers /a and /b respectively
The conduction rate can be controlled continuously. When the high-speed breaker, 20, the contactor, 2a and - are closed,
In the power running type 5 flow, the chopper control device /a is set to 1.
2a-M/~M4'-RV/-8F/~SF+'-
A current flows through the path RVt-/a, and then the chopper control device/a is non-oil? During the 1st period, IJ i~
M l -RV / -SF / -8F Ll-RV
Current flows through the paths /-, ta-, and 2a. Therefore, on the current + side of the chopper control device/a, the terminal voltage of the main type mh l good, the terminal voltage of the main type M/-Mu and the average value of the electronic Mlffl are continuously controlled. .

これは他方の車両の電機子)、イタ〜MEついても同様
である。
This also applies to the armature of the other vehicle), ita~ME.

主電動1幾M/〜M4’の分巻界磁巻線F/=FIは界
?aチョッパー装置FTh/の通流率制御によってRV
z(濁F −F /〜FダーFThコの経路(実線矢印
へ)で励(+nされ、カ行時には主電動機のN抱子電流
と分巻界磁電流は比例制御されて石巻特性を得る。主電
機子Mt−Mzについても同様に制御される。主電動機
M/−Mヶの直巻界?117巻純SF/〜SFゲと分巻
界磁巻線F/ □ F ?の逆転は逆転器F(V/及び
RVjにより行〕「つ。分巻界磁電流の正方向を実線の
電流方向(八、R)とすると逆方向は破線の41.流方
向(C,D)とブfる。
Is the main motor 1 M/~M4' shunt field winding F/=FI the field? RV by controlling the flow rate of a chopper device FTh/
It is excited (+n) along the path (toward the solid arrow) of z (turbidity F −F / ~ F dar FTh), and when the motor is running, the N retainer current of the main motor and the shunt field current are proportionally controlled to obtain Ishinomaki characteristics. The main armature Mt-Mz is controlled in the same way.The reversal of the direct winding field of the main motor M/-M?117 pure SF/~SFge and the shunt field winding F/□F? Reversing device F (performed by V/ and RVj) If the positive direction of the shunt field current is the solid line current direction (8, R), the reverse direction is the broken line 41. Current direction (C, D) and block. Fru.

電力回生ブレーキ時には、界磁チョッパーの通流率制御
により分巻界磁巻線の励磁を行ない、主電動機の電+)
子電圧を立上げて、電機子11を流の回生を行なう。一
方の車両の電機子M /〜ILFについては、電機子チ
ョッパー装置/aの通rllt期間中、電流は、M/〜
M+’−RV/−8F/〜5F4I−RV/−/a−2
/−Aa −M/〜M eの閉回路で電機子電流を立上
げる。そして電機子チョッパー装置/aの非通流期間に
は、回生電流は次の回路を通って電源側に回生される。
During power regenerative braking, the shunt field winding is excited by controlling the current flow rate of the field chopper, reducing the power of the traction motor.
The slave voltage is raised and the armature 11 performs flow regeneration. For the armature M/~ILF of one vehicle, during the passage of the armature chopper device/a, the current is M/~
M+'-RV/-8F/~5F4I-RV/-/a-2
The armature current is raised in the closed circuit of /-Aa-M/~Me. During the non-current period of the armature chopper device/a, the regenerative current is regenerated to the power supply side through the next circuit.

接地(レール) −,2/ −4a −M/ 〜kl−
RV/−8F/〜SFp  RV/−!ra−20−7
9−電源他方の車両のff14FJ子M g〜MrO回
生動作も同様の制御で電力回生される。
Ground (rail) −, 2/ −4a −M/ ~kl−
RV/-8F/~SFp RV/-! ra-20-7
9-Power source ff14FJ child Mg~MrO regeneration operation of the other vehicle is also regenerated with electric power under similar control.

主電動機電機子M / −M uおよびM!〜Mlは少
巻数の直巻界磁巻線SFt〜SFFおよびS F 、t
〜SFtがそ第1ぞれ挿入さ第1ているため、第3図に
示すように十宙、動機のテ1!度−トルク特性X、Yの
如くやや顛酬るで持っている。今、同−車両内の任意の
台111の車輪径差に起因して、さらにその主電動機の
!侍性差を含めた一台の主電動イ良の!F、〒性が第、
7図の曲線XどyのIo <、バラツキがk)る場合、
小両速Ire’ N tにおけイ)トルクのアンバラン
スはΔTコとなる1、このアンバランスΔTコは前述し
た完全分巻主電動機の(・ルクのアンバランスΔTlよ
りはるかに小さく、このアンバランスΔTコを全トルク
Tとの比率を一〇%程度は下に制御できるような若干の
イ]tt 側すなわちrK巻時特性主′1[を動機に与
えてや才1ば、宙、領事)両分の主?lj動機を7組の
チョッパlt+制御装jfで制御することができる。第
3図の速度−トルク特性の曲線x+yの傾斜は第一図の
少巻数の直巻界磁巻線S F ’〜S11の巻数を変え
ることによって自由にR’J ’liセできる。
Main motor armature M/-M u and M! ~Ml is a series field winding with a small number of turns SFt~SFF and S F , t
~ SFt is inserted first, so as shown in Figure 3, the motive Te1! The torque-torque characteristics, like X and Y, vary somewhat. Now, due to the difference in wheel diameter of any platform 111 in the same vehicle, the main electric motor! One main electric vehicle that includes samurai gender differences! F. Gender is first.
If Io of curve X and y in Figure 7 is <, and the variation is k),
At both small and low speeds Ire' The ratio of the balance ΔT to the total torque T can be controlled to be about 10% lower. ) Lord of both? lj motive can be controlled by seven sets of choppers lt+control device jf. The slope of the speed-torque characteristic curve x+y shown in FIG. 3 can be freely set to R'J' by changing the number of turns of the series field windings S F' to S11 with a small number of turns shown in FIG.

第、7図にtaいては、電気車両の引張力(トルク)/
 1(1+重で定義されるレール表面と動輪間の粘着係
数の限界1時性曲線なμで示しているが、石巻電動様の
特性曲線V−Tは空転して車輪速度が高くなると、粘着
限界μを超えてますます大空転することになるが、傾斜
特性x、yに係る主電動機は空転して速度が大きくなる
と主筒、動機のトルクは直ちに粘着限界μ以下となり、
再粘着することがわかる。これは完全分巻電動様の再粘
着特性とほぼ等価である。
In Fig. 7, the tensile force (torque) of the electric vehicle /
The limit 1 time curve of the adhesion coefficient between the rail surface and the driving wheels defined by 1 (1 + weight) is shown by μ, but the characteristic curve V-T for Ishinomaki electric motors shows that when the wheel speed increases due to slipping, the adhesion decreases. Although the limit μ is exceeded and the main motor is idling more and more, the main motor related to the slope characteristics x and y is idling and the speed increases, the torque of the main cylinder and the motor immediately becomes less than the adhesion limit μ,
It can be seen that it re-adhesively. This is almost equivalent to the readhesion characteristic of a fully shunted motor.

υ上の智、明から明らかなように、本発明によれば、電
気車2両分の計に台の主電動機な、通常の車輪径差をW
「容しながら、7組のチョッパー制御装置で制御するこ
とができるので、電車編成として評価すれば、制御装置
の小形・軽11−化を達成することができる。更に、主
電動機固有の速度−トルク特性が急山9であるため、電
気車の再粘着特性は分@電動4M同様に優れた効果を発
揮することができる。尚、本発明は、2 i1j1/上
の′11L気、車の制御架[dとしても適用することが
できる。
As is clear from the wisdom and light above, according to the present invention, the difference in diameter of the normal wheels of the traction motor for two electric cars can be reduced to W.
"However, it can be controlled by seven sets of chopper control devices, so if evaluated as a train formation, it is possible to achieve a smaller and lighter control device.Furthermore, the speed inherent to the traction motor... Since the torque characteristics are steep 9, the re-adhesion characteristics of the electric car can exhibit excellent effects similar to those of the electric car 4M.In addition, the present invention It can also be applied as a control rack [d].

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は/車両に塔載されたり台の分巻主電動虫をチョ
ッパー制御装置で制御する従来の電気車制御装訂の主回
路図、第一図は本発明に係る2車両で剖g台の分巻主電
動機を備えた電気車の制御装置の主回路図、そして第3
図は従来及び本発明の電気市制?1IIl装置における
電動機の速度−トルク特性を示すグラフ図である。 M/〜Mff・・電機子、F/〜Ft・・分巻界磁巻線
、SF?−8Fff  −・直巻界磁@線、/a、/b
・・チョッパー制御装置、FTh/%FTb4・・界磁
チョッパー装置1ffi 。 尚、図中、同一符号は同−又は相当部分を示す。 代理人  葛  野  信  −
Figure 1 is a main circuit diagram of a conventional electric vehicle control system in which a chopper control device controls a main electric motor mounted on a vehicle or a stand. The main circuit diagram of the control device of an electric vehicle equipped with a separate main motor, and the third
Is the diagram the conventional and inventive electric city system? FIG. 2 is a graph diagram showing the speed-torque characteristics of the electric motor in the 1III device. M/~Mff...Armature, F/~Ft...Shunt field winding, SF? -8Fff -・Series field @ wire, /a, /b
...Chopper control device, FTh/%FTb4...Field chopper device 1ffi. In the drawings, the same reference numerals indicate the same or corresponding parts. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】[Claims] (1)直列接続された複数台の分巻直流電動機を各々が
塔載した複数の車両から成る1は気車の制御装fRであ
って、 前記複数台の分巻直流電動機と直列接続された所定少数
巻の直巻界磁巻線とチョッパー制御装置との直列体;及
び、前記複数台に対応した複数個の分巻界磁巻線を制御
する界磁チョッパー制御装置;を備え、前記チョッパー
制御装置が組み合わされて前記直巻界磁巻線の端子電圧
を通流率制御することを特徴とした電気車の制御装置。 (,2)前記分巻直流電動機は/車両においてV台直列
に接続されており、−車両でt台の前記分巻直流電動機
を一対の前記チョッパー制御装置で制御する特許請求の
範囲第1項記載の電気車の制御装置。
(1) Consisting of a plurality of vehicles each carrying a plurality of shunt DC motors connected in series, 1 is a control system fR for a steam train, which is connected in series with the plurality of shunt DC motors. The chopper comprises a series body of a predetermined number of turns of a series field winding and a chopper control device; and a field chopper control device that controls a plurality of shunt field windings corresponding to the plurality of units. A control device for an electric vehicle, characterized in that a control device is combined to control the conductivity of the terminal voltage of the series field winding. (,2) V units of the shunt-wound DC motors are connected in series in a vehicle, and - T units of the shunt-wound DC motors are controlled by the pair of chopper control devices in the vehicle. Control device for the electric vehicle described.
JP57140406A 1982-08-09 1982-08-09 Control device for electric motor coach Pending JPS5928807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57140406A JPS5928807A (en) 1982-08-09 1982-08-09 Control device for electric motor coach

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57140406A JPS5928807A (en) 1982-08-09 1982-08-09 Control device for electric motor coach

Publications (1)

Publication Number Publication Date
JPS5928807A true JPS5928807A (en) 1984-02-15

Family

ID=15268013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57140406A Pending JPS5928807A (en) 1982-08-09 1982-08-09 Control device for electric motor coach

Country Status (1)

Country Link
JP (1) JPS5928807A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115012A (en) * 1976-03-22 1977-09-27 Toyo Electric Mfg Co Ltd Device for controlling electric motor vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115012A (en) * 1976-03-22 1977-09-27 Toyo Electric Mfg Co Ltd Device for controlling electric motor vehicle

Similar Documents

Publication Publication Date Title
CN103419668B (en) The power storage controller of vehicle
JPH09505786A (en) Rail type power unit
EP2314492B1 (en) Rail convoy with dual drive
JP2002369308A (en) Electric rolling stock system
KR102585749B1 (en) System and method for managing battery of eco-friendly vehicle and trailer connected thereto
JPH0698409A (en) Inverter controlled type electric rolling stock
JPS5928807A (en) Control device for electric motor coach
JPH0833122A (en) Electric dual mode railway vehicle
JPS63268405A (en) Train driving system
Ogura Next-generation battery-driven light rail vehicles and trains
JP2001231112A (en) Power device of motor vehicle and power feeding apparatus
US3851232A (en) Electric vehicle propulsion system
JP3178536U (en) Electric vehicle power control device
US408231A (en) Means for propelling vehicles by secondary batteries
RU2440260C2 (en) Railway driven vehicle
JP2011030345A (en) Power control device of electric vehicle
JP2001211513A (en) Control equipment of electric train
US2669681A (en) Motor control prior to dynamic braking
RU2646683C1 (en) High speed electric train, energy-saving, ecologically pure and safe for people
JPS635963B2 (en)
JP2768543B2 (en) Electric car control device
US2970250A (en) High-speed electric-car control
KR101859443B1 (en) 1c2m propulsion control system for electric multiple unit and electric multiple unit including the same
US2060521A (en) Electric vehicle
US2653284A (en) Motor-protection during dynamic braking