JPS5928640B2 - Composite chrome plating method - Google Patents
Composite chrome plating methodInfo
- Publication number
- JPS5928640B2 JPS5928640B2 JP20761481A JP20761481A JPS5928640B2 JP S5928640 B2 JPS5928640 B2 JP S5928640B2 JP 20761481 A JP20761481 A JP 20761481A JP 20761481 A JP20761481 A JP 20761481A JP S5928640 B2 JPS5928640 B2 JP S5928640B2
- Authority
- JP
- Japan
- Prior art keywords
- plating
- electrolysis
- current density
- chromium
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
Description
【発明の詳細な説明】
本発明は複合クロムめつき法に係り、近年、Ni(ニッ
ケル)、Cu(銅)、Zn(亜鉛)等の表面の耐摩耗性
、潤滑性及び耐酸化性の強化を図るために実用化されつ
つある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite chromium plating method. It is being put into practical use to achieve this goal.
高硬質物の酸化物、炭化物、窒化物、及び自己潤滑性を
有する二硫化モリブデン、テフロン等の分散材をめつき
により分散させる分散めつきを施すことによつて、極め
て硬質で、耐摩耗性に優れ、且つ、高温耐酸化性が優れ
ているクロムめつきの品質をさらに向上させる複合クロ
ムめつき法に関するものである。従来、クロムめつきは
自動車用エンジンのシリンダーの内面めつきとして通常
使用され耐摩耗性の向上等を図つている。一方、Niめ
つき中に分散材としてSiC(炭化珪素)を分散させる
ことによつて、クロムめつきに匹敵する耐摩耗性が得ら
れ、しかも、このニッケルめつき法はクロムめつき法に
比べ極めて経済的に有利なことから、種々に開発されて
きた。By applying dispersion plating, which uses dispersion materials such as highly hard oxides, carbides, and nitrides, and self-lubricating molybdenum disulfide and Teflon, it is extremely hard and wear-resistant. The present invention relates to a composite chromium plating method that further improves the quality of chromium plating, which has excellent oxidation resistance and high-temperature oxidation resistance. Conventionally, chrome plating has been commonly used as an inner surface plating for automobile engine cylinders to improve wear resistance. On the other hand, by dispersing SiC (silicon carbide) as a dispersant during Ni plating, wear resistance comparable to that of chrome plating can be obtained. Since they are extremely economically advantageous, various types of them have been developed.
そこで、クロムめつき法においてもめつき中に分散材を
分散させることによつて、経済的に、そして、従来のク
ロムめつきの性質をより向上させるための研究が始めら
れた。しかし、クロムめつき法として一般に普及されて
いる無水クロム酸と硫酸とから構成されたサージエンド
型のクロムめつき浴を使用するめつき法は、Cu、Ni
、Zn等のめつきに比べ析出の電位が高く、しかも、C
r(クロム)析出にあつて、多量の水素の放出を伴ない
、それがために微粉末物質である分散材が被めつき材表
面より逸散され、ほとんど共析されることなく、共析さ
れてもその量は極めて少なく、その結果、耐摩耗性等を
強化する効果は到底期待できるものではなかつた。Therefore, research has begun in order to economically improve the properties of conventional chrome plating by dispersing a dispersant during plating in the chrome plating method. However, the plating method that uses a surge-end type chromium plating bath composed of chromic anhydride and sulfuric acid, which is generally popular as a chromium plating method, is
, the deposition potential is higher than that of plating with Zn, etc., and moreover, C
During r (chromium) precipitation, a large amount of hydrogen is released, and as a result, the dispersion material, which is a fine powder, escapes from the surface of the plated material, and almost no eutectoid occurs, resulting in eutectoid formation. Even if it was added, the amount was extremely small, and as a result, the effect of enhancing wear resistance etc. could not be expected at all.
又、異なる方法として、Mo(モリブデン)、Ta(タ
ンタル)、W(タングステン)等の耐熱金属粉末をタロ
ムをマトリツクスとしためつき浴中に分散させ、100
0′Cの熱処理をすることによりCr−W,Cr−MO
,Cr−Taの分散強化合金めつきを得ることができる
分散強化合金めつき法及びZr2B(ホウ酸ジルコニウ
ム)、TiO2(酸化チタン)の高硬質の微粉末を共析
させる分散めつき法が報告されている。ところが、いず
れのめつき法においても、実用に供しうる速さで、経済
的に、しかも分散材が均一に共析分散させるめつきを行
なうことはできなかつた。例えば、分散めつき法による
実例を示すと、Cr一Zr2Bの分散めつきの場合、Z
r2Bの粒寸法が20〜40μmのものを用い、電流密
度は2.7A/dゴの条件で実施されている。In addition, as a different method, heat-resistant metal powder such as Mo (molybdenum), Ta (tantalum), W (tungsten), etc. is dispersed in a tightening bath using Tarom as a matrix.
Cr-W, Cr-MO by heat treatment at 0'C
, a dispersion-strengthened alloy plating method that can obtain dispersion-strengthened alloy plating of Cr-Ta, and a dispersion-strengthened plating method that eutectoidizes highly hard fine powders of Zr2B (zirconium borate) and TiO2 (titanium oxide) have been reported. has been done. However, in any of the plating methods, it has not been possible to perform plating at a practical speed, economically, and evenly eutectoidally dispersing the dispersing material. For example, to give an example using the dispersion plating method, in the case of dispersion plating of Cr-Zr2B, Z
R2B grain size of 20 to 40 μm was used, and the current density was 2.7 A/d.
しかし、その場合、Cr−Zr,Bの析出速度は0.2
μm/hと極めて遅く、ほとんど実用に供しうる速さで
はなく、しかも、分散材の分散は微粒子が均一に共析す
ることが効果的であるにもかかわらず、通常の方法では
比較的粗粒の分散材をかろうじて分散共析できる程度の
ものである。そこで本発明は、如上の欠点に鑑み、従来
の極めて低い分散材の析出速度を改善し、従来実用に供
されている速度のクロムめつきで、且つ、均一な分散め
つきを施そうとするものである。However, in that case, the precipitation rate of Cr-Zr,B is 0.2
The speed is extremely slow at μm/h, which is hardly a speed that can be put to practical use.Moreover, although the dispersion of the dispersant is effective when the fine particles are uniformly eutectoid, the normal method uses relatively coarse particles. It is possible to eutectoid the dispersion materials. Therefore, in view of the above-mentioned drawbacks, the present invention aims to improve the conventional extremely low precipitation rate of dispersion material, and to achieve uniform dispersion plating at the rate of chromium plating that has conventionally been practically used. It is something.
以下、本発明に係る複合めつき法の詳細について説明す
ると次の通りである。The details of the composite plating method according to the present invention will be explained below.
本発明者は、サージエンド型のクロムめつき浴を用いて
分散めつきを施す場合について、ハルセル試験法によつ
て分散材共析と電流密度との関係について詳細に検討し
たところ、2〜4A/dゴの電流密度域で多量の分散材
が容易に共析し得るが、通常のクロムめつきにおいて実
施される電流密度域10〜50A/dゴではほとんど分
散材の共析が得られないとの知見を得ることができた。The present inventor conducted a detailed study on the relationship between dispersion material eutectoid and current density using the Hull cell test method when performing dispersion plating using a surge-end type chromium plating bath, and found that 2 to 4A A large amount of dispersed material can be easily eutectoid in the current density range of /d, but hardly any eutectoid of the dispersed material can be obtained in the current density range of 10 to 50A/d, which is carried out in normal chrome plating. We were able to obtain this knowledge.
すなわち、クロムめつき中に分散材を共析させるために
は2A/dイ前後の低電流が有利であるから、めつきの
耐摩耗性、潤滑性及び耐酸化性の強化用の分散材を、ク
ロムめつき中に分散させ、且つ、共析固着させる電流密
度域を2A/dゴ前後にすることで、クロムめつき中に
分散材を分散共析させることができるということが判明
した。そして、このクロムめつきを通常の電着速度にて
可能にするためには、さらに研究、検討した結果、めつ
きの耐摩粍性、潤滑性及び耐酸化性の強化用の分散材を
均一に分散させたクロムの電解浴中において、陰極に対
し、前記分散材をクロムめつき中に分散させ、且つ共析
固着させる2!Hy/dゴ〜4A/DTrIの第1の電
流密度域と、クロムめつきを通常の電着速度にて行なう
10Vdm゛〜50A/dイの第2の電流密度域との両
域での電流密度を用いて繰り返し電解させるパルス電解
による複合電解を行なうことで分散めつきを施すことに
より、クロムめつき中に分散材を分散させる分散めつき
、及び、その分散めつきを通常の電着速度にて行なうこ
とが可能になつた。その結果、耐摩粍性、潤滑性及び耐
酸化性等に優れている分散材のクロムめつき中への分散
及び共析は、水素ガス発生の著しく少ない、2Vdゴ〜
4A/dゴの第1の電流密度域の条件下で容易に行なう
ことができ、その後、通常の電着速度にてクロムめつき
を行なう10A/dゴ〜50Vdm1の電流密度域で複
合電解を行なえば、分散、共析した前記分散材の間にク
ロムを埋込むという状態となり、従来実用に供されてい
るクロムめつき速度で、分散材による耐摩耗性、潤滑性
及び耐酸化性の強化を計つたタロムめつきを得ることが
できる。In other words, since a low current of around 2 A/d is advantageous for eutectoiding the dispersion material during chrome plating, the dispersion material for enhancing the wear resistance, lubricity and oxidation resistance of plating is It has been found that the dispersion material can be dispersed and eutectoid during chromium plating by setting the current density range for dispersion and eutectoid fixation to around 2 A/d. In order to make this chrome plating possible at normal electrodeposition speeds, further research and consideration revealed that a dispersant for enhancing the wear resistance, lubricity, and oxidation resistance of the plating was uniformly dispersed. In the electrolytic bath of chromium, the dispersion material is dispersed in chromium plating on the cathode, and eutectoid is fixed.2! Current in both the first current density range of Hy/d ~ 4A/DTrI and the second current density range of 10Vdm ~ 50A/d where chromium plating is performed at a normal electrodeposition speed. By performing dispersion plating by performing complex electrolysis using pulsed electrolysis, which repeatedly electrolyzes using density, dispersion plating that disperses the dispersion material during chrome plating, and the dispersion plating that can be performed at a normal electrodeposition speed. It became possible to do it at As a result, the dispersion and eutectoid dispersion of the dispersion material, which has excellent wear resistance, lubricity, and oxidation resistance, into the chromium plating has resulted in a 2Vd gold plate with significantly less hydrogen gas generation.
Composite electrolysis can be easily carried out under the conditions of the first current density range of 4 A/d Go, followed by complex electrolysis in the current density range of 10 A/d Go to 50 Vdm1, followed by chromium plating at normal electrodeposition speed. If this is done, chromium is embedded between the dispersed and eutectoid materials, and the dispersion material enhances wear resistance, lubricity, and oxidation resistance at the conventional chromium plating speed. You can get Tarom Meteki based on your time.
又、実験、研究の結果、前記複合電解として、分散材を
分散させ、且つ共析固着させる第1の電流密度域と、ク
ロムめつきを通常の電着速度にて可能にする第2の電流
密度域とにおける電解を順に重ねて行なうところの重畳
電解により、前記したパルス電解と同様の効果を得られ
ることがわかつた。以下に、本発明に係る複合クロムめ
つき法の具体的な実施例を示す。Further, as a result of experiments and research, it has been found that the above-mentioned composite electrolysis has a first current density range that disperses and eutectoidally fixes the dispersion material, and a second current that enables chromium plating at a normal electrodeposition speed. It has been found that the same effect as the above-mentioned pulsed electrolysis can be obtained by superimposed electrolysis in which electrolysis in the density region is carried out one after the other. Specific examples of the composite chromium plating method according to the present invention are shown below.
実施例 1
クロムの電解浴組成は、無水クロム酸250g/1,H
2S04(硫酸)2.59/lを用い、分散材としてS
lC(炭化珪素)0.2μm(粒度)のものを509/
l混入させ、浴温を45℃に保持して、機械的な攪拌に
よつてそのSiCを浴中に均一に分散させておく。Example 1 Chromium electrolytic bath composition was chromic anhydride 250g/1,H
2S04 (sulfuric acid) 2.59/l was used, and S was used as a dispersant.
IC (silicon carbide) 0.2 μm (particle size) 509/
1, and the bath temperature is maintained at 45° C. to uniformly disperse the SiC in the bath by mechanical stirring.
一方、電極としては陰極を鋼板(寸法20mm×20龍
×3mm)とし陽極として鉛一錫(5%)・合金板(寸
法50m71L×507!L7!L×10mn)を2枚
用い、陰極に対して、電流密度3A/dゴ,周期幅50
msec、電流密度30Adゴ,周期幅50msecを
60分間の条件でのパルス電解による複合クロムめつき
を行つた。その結果、これらの条件より得られたクロム
めつき中には、分析の結果SlCが5wt%含有してい
て、硬度測定を行なつたところ、Hvl2OOという高
硬度が得られた。On the other hand, as electrodes, the cathode is a steel plate (dimensions 20 mm x 20 x 3 mm) and the anode is two lead tin (5%) alloy plates (dimensions 50 m71 L x 507! L7! L x 10 mm). current density 3A/d, period width 50
Composite chromium plating was performed by pulse electrolysis at a current density of 30 msec, a cycle width of 50 msec, and a cycle width of 50 msec for 60 minutes. As a result, the chromium plating obtained under these conditions was analyzed to contain 5 wt % of SlC, and hardness measurement revealed that it had a high hardness of Hvl2OO.
又、上記実施例の浴及び装置を用いて、通常の (直流
電解30A/dゴ,60分間の条件によるクロムめつき
を行なうと、これより得られたクロムめつきの硬さはH
v9OOであつた。Furthermore, when chromium plating is carried out using the bath and apparatus of the above example under the conditions of normal (DC electrolysis 30A/d, 60 minutes), the hardness of the chrome plating obtained is H.
It was v9OO.
そして、前記Cr−SiCの複合クロムめつきと後記通
常のタロムめつきのみとについて、SK5l材との耐摩
耗試験を荷重32.5KV、摩擦速度1.43m/Se
cl摩耗距離8000mの条件で潤滑油を用いて行なつ
たところ、試験後の表面粗度については、Cr−SiC
複合クロムめつきは0.1μmであり、通常のクロムめ
つきは0,5μmで−あ 1つて、前記Cr−SiC複
合クロムめつきの方が、後記クロムめつきに比べて表面
粗度は細かいことが判明した。Then, for the composite chromium plating of Cr-SiC and the normal tarom plating described later, a wear resistance test with SK5l material was conducted at a load of 32.5 KV and a friction speed of 1.43 m/Se.
When the test was carried out using lubricating oil under the condition of 8000 m of Cl wear distance, the surface roughness after the test was Cr-SiC
Composite chrome plating is 0.1 μm, and normal chrome plating is 0.5 μm.One thing is that the Cr-SiC composite chrome plating has a finer surface roughness than the chrome plating described below. There was found.
又、この試験後の摩耗痕の硬度を測定してみると、Cr
−SiC複合クロムめつきはHv7OOlクロムめつき
はHv3OOとなり、Cr− !SiC複合クロムめつ
き、つまり、本発明に係る複合クロムめつき法によるめ
つきの方が通常のクロムめつきよりも耐摩耗性、及び硬
度について格段の良い結果が得られた。実施例 2
クロムの電解浴組成は、無水クロム酸2009/11硫
酸2.09/lに分散材としてAl2O3(酸化アルミ
ニウム)0.5μm(粒度)の粉末を1009/l添加
し、浴温を20℃に保持して、機械的な攪拌によつてそ
のAl2O3を浴中に均一に混合.させておく。Also, when we measured the hardness of the wear marks after this test, we found that Cr
-SiC composite chrome plating is Hv7OOI chrome plating is Hv3OO, Cr-! SiC composite chromium plating, that is, plating by the composite chromium plating method according to the present invention, yielded significantly better results in terms of wear resistance and hardness than ordinary chrome plating. Example 2 The composition of an electrolytic bath for chromium was as follows: To 2.09/l of chromic anhydride 2009/11 sulfuric acid, 1009/l of Al2O3 (aluminum oxide) 0.5 μm (particle size) powder was added as a dispersant, and the bath temperature was set to 2009/l. ℃ and mixed the Al2O3 uniformly into the bath by mechanical stirring. I'll let you.
一方、電極としては陰極を軟鋼板(寸法20mnX20
韮×3m0、陽極として鉛一錫(5%)合金板(寸法5
0U×50闘×10m0を2枚用い、陰極に対して電流
密度3A/Dm゛、周期幅20msec、電流密度20
A/dゴ、周期幅20msecを30分間の条件でのパ
ルス電解による複合クロムめつきを行なつた。その結果
、これらの条件より得られたタロムめつき中には、分析
の結果Al2O3が7wt%含有していて、硬度測定を
行なつたところ、HllOOという硬度が得られた。On the other hand, as an electrode, the cathode is a mild steel plate (dimensions 20mm x 20mm).
Dwarf x 3m0, lead-tin (5%) alloy plate as anode (dimension 5
Using two sheets of 0U x 50mm x 10m0, current density 3A/Dm゛ for the cathode, period width 20msec, current density 20
Composite chromium plating was carried out by pulse electrolysis under the conditions of A/D Go and a cycle width of 20 msec for 30 minutes. As a result, analysis revealed that the tarom plating obtained under these conditions contained 7 wt % of Al2O3, and hardness measurement revealed a hardness of HllOO.
又、上記実施例の浴及び装置を用いて 、通常の直流電
解20A/dゴ、30分間の条件によるクロムめつきを
行なうと、これより得られたクロムめつきの硬さはHv
6OOと軟いものであつた。Furthermore, when chromium plating is carried out using the bath and apparatus of the above embodiment under the conditions of normal DC electrolysis at 20 A/d for 30 minutes, the hardness of the chromium plating obtained is Hv.
It was soft at 6OO.
そして、このクロムめつき中のAl2O3の分析を試み
たが、Al2O3は全く認められなかつた。実施例 3
タロムの電解浴組成は、無水クロム酸1509/l、硫
酸1.59/lを用い、分散材としてMOS2(二硫化
モリブデン)1μm(粒度)の粉末を60g/l混入さ
れ、浴温を30℃に保持して、機械的な攪拌によつてそ
のMOS2を浴中に均一に分散させておく。An attempt was made to analyze Al2O3 in this chromium plating, but no Al2O3 was detected. Example 3
Tarom's electrolytic bath composition uses chromic anhydride 1509/l, sulfuric acid 1.59/l, MOS2 (molybdenum disulfide) 1 μm (particle size) powder is mixed in at 60 g/l as a dispersing agent, and the bath temperature is 30°C. The MOS2 is kept uniformly dispersed in the bath by mechanical stirring.
一方、電極としては陰極を軟鋼板(寸法30關×50m
m×10m0とし、陽極として鉛一錫(5(:f))合
金(寸法50龍×50mmx1077!0を2枚用い、
陰極に対して、電流密度3A/dゴ、周期幅40mse
c1電流密度30A/dゴ、周期幅20msecを30
分間の条件でのパルス電解による複合クロムめつきを行
なつた。その結果、これらの条件より得られたクロムめ
つき中には、分析の結果MOS2が5wt%含有してい
て、硬度測定を行なつたところ、クロムめつきそのもの
の硬さはHv7OOであつたが、摩耗試験機を用いて試
験を行なつたところ通常のクロムめつきよりも極めて耐
摩耗性が向上し、従来から知られているMOS2の自己
潤滑効果を認めることができた。又、上記実施例の浴及
び装置を用いて、通常の直流電解20A/dゴ、30分
間の条件によるクロムめつきを行なうと、これより得ら
れたクロムめつきの硬さそのものはHv7OOであつた
が、タロムめつき中のMOS2の含有量を分析したとこ
ろ全く確認することができなかつた。On the other hand, as an electrode, the cathode is a mild steel plate (dimensions: 30 cm x 50 m).
m
For the cathode, current density is 3 A/d, period width is 40 mse.
c1 current density 30A/d, period width 20msec 30
Composite chromium plating was carried out by pulse electrolysis under conditions of 1 minute. As a result, the chromium plating obtained under these conditions was analyzed to contain 5 wt% of MOS2, and when the hardness was measured, the hardness of the chrome plating itself was Hv7OO. When tested using an abrasion tester, it was found that the wear resistance was significantly improved compared to ordinary chrome plating, and the self-lubricating effect of MOS2, which has been known in the past, was confirmed. Furthermore, when chromium plating was performed using the bath and apparatus of the above example under the conditions of normal DC electrolysis at 20 A/d for 30 minutes, the hardness of the chromium plating itself was Hv7OO. However, when the content of MOS2 in tarom plating was analyzed, it could not be confirmed at all.
実施例 4
クロムの電解浴組成は、無水クロム酸2509//、硫
酸2.59/′を用い、分散材としてSlCO.6μm
(粒度)の粉末を1009/l混入させ、浴温を30℃
に保持して、振動バレル(振幅4.0韮、振動数180
0cpm)を用いて攪拌させておく。Example 4 The composition of the chromium electrolytic bath was chromic anhydride 2509//, sulfuric acid 2.59/', and SlCO. 6μm
(particle size) powder was mixed in at 1009/l, and the bath temperature was set at 30°C.
Hold the vibrating barrel (amplitude 4.0, frequency 180)
0 cpm) and stir.
一方、電極としては陰極を軟鋼板(寸法100mmX5
0mm×5韮)とし、陽極として鉛一錫(5%)合金板
(寸法150771m×150mm×2077!m)を
2枚用い、陰極に対して、電流密度4A/dゴ,70m
sec120A/dゴ ,70msecを60分間の条
件でのパルス電解による複合クロムめつきを行なつた。
その結果、これらの条件より得られたクロムめつき中に
は、分析の結果SiCが10wt%含有していて、硬度
測定を行なつたところ、Hvl2OOの高硬度が得られ
た。On the other hand, as an electrode, the cathode is a mild steel plate (dimensions 100 mm x 5
0mm x 5mm), two lead-tin (5%) alloy plates (dimensions 150771m x 150mm x 2077!m) were used as anodes, and a current density of 4A/d, 70m was applied to the cathode.
Composite chromium plating was performed by pulse electrolysis under conditions of 120A/d, 70msec for 60 minutes.
As a result, analysis revealed that the chromium plating obtained under these conditions contained 10 wt % of SiC, and hardness measurement showed that it had a high hardness of Hvl2OO.
又、上記実施例の浴及び装置を用いて、通常の直流電解
20A/dゴ,60分間の条件によるタロムめつきを行
なうと、これより得られたクロムめつきの硬さはHv6
OOで、このクロムめつき中には、分析の結果SiCは
全く認められなかつた。Furthermore, when tarom plating is carried out using the bath and apparatus of the above embodiment under the conditions of normal DC electrolysis at 20 A/d for 60 minutes, the hardness of the chrome plating obtained is Hv6.
As a result of analysis, no SiC was found in the chromium plating at OO.
実施例 5クロムの電解浴組成は、無水クロム酸250
9/l、硫酸2、59/lを用い、分散材としてSlC
2μm(粒度)のものを1009/l添加し、機械的に
攪拌懸濁させ、浴温を40℃に保持して、陰極を鋼板(
寸法50mm×20mTL×3m0とし、陽極として、
直径10mmの鉛一錫(5%)合金をを絶縁板(58m
n×58m0上に縦横3夕11づつ合計9個、そして、
その間を幅7m1ILづつ均等に間隔をあけたものを用
い、その9個の合金にそれぞれ電流密度2A/D7T?
の一定電流を与え、さらに外部電源によつて電流密度2
0A/dゴの電流を前記9個の合金に順に周期幅50m
secで重ねて電解を行なう重畳電解を30分間行ない
クロムめつきを施した。Example 5 Chromium electrolytic bath composition is chromic anhydride 250
9/l, sulfuric acid 2.59/l, and SlC as a dispersing agent.
1009/l of 2 μm (particle size) was added, mechanically stirred and suspended, the bath temperature was maintained at 40°C, and the cathode was made of a steel plate (
The dimensions are 50 mm x 20 m TL x 3 m0, and as an anode,
An insulating plate (58 m) of lead-tin (5%) alloy with a diameter of 10 mm
A total of 9 pieces, 3 x 11 x 3 x 11 x x 58 m0, and
A current density of 2A/D7T for each of the 9 alloys was used, with evenly spaced widths of 7m1IL between them.
A constant current of 2 is applied, and a current density of 2
A current of 0 A/d was applied to the nine alloys in order with a period width of 50 m.
Chromium plating was performed by performing superimposed electrolysis for 30 minutes in which electrolysis was repeated at sec.
そして、この結果得られたクロムめつき中のSiCの共
析量は3wt(f)であつた。The eutectoid amount of SiC in the resulting chromium plating was 3 wt(f).
そこで、上記2同様の電極を使用し、クロムの電解浴組
成も無水クロム酸2509/l、硫酸2.59/l、浴
温も40℃、そして電解浴に混入する分散材として、A
l2O32μm(粒度)の粉末とTlC(炭化チタン)
3μm(粒度)とを1009/lづつそれぞれの電解浴
に機械的に懸濁させ、それぞれについて前記重畳電解を
行ない、そのクロムめつき状態を検討すると、Al2O
3の懸濁浴にて電解を行なつた場合のクロムめつき状態
は、硬度Hvl2OO、Al2O3の共析量は3wt%
であり、又、TiCの懸濁浴については、硬度1500
、TiCの共析量は4wt#)であつた。Therefore, we used the same electrode as in 2 above, the composition of the chromium electrolytic bath was 2509/l of chromic anhydride, 2.59/l of sulfuric acid, the bath temperature was 40°C, and A as a dispersion material mixed into the electrolytic bath.
12O32μm (particle size) powder and TLC (titanium carbide)
3 μm (particle size) was mechanically suspended in each electrolytic bath at 1009/l, the superposition electrolysis was performed on each, and the state of the chromium plating was examined.
The state of chromium plating when electrolyzed in suspension bath 3 has a hardness of Hvl2OO and an eutectoid amount of Al2O3 of 3wt%.
And, for the TiC suspension bath, the hardness is 1500
, the eutectoid amount of TiC was 4wt#).
従つて、前記2つの電流密度域における電解を順に重ね
て行なうところの重畳電解が、前記パルス電解と比較し
て、同様の効果が得られるものである。Therefore, superimposed electrolysis, in which electrolysis in the two current density regions is sequentially carried out, provides similar effects as compared to the pulsed electrolysis.
叙上の如く述べたように、本発明に係る複合クロムめつ
きは、前述した分散材を均一に分散させてある浴中で前
記電流密度域にて複合めつきを行なうことにより、従来
の極めて低い分散材の析出速度を改善し、従来実用に供
されている速度にて分散めつきを可能にしたことにより
、クロムめつきの品質をさらに向土させることができ、
従来以上の多分野にわたつて使用範囲が拡がり、めつき
寿命も格段に向上させることができる等の優れた効果を
奏するものである。As mentioned above, the composite chromium plating according to the present invention is achieved by performing composite plating in the current density range in a bath in which the above-mentioned dispersion material is uniformly dispersed. By improving the low precipitation rate of dispersion material and making it possible to perform dispersion plating at a speed conventionally used in practical use, the quality of chrome plating can be further improved.
It can be used in a wider range of fields than ever before, and has excellent effects such as significantly improving plating life.
Claims (1)
分散材を均一に分散させたクロムの電解浴中において、
陰極に対し、前記分散材をクロムめつき中に分散させ、
且つ共析固着させる2A/dm^2〜4A/dm^2の
第1の電流密度域と、クロムめつきを通常の電着速度に
て行なう10A/dm^2〜50A/dm^2の第2の
電流密度域との両域での電流密度を用いて繰り返し電解
させるパルス電解による複合電解を行なうことで分散め
つきを施すことを特徴とする複合クロムめつき法。 2 複合電解として、第1の電流密度域と第2の電流密
度域とにおける電解を順に重ねて行なうところのか重畳
電解を用いる特許請求の範囲第1項記載の複合クロムめ
つき法。[Claims] 1. In a chromium electrolytic bath in which a dispersant for enhancing wear resistance, lubricity and oxidation resistance of plating is uniformly dispersed,
dispersing the dispersion material in chromium plating for the cathode;
A first current density range of 2A/dm^2 to 4A/dm^2 for eutectoid fixation, and a second current density range of 10A/dm^2 to 50A/dm^2 for chromium plating at a normal electrodeposition rate. A composite chromium plating method characterized in that dispersion plating is performed by performing composite electrolysis using pulsed electrolysis, which is repeated electrolysis using current densities in both current density regions. 2. The composite chromium plating method according to claim 1, which uses superimposed electrolysis in which electrolysis in a first current density region and a second current density region are sequentially performed as composite electrolysis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20761481A JPS5928640B2 (en) | 1981-12-22 | 1981-12-22 | Composite chrome plating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20761481A JPS5928640B2 (en) | 1981-12-22 | 1981-12-22 | Composite chrome plating method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58107497A JPS58107497A (en) | 1983-06-27 |
JPS5928640B2 true JPS5928640B2 (en) | 1984-07-14 |
Family
ID=16542699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20761481A Expired JPS5928640B2 (en) | 1981-12-22 | 1981-12-22 | Composite chrome plating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5928640B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3424528A1 (en) * | 1984-07-04 | 1986-01-09 | Hoechst Ag, 6230 Frankfurt | METHOD FOR SIMULTANEOUSLY ROUGHING AND CHROME-PLATING STEEL PLATES AS A CARRIER FOR LITHOGRAPHIC APPLICATIONS |
IL107544A0 (en) * | 1993-11-09 | 1994-02-27 | Golan Galvanics Ltd | Electrolyte for electroplating of chromium based coating having improved wear resistance corrosion resistance and plasticity |
CN111663159A (en) * | 2020-06-23 | 2020-09-15 | 上海理工大学 | Preparation method of wear-resistant silicon carbide doped composite coating |
-
1981
- 1981-12-22 JP JP20761481A patent/JPS5928640B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS58107497A (en) | 1983-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alizadeh et al. | Electrodeposition of Ni-Mo/Al2O3 nano-composite coatings at various deposition current densities | |
Beltowska-Lehman et al. | Optimisation of the electrodeposition process of Ni-W/ZrO2 nanocomposites | |
Donten et al. | Electrodeposition of amorphous/nanocrystalline and polycrystalline Ni–Mo alloys from pyrophosphate baths | |
Beltowska-Lehman et al. | Electrodeposition of nanocrystalline Ni–W coatings strengthened by ultrafine alumina particles | |
Medelien | The influence of B4C and SiC additions on the morphological, physical, chemical and corrosion properties of Ni coatings | |
Ataie et al. | Improving tribological properties of (Zn–Ni)/nano Al2O3 composite coatings produced by ultrasonic assisted pulse plating | |
Li et al. | The influence of pulse plating parameters on microstructure and properties of Ni-W-Si3N4 nanocomposite coatings | |
Bigos et al. | Ultrasound-assisted electrodeposition of Ni and Ni-Mo coatings from a citrate-ammonia electrolyte solution | |
Ved’ et al. | Functional properties of Fe− Mo and Fe− Mo− W galvanic alloys | |
He et al. | A comparative study of effect of mechanical and ultrasound agitation on the properties of pulse electrodeposited Ni-W/MWCNTs composite coatings | |
Mousavi et al. | Improvement of corrosion resistance of NiMo alloy coatings: Effect of heat treatment | |
Mahdavi et al. | Effect of bath composition and pulse electrodeposition condition on characteristics and microhardness of cobalt coatings | |
Li et al. | Preparation of Ni-W nanocrystalline composite films reinforced by embedded zirconia ceramic nanoparticles | |
Petkov et al. | Effects of diamond nanoparticles on the microstructure, hardness and corrosion resistance of chromium coatings | |
JPS5928640B2 (en) | Composite chrome plating method | |
Sadeghi-Dehsahraee et al. | Electrodeposition and Characterization of Cr-MoS2 composite coatings | |
Kumar et al. | Characterisation of Ni-Al2O3 composite coatings at different Al2O3 concentrations | |
Salehi Doolabi et al. | Electroplating and characterization of Cr–Al2O3 nanocomposite film from a trivalent chromium bath | |
Zhu et al. | Effect of CeO2 on microstructure and properties of Ni–Co-based coatings | |
Mohan et al. | Evolution of surface oxide chemistry and its effect on the electrochemical degradation behaviour of AlCoFeCuNi high entropy alloy coating incorporated with multiwalled carbon nanotubes | |
Ganji et al. | The corrosion behavior of Ni–Fe and Ni–Fe–TiC nanoparticles deposited using pulse electrodeposition on low-carbon steel | |
Diafi et al. | The influence of co2+ concentration on the electrodeposition of ZnNi films to obtain the ZnNi–co composite coatings | |
Diafi et al. | Study of Zn-Ni alloy coatingsmodified by nano-Al2O3 particles incorporation | |
Maurya et al. | Influence of pulse frequency on microstructure, mechanical properties, and corrosion resistance of electrodeposited Ni-SiC composite coatings | |
Ledwig et al. | Microstructure and corrosion resistance of composite nc-TiO2/Ni coating on 316L steel |