JPS5928612B2 - Sintered ore manufacturing method - Google Patents

Sintered ore manufacturing method

Info

Publication number
JPS5928612B2
JPS5928612B2 JP50083323A JP8332375A JPS5928612B2 JP S5928612 B2 JPS5928612 B2 JP S5928612B2 JP 50083323 A JP50083323 A JP 50083323A JP 8332375 A JP8332375 A JP 8332375A JP S5928612 B2 JPS5928612 B2 JP S5928612B2
Authority
JP
Japan
Prior art keywords
sintering
charge
dry
air
dry gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50083323A
Other languages
Japanese (ja)
Other versions
JPS526304A (en
Inventor
英明 相馬
乃光 今野
一郎 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP50083323A priority Critical patent/JPS5928612B2/en
Publication of JPS526304A publication Critical patent/JPS526304A/en
Publication of JPS5928612B2 publication Critical patent/JPS5928612B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明はドワイトロイド式焼結機により焼結鉱を得る方
法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the method of obtaining sintered ore using a Dwight Lloyd sintering machine.

ドワイトロイド式焼結機により焼結鉱を製造するに際し
、従来の方法でははゾ常温の焼結原料を1000℃以上
の高熱状態にある点火炉へ順次送り込みここで原料表層
へ点火し下方から吸気することにより焼結反応帯を下方
へ移行させ、排鉱部近傍において全層にわたって焼結反
応を完了させるようにパレット速度を制御していた。
When producing sintered ore using a Dwight Lloyd sintering machine, the conventional method is to feed the sintered raw material at room temperature into an ignition furnace that is heated to over 1000°C, where the surface layer of the raw material is ignited, and air is sucked in from below. By doing so, the pallet speed was controlled so that the sintering reaction zone moved downward and the sintering reaction was completed over the entire layer near the ore discharge area.

しかし焼結反応自体が十分解明されているとは言えず焼
結完了時点の判定など作業者の勘にたよる作業も多く焼
結反応過程には現在なお多くの問題が残されている。
However, the sintering reaction itself is not fully understood, and many tasks, such as determining when sintering is complete, rely on the intuition of the operator, and many problems still remain in the sintering reaction process.

また最近のようにエネルギー問題が社会的にクローズア
ップされている状況下にあっては省エネルギーに照準を
合わせた焼結作業全体の見直しも行われつつある。
Furthermore, in a situation where energy issues have been in the spotlight recently, the entire sintering process is being reconsidered with an eye toward energy conservation.

省エネルギーの観点から焼結プロセスをみると焼結工程
で必要とする熱源は原料中に数パーセント配合する粉コ
ークスや点火用熱源などの燃料によるものが大部分を占
めていることから該燃料の配合割合の低減をはかること
が大きな課題の一つである。
Looking at the sintering process from the perspective of energy conservation, the majority of the heat source required in the sintering process comes from fuels such as coke powder and ignition heat sources, which are mixed in a few percent of the raw materials. One of the major challenges is to reduce the ratio.

そしてこれができればきわめて大きな効果をもたらすこ
とになるが、いたずらに燃料の配合割合を下げても良い
結果は得られるものではない。
If this could be achieved, it would bring about a very large effect, but lowering the blending ratio of the fuel unnecessarily will not yield good results.

すなわち燃料を節約しても製造される燃結鉱の品質が低
下したり、返り鉱が多くなったりしてはならず、生産能
率が著しく低下するようになってもいけない。
In other words, even if fuel is saved, the quality of the sintered ore produced must not deteriorate, the amount of returned ore must not increase, and the production efficiency must not be significantly reduced.

結局、良品質の焼結鉱を能率的に低価格で製造できなけ
れば意味がない。
In the end, there is no point in producing high-quality sintered ore efficiently and at a low price.

また、燃料面ばかりでなく原料中に含まれる水分や原料
の粒度、送風量なども焼結作業において重要な意味をも
つ、たとえは水分についてであるが、水分が多く含まれ
ると燃料が余分にかかるからなるべく少ない方がよいと
考えがちであるが、原料中に添加する水分は間接的に通
気性を改善する役割を果たしこの意味において不可欠の
ものである。
In addition to the fuel, the moisture contained in the raw material, the particle size of the raw material, and the amount of air blown have important meanings in the sintering process. Because of this, we tend to think that it is better to reduce the amount of water as much as possible, but the water added to the raw material plays a role in indirectly improving air permeability, and in this sense, it is indispensable.

しからば粉粒体で構成する原料に所定の水分を添加し混
合して焼結原料となし適度の通気性をもたせた後そのま
ま原料を乾燥し焼結し焼結鉱を製造したらどうなるかを
研究した例もあるが、通常の焼結方法によった場合との
差はほとんどなかったと報告しており、また、特公昭4
8−38521号公報には焼結原料中の水分含有量と時
間当りの焼結鉱生産量との間には正の相関があるとした
逆の研究報告もある。
What would happen if we added a certain amount of moisture to a raw material consisting of powder and granules, mixed them to create a sintered raw material, gave it appropriate air permeability, and then dried and sintered the raw material to produce sintered ore. Although there have been some studies conducted, it has been reported that there was almost no difference compared to the case using the normal sintering method.
There is also a contrary research report in JP 8-38521 which states that there is a positive correlation between the water content in the sintered raw material and the amount of sintered ore produced per hour.

このように原料中の水分だけについてみても複雑であり
焼結全体では解明しなけれはならない多くの問題が残さ
れている。
As described above, even if we look only at the water content in raw materials, it is complicated, and there are still many problems that need to be solved regarding sintering as a whole.

本発明は焼結過程における通気性の改善をはかることに
主眼をおき新規な発想のもとに研究を行い焼結鉱生産能
率を著しく向上せしめ燃料原単位の低減を可能ならしめ
たので、ドワイトロイド式焼結機による焼結鉱製造方法
において、パレット上へ供給された装入物の表層に常温
〜2500Cの乾ガスを供給すると共に下方から吸気し
て上記装入物の表層のみを乾燥して装入物表層に乾燥帯
を形成し、しかる後上記乾燥帯に点火することを特徴と
する焼結鉱製造方法である。
The present invention focuses on improving air permeability during the sintering process, and has been researched based on new ideas, and has significantly improved sintered ore production efficiency and made it possible to reduce fuel consumption. In a method for manufacturing sintered ore using a Lloyd type sintering machine, dry gas at room temperature to 2500 C is supplied to the surface layer of the charge supplied onto a pallet, and air is sucked in from below to dry only the surface layer of the charge. This method of producing sintered ore is characterized in that a dry zone is formed on the surface layer of the charge, and then the dry zone is ignited.

以下図面にもとづき本発明の詳細な説明する。The present invention will be described in detail below based on the drawings.

第1図は本発明の詳細な説明する焼結プロセスの概念図
である。
FIG. 1 is a conceptual diagram of a sintering process explaining the present invention in detail.

本発明は第1図に示すように焼結原料1をホッパ2から
ドラムフィーダ3、スローピングプレート5を介してパ
レット7上に連続的に供給し原料供給側スプロケット4
を回転せしめてパレットγ上の装入物(原料)8を低速
で移動すると共に下側に複数個設けたウィンドボックス
9,9・・・・・・からダクト10、廃ガス集塵機11
を経て吸引扇風機12により吸気し、点火炉6で装入物
8の上面に点火してパレットγ上の装入物8が排鉱部に
達する間に全層にわたって焼結反応を終了せしめるごと
く連続的に焼結鉱を製造するドワイトロイド式焼結機に
おいて、給鉱機(ホッパ2、ドラムフィーダ3、スロー
ピングプレート5)と点火炉6との間に乾ガス供給装置
19を設置し、装入物8が点火炉6にはいる前に該装入
物8の上面へ乾ガスを吹付け、下方から吸気して装入物
上層部に乾燥帯を形成せしめた後、点火炉6で点火せし
め焼結鉱を製造せんとするものである。
As shown in FIG. 1, the present invention continuously supplies a sintered raw material 1 from a hopper 2 to a drum feeder 3 and onto a pallet 7 via a sloping plate 5 and a sprocket 4 on the raw material supply side.
is rotated to move the charge (raw material) 8 on the pallet γ at low speed.
Air is sucked in by the suction fan 12, and the upper surface of the charge 8 is ignited in the ignition furnace 6, so that the sintering reaction is completed over the entire layer while the charge 8 on the pallet γ reaches the ore discharge section. In a Dwight Lloyd type sintering machine that produces sintered ore, a dry gas supply device 19 is installed between the ore feeder (hopper 2, drum feeder 3, sloping plate 5) and ignition furnace 6, and the charging Before the material 8 enters the ignition furnace 6, dry gas is blown onto the upper surface of the charge 8, air is drawn in from below to form a dry zone in the upper layer of the charge, and then ignited in the ignition furnace 6. The purpose is to produce sintered ore.

従来の焼結機においては、パレット7上に装入された装
入物は、1000℃以上の高熱状態にある点火炉へいれ
られほぼ常温の装入物はいきなり高熱の火炎にさらされ
きわめて急速に昇温、点火されていたから装入物上面の
受ける熱衝撃は大きくこのため粉粒物から成る各種原料
に数パーセントの水を添加することによって擬似粒化せ
しめ通気性を改善した装入物の表層における擬似粒が破
壊され通気性が著しくそこなわれていた。
In a conventional sintering machine, the charge placed on the pallet 7 is put into an ignition furnace that is heated to over 1000°C, and the charge at almost room temperature is suddenly exposed to a high-temperature flame and burns extremely rapidly. Because the temperature was raised and ignited, the top surface of the charge was subjected to a large thermal shock.Therefore, by adding a few percent of water to various raw materials consisting of powder and granules, the surface layer of the charge was made to have pseudo-granulation and improved air permeability. The pseudo grains were destroyed and the air permeability was significantly impaired.

そして表層にできた焼結完了層と反応面が成長しつつ下
方へ移動し排鉱物近傍で全層にわたって焼結反応を終え
るまでの間下方のウィンドボックスから吸気を継続する
から点火炉において生じた表層部の通気性悪化は焼結終
了時までその影響を及ぼしていた。
Then, the sintered completed layer and the reaction surface formed on the surface grow and move downward, and air continues to be sucked in from the lower wind box until the sintering reaction completes over the entire layer near the waste minerals, which causes the ignition furnace to emit air. The deterioration of air permeability in the surface layer remained in effect until the end of sintering.

点火時の装入物表層における擬似粒の破壊は擬似粒((
含まれる水分の急激な蒸発に伴う内部応力と常温に近い
温度からいきなり1000°C以上の高熱の火炎にさら
される熱衝撃によるものと考えられている。
The destruction of pseudo-grains on the surface layer of the charge during ignition is caused by pseudo-grains ((
This is thought to be due to internal stress caused by the rapid evaporation of the water contained therein, and thermal shock caused by sudden exposure to high-temperature flames from temperatures close to room temperature to over 1000°C.

通常の焼結過程をみるときわめて高温の焼結反応帯に接
して下方に乾燥帯が形成されそのさらに下方には湿潤帯
(水分の凝縮する領域)が生じることが知られている。
It is known that in a normal sintering process, a dry zone is formed below the extremely high temperature sintering reaction zone, and a wet zone (area where water condenses) is formed further below.

そして焼結反応帯は順次乾燥帯に拡がるごとく移行する
が、装入物上層部においてはほとんど乾燥帯がないよう
な状態で直ちに焼結反応帯とならざるをえず、このため
上層部は一般に品質もよくない傾向にあった。
The sintering reaction zone gradually expands into a drying zone, but in the upper layer of the charge, there is almost no drying zone and the zone immediately becomes a sintering reaction zone, so the upper layer generally becomes The quality also tended to be poor.

本発明はこれらの欠点を解決するものであるしまた装入
物上層部のみを乾燥するために高熱の乾ガスを使用すれ
ば該上層部を予熱することとなり点火炉6で常温に近い
低温から急激に1000°C以上の高熱の火炎にさらす
ことによる擬似粒に与える熱衝撃を緩和させる作用をな
すから、このようにすれば本発明の効果は一層高まる。
The present invention solves these drawbacks, and if high-temperature dry gas is used to dry only the upper layer of the charge, the upper layer will be preheated, and the ignition furnace 6 will dry it from a low temperature close to room temperature. By doing so, the effect of the present invention is further enhanced, since it acts to alleviate the thermal shock given to the pseudo grains due to sudden exposure to a high-temperature flame of 1000° C. or higher.

さらに本発明方法によれば焼結過程で生成する湿潤帯に
おける通気性を改善できるから焼結時間の短縮、原料に
配合するコークス配合割合の低減をも可能ならしめるも
のである。
Furthermore, according to the method of the present invention, it is possible to improve the air permeability in the wet zone generated during the sintering process, thereby making it possible to shorten the sintering time and reduce the proportion of coke mixed in the raw material.

第2図は水分6.0%に調合した焼結原料を実1験用焼
結機に層厚400mmとなるように充填し焼結反応帯が
100mmの深さに達した時点における層内通気抵抗と
層内水分について調査し従来法との比較をした実験例で
ある。
Figure 2 shows the ventilation in the layer when the sintering material mixed with a moisture content of 6.0% is filled into the sintering machine for the first experiment so that the layer thickness is 400 mm, and the sintering reaction zone reaches a depth of 100 mm. This is an example of an experiment in which resistance and moisture in the layer were investigated and compared with conventional methods.

この実験で用いた250℃と100℃の温度を有する乾
風は焼結工程の冷却器から得られたものであり、常温の
乾風は脱湿工程を通過させた後の空気である。
The dry air with temperatures of 250° C. and 100° C. used in this experiment was obtained from a cooler in the sintering process, and the dry air at room temperature was the air after passing through the dehumidification process.

この乾風吹付時の層内通過風速は、1.0 m / s
ecを目標とし乾風吹付時間は2分間とした。
The wind speed passing through the layer during this dry air blowing was 1.0 m/s
The dry air blowing time was set to 2 minutes with the aim of achieving EC.

この図に示すように焼結反応帯が上層から100mmの
深さまで進んだとき該反応帯より100mm以下の層内
に水分の濃縮がみられ(湿潤帯と呼ぶことにする)この
湿潤帯における通気抵抗に著しい差があり、本発明方法
は従来法に比較しきわめて通気性が優れていることが確
認された。
As shown in this figure, when the sintering reaction zone advances to a depth of 100 mm from the upper layer, water concentration is observed in the layer below 100 mm from the reaction zone (we will call it the wet zone). There was a significant difference in resistance, and it was confirmed that the method of the present invention has extremely superior air permeability compared to the conventional method.

湿潤帯は焼結過程において焼結反応帯とその直下に生成
する乾燥帯から吸引される排ガスに含まれて層内を通過
する水分が露点以下に冷却されることにより濃縮する領
域である。
The humid zone is a region where water, which is contained in the exhaust gas sucked from the sintering reaction zone and the drying zone generated directly below it and passes through the layer during the sintering process, is concentrated by being cooled below the dew point.

そして水分濃縮度合はこの領域における層内温度により
大きく影響されるものではあるが、適正な値を超える水
分含有率となることが多く、過剰水分は擬似粒子で構成
される充填層の有効空隙率を減少せしめるのみならず擬
似粒子強度の低下を誘発し、これがために擬似粒子を崩
壊することもあり、一般にこの領域の通気性はよくない
とされていた。
Although the degree of water concentration is greatly affected by the temperature in the bed in this region, the water content often exceeds the appropriate value, and excess water is determined by the effective porosity of the packed bed made of pseudoparticles. This not only causes a decrease in the strength of the pseudo-particles, but also causes the pseudo-particles to collapse, and it is generally believed that the air permeability in this area is not good.

しかし本発明方法による場合は水分の濃縮挙動を変える
ことで通気性を良好ならしめるように改善することが確
認された。
However, in the case of the method of the present invention, it was confirmed that air permeability was improved by changing the water concentration behavior.

すなわち所定の水分含有率となし擬似粒化された装入物
が点火炉にはいる以前に乾風により装入物上層のみを乾
燥し、しかる後点火し焼結を行う本発明方法が湿潤帯の
生成や生成速度、水分濃縮度合、および濃縮速度にきわ
めて有利に作用し、この領域における通気性を改善する
ものである。
In other words, the method of the present invention, in which the pseudo-granulated charge with a predetermined moisture content is dried with dry air before entering the ignition furnace, and then ignited and sintered, It has a very advantageous effect on the production and production rate, the degree of water concentration, and the concentration rate, and improves the air permeability in this area.

本発明方法において、点火炉より前の工程すなわち乾ガ
ス供給装置19から装入物上層部に供給する気体自身に
水分が多く含まれていれは該装入物上層部を乾燥するこ
とも、湿潤帯における水分の濃縮を減少させる作用もな
さない。
In the method of the present invention, if the process before the ignition furnace, that is, the gas supplied to the upper layer of the charge from the dry gas supply device 19, contains a large amount of moisture, the upper layer of the charge may be dried or moistened. Nor does it have the effect of reducing water concentration in the zone.

あるいはなしたとしてもきわめて小さい効果しか期待で
きない。
Or even if it were done, only a very small effect could be expected.

この乾風を得るには空気を脱湿装置を通すことにより得
てもよいが、焼結工程において赤熱焼結鉱を空冷する冷
却器から得られる乾ガスを利用するのが有効である。
This dry air may be obtained by passing air through a dehumidifying device, but it is effective to use dry gas obtained from a cooler that air-cools the red-hot sintered ore during the sintering process.

ここからは最高500℃にも及ぶ高熱の乾ガスが得られ
るから、これを利用すれば装入物上層を乾燥する効果の
ほかに予熱する効果も得られ、点火炉における装入物上
層が受ける熱的衝撃を緩和する作用が顕著で、乾ガスの
保有する熱エネルギーの回収にもなることから本発明方
法にとってきわめて有効である。
High-temperature dry gas reaching up to 500°C can be obtained from here, so if you use this, you can not only dry the upper layer of the charge but also preheat it, which will affect the upper layer of the charge in the ignition furnace. It is extremely effective for the method of the present invention because it has a remarkable effect of mitigating thermal shock and also recovers the thermal energy possessed by the dry gas.

第3図は装入物8の上方へ高熱の乾ガスを供給し、下方
から吸気したときの装入物層内温度を調査した実験例で
ある。
FIG. 3 shows an experimental example in which the temperature inside the charge layer was investigated when high-temperature dry gas was supplied above the charge 8 and air was taken in from below.

このとき使用した乾ガスは冷却器16から排出された3
00℃の乾ガスで装入物厚さは400mm、層内通過風
速は約1 m /secとし装入物上面から30wm、
60mm190mmの深さに温度計を挿入し、該乾ガ
ス供給時間を変化させそれぞれの位置における温度を調
査したものである。
The dry gas used at this time was discharged from the cooler 16.
With dry gas at 00°C, the thickness of the charge was 400 mm, the wind speed passing through the bed was approximately 1 m/sec, and the distance was 30 w from the top of the charge.
A thermometer was inserted at a depth of 60 mm and 190 mm, and the temperature at each position was investigated by varying the dry gas supply time.

その結果、該高熱乾ガス供給時間を2分間としたとき装
入物上層部(表面から30mmまでの深さ)は250℃
以上の高温となり、60mm。
As a result, when the high-heat dry gas supply time was 2 minutes, the upper layer of the charge (30 mm depth from the surface) was 250°C.
The temperature reached 60mm.

99mmのそれぞれ深さにおいては温度変化はなかった
There was no temperature change at each depth of 99 mm.

また該乾ガス供給時間を4分間とすれば深さ607n7
1Lの位置、また6分間供給すれば深さ90m71の位
置まで250℃以上の高温となすことが可能となること
がイつかる。
If the dry gas supply time is 4 minutes, the depth is 607n7.
It is found that it is possible to reach a high temperature of 250° C. or higher to a depth of 90 m71 by supplying 1 L for 6 minutes.

次に高熱乾ガスを供給する時間が焼結時間に及ぼす影響
を調査し第4図に示す結果を得た。
Next, the effect of the supply of high-temperature dry gas on the sintering time was investigated, and the results shown in FIG. 4 were obtained.

すなわち層内通過風速U中1 m / secとなるよ
うに装入物表面へ300°Cの温度を有する乾ガス(冷
却器から得た乾ガス)を供給し下方から吸気し装入物上
層のみを乾燥、予熱した後点火し焼結を行うと乾ガス供
給時間が2分間までは従来法に比較し急激に焼結時間を
短縮させる作用をなすが、3分以上ではあまり効果のな
いことが確認された。
In other words, dry gas (dry gas obtained from a cooler) having a temperature of 300°C is supplied to the surface of the charge so that the air velocity U passing through the bed is 1 m/sec, and the air is sucked in from below, only in the upper layer of the charge. When igniting and sintering after drying and preheating, the sintering time can be rapidly shortened compared to the conventional method if the dry gas supply time is up to 2 minutes, but it may not be very effective if the dry gas supply time is 2 minutes or more. confirmed.

また、点火後の燃焼用空気の吸引量はどうなるかを実験
した。
We also conducted an experiment to determine what happens to the intake amount of combustion air after ignition.

焼結作業において燃焼用空気の供結量と焼結鉱の生産量
とは正の相関があることが知られており、本実験におい
て本発明方法の効果はきわめて顕著であることが証明さ
れた。
It is known that there is a positive correlation between the amount of combustion air supplied and the amount of sintered ore produced in sintering operations, and this experiment proved that the effect of the method of the present invention is extremely significant. .

すなわち第5図に示すとおり、本発明方法により点火炉
前において装入物上面に300℃の高熱乾ガスを2分間
層内通過風速Uキ1 m / secとして吹きつけた
後点火し焼結を行い、ウィンドボックス9,9・・・・
・・で吸引風量を測定したところ、点火炉6を出た直後
でu=0.83となり、この状態を約6分間維持しその
後焼結完了まで暫増の傾向を示し、点火後14分で全層
にわたる焼結を完了した。
That is, as shown in Fig. 5, according to the method of the present invention, high-temperature dry gas at 300°C is blown onto the top surface of the charge in front of the ignition furnace for 2 minutes at an air velocity of 1 m/sec through the bed, and then ignited and sintered. Go, wind box 9, 9...
When the suction air volume was measured at ..., it was found that u = 0.83 immediately after leaving the ignition furnace 6, and this state was maintained for about 6 minutes, after which it showed a tendency to increase gradually until sintering was completed, and 14 minutes after ignition. Completed sintering through all layers.

一方従来法によった場合は点火炉直後の風量u=0.6
8で約1分間この状態を継続した後U=0.75〜0.
78に微増し、この状態を約6分間継続した後暫増し1
8分間で焼結を終えた。
On the other hand, when using the conventional method, the air volume immediately after the ignition furnace is u = 0.6
After continuing this state for about 1 minute at U=0.75~0.
Slightly increase to 78, continue this state for about 6 minutes, then temporarily increase 1
Sintering was completed in 8 minutes.

ここで本発明方法と従来方法との相違点をまとめると、
■ 点火炉を出た直後の風量に著しい差があり、本発明
方法の方が20〜30%程度風量が多い。
Here, the differences between the method of the present invention and the conventional method are summarized as follows:
(2) There is a significant difference in the air volume immediately after exiting the ignition furnace, with the method of the present invention having a larger air volume by about 20 to 30%.

■ 点火後焼結完了までの間、常に本発明方法の方が風
量は多い。
■ After ignition until the completion of sintering, the method of the present invention always has a higher air volume.

■ 焼結時間は本発明方法の方が短い。■ The sintering time is shorter in the method of the present invention.

の3点があげられる。このような顕著な差異は、点火時
に装入物上面が受ける熱衝撃の緩和による影響、焼結反
応帯下方に生成する湿潤帯における通気性改善の影響に
よるものである。
There are three points. Such a remarkable difference is due to the effect of alleviating the thermal shock that is applied to the top surface of the charge during ignition, and the effect of improving air permeability in the wet zone formed below the sintering reaction zone.

本発明方法において、水分を全く含まない乾ガスを使用
するのが理想的ではあるが、きわめて高価格となるから
ある程度の水分を含むガスを使用してもよいが、焼結工
場内湿度以下の乾ガスでなければ本発明の効果は期待で
きない。
In the method of the present invention, it is ideal to use dry gas that does not contain any moisture, but since it would be extremely expensive, a gas that contains some moisture may be used, but Unless dry gas is used, the effects of the present invention cannot be expected.

また、高熱乾ガスを用いる場合のガス温度の上限は装入
物中に添加した固形燃料(コークス粉)を燃焼せしめる
ことのない温度すなわちコークス粉の着火温度は約50
0℃であるから500℃以下が望ましく、下限は常温以
上望ましくは100℃以上とするのが装入物上層の擬似
粒を短時間に乾燥せしめるうえで有利である。
In addition, when using high-heat dry gas, the upper limit of the gas temperature is the temperature at which the solid fuel (coke powder) added to the charge does not burn, that is, the ignition temperature of the coke powder is approximately 50.
Since the temperature is 0°C, the temperature is preferably 500°C or lower, and it is advantageous to set the lower limit at room temperature or higher, preferably 100°C or higher, in order to dry the pseudo-grains in the upper layer of the charge in a short time.

さて、本発明方法が通気性の改善、焼結時間の短縮、焼
結鉱の品質向上などの面で顕著な効果を有することは前
述したとおりであるが、本発明者等は焼結時間、得られ
る焼結鉱の品質を従来のレベルに保ちつつ装入物に配合
する燃料(コークス粉)の添加割合を低減せしめる実験
を試みた。
As mentioned above, the method of the present invention has remarkable effects in terms of improving air permeability, shortening sintering time, and improving the quality of sintered ore. An experiment was conducted to reduce the proportion of fuel (coke powder) added to the charge while maintaining the quality of the resulting sintered ore at the conventional level.

その結果の一例を第1表に示す。An example of the results is shown in Table 1.

上表に示すように本発明方法によれば、まず燃料原単位
を2〜3kg、/ T、 Sあるいはそれ以上低減せし
めることが可能であり、この低減中は2段装入焼結法で
得られる値を匹敵するものである。
As shown in the above table, according to the method of the present invention, it is possible to first reduce the fuel consumption by 2 to 3 kg/T, S or more, and during this reduction, the amount obtained by the two-stage charging sintering method is It is comparable to the value given.

さらに焼結鉱の落下強度、タンブラ−強度等の冷間強度
を低下させることはなく否むしろ若干の向上が期待でき
ることが確認できた。
Furthermore, it was confirmed that the cold strength, such as the drop strength and tumbler strength, of the sintered ore would not be reduced, and on the contrary, a slight improvement could be expected.

なお、本発明において装入物の表層を乾燥する手段とし
て焼結機の冷却器から得られる乾ガスを使用すると説明
したが、コークス炉ガス等を燃焼させて乾ガスを得、こ
れを単独にあるいは前記冷却器から得られる乾ガスと併
用することも可能である。
In addition, in the present invention, it has been explained that dry gas obtained from the cooler of the sintering machine is used as a means for drying the surface layer of the charge, but it is also possible to obtain dry gas by burning coke oven gas etc. and use it alone. Alternatively, it is also possible to use it in combination with dry gas obtained from the cooler.

以上述べたように本発明方法によれば焼結時間の大巾短
縮によるT/Hの向上が可能であり燃料の配合割合を低
減させることができ、かつこのような操業を行っても焼
結鉱の品質を低下せしめないという顕著な効果を有し、
冷却器から排出されこれまで大気中に放出されていた高
温乾ガスを利用すればきわめて経済的に本発明を実施で
きるなどの効果を有するものである。
As described above, according to the method of the present invention, T/H can be improved by greatly shortening the sintering time, the blending ratio of fuel can be reduced, and even if such operation is performed, the sintering time will be significantly reduced. It has the remarkable effect of not reducing the quality of ore,
By utilizing the high temperature dry gas discharged from the cooler and released into the atmosphere, the present invention can be carried out very economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す焼結プロセスの概念図、
第2図は焼結反応進行にともなう層内の水分含有量と通
気抵抗の変化を示す図。 第3図は屑入物上面への高熱乾ガス吹付時間と装入物の
温度との関係を示す図、第4図は転職吹付時間と焼結時
間との関係を示す図。 第5図は焼結時の燃焼用空気吸引量を示す図。
FIG. 1 is a conceptual diagram of a sintering process showing an embodiment of the present invention;
FIG. 2 is a diagram showing changes in moisture content and ventilation resistance within the layer as the sintering reaction progresses. FIG. 3 is a diagram showing the relationship between the time for spraying high-temperature dry gas onto the top surface of the waste container and the temperature of the charge, and FIG. 4 is a diagram showing the relationship between the time for spraying and the sintering time. FIG. 5 is a diagram showing the amount of combustion air suctioned during sintering.

Claims (1)

【特許請求の範囲】[Claims] 1 ドワイトロイド式焼結機による焼結鉱製造方法にお
いて、パレット上へ供給された装入物の表層に常温〜2
50℃の乾ガスを供給すると共に下方から吸気して上記
装入物の表層のみを乾燥して装入物表層に乾燥帯を形成
し、しかる後上記乾燥帯に点火することを特徴とする焼
結鉱製造方法。
1. In a sintered ore production method using a Dwight Lloyd sintering machine, the surface layer of the charge supplied onto a pallet is heated to room temperature to 2.
A sintering process characterized by supplying dry gas at 50°C and sucking air from below to dry only the surface layer of the charge to form a dry zone on the surface layer of the charge, and then igniting the dry zone. Concretion manufacturing method.
JP50083323A 1975-07-07 1975-07-07 Sintered ore manufacturing method Expired JPS5928612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50083323A JPS5928612B2 (en) 1975-07-07 1975-07-07 Sintered ore manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50083323A JPS5928612B2 (en) 1975-07-07 1975-07-07 Sintered ore manufacturing method

Publications (2)

Publication Number Publication Date
JPS526304A JPS526304A (en) 1977-01-18
JPS5928612B2 true JPS5928612B2 (en) 1984-07-14

Family

ID=13799207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50083323A Expired JPS5928612B2 (en) 1975-07-07 1975-07-07 Sintered ore manufacturing method

Country Status (1)

Country Link
JP (1) JPS5928612B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152903A (en) * 1974-11-06 1976-05-11 Nippon Steel Corp SHOKETSUKO SEIZOHOHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152903A (en) * 1974-11-06 1976-05-11 Nippon Steel Corp SHOKETSUKO SEIZOHOHO

Also Published As

Publication number Publication date
JPS526304A (en) 1977-01-18

Similar Documents

Publication Publication Date Title
CN1048758C (en) Sintered steel manufacturing process
JPS5928612B2 (en) Sintered ore manufacturing method
WO2014013775A1 (en) Method for producing sinter
JPS5928829B2 (en) sintering machine
JPS6021210B2 (en) Sintered ore manufacturing method
JP2015157979A (en) Production method of sintered ore
JPH06212293A (en) Manufacture of sintered ore
JPH04254534A (en) Sintering method using pulverized fuel-containing gas
CN100335445C (en) Granular pore-increasing agent and internal combustion process for making light fire-proof material/product using same
JPH09118936A (en) Manufacture of sintered ore
JPS6089526A (en) Production of sintered ore
JPS59229423A (en) Manufacture of sintered ore
JPH08260062A (en) Production of sintered ore
JPS5918344B2 (en) Sintering method of fly ash granules
CN206469672U (en) A kind of double-layer heating rotary hearth furnace for being used to be reduced directly the mode of production
JPS5899160A (en) Manufacture of lightweight aggregate
SU635146A1 (en) Method of producing pellets
SU1397518A1 (en) Method of sintering iron-ore materials
JPS6242873B2 (en)
JPS5933647B2 (en) Sintering raw material supply method
JP5549143B2 (en) Method for manufacturing raw materials for sintering
JPS5950733B2 (en) Iron ore sintering method
JPS6349728B2 (en)
JP2006104567A (en) Method for manufacturing sintered ore
JPS6218505B2 (en)