JPS5950733B2 - Iron ore sintering method - Google Patents

Iron ore sintering method

Info

Publication number
JPS5950733B2
JPS5950733B2 JP4170577A JP4170577A JPS5950733B2 JP S5950733 B2 JPS5950733 B2 JP S5950733B2 JP 4170577 A JP4170577 A JP 4170577A JP 4170577 A JP4170577 A JP 4170577A JP S5950733 B2 JPS5950733 B2 JP S5950733B2
Authority
JP
Japan
Prior art keywords
sintering
raw material
heat
air
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4170577A
Other languages
Japanese (ja)
Other versions
JPS53125906A (en
Inventor
正一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP4170577A priority Critical patent/JPS5950733B2/en
Publication of JPS53125906A publication Critical patent/JPS53125906A/en
Publication of JPS5950733B2 publication Critical patent/JPS5950733B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は高炉用原料として使用される鉄鉱石の焼結方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for sintering iron ore used as a raw material for blast furnaces.

高炉用焼結鉱の品質と生産性を決定する条件は焼結機に
おいては焼結反応温度であり、その最適温度は原料配合
成分により異なるが、現行の焼結機ではコークスの燃焼
熱量すなわち焼結原料層に「均一」に配合されている燃
料コークス量により維持されている。
The condition that determines the quality and productivity of sintered ore for blast furnaces is the sintering reaction temperature in a sintering machine, and the optimum temperature varies depending on the raw material composition, but in current sintering machines, the combustion heat of coke, which is This is maintained by the amount of fuel coke that is evenly blended into the coke layer.

その場合の焼結過程は第1図に示されるように、焼結原
料Aが装入側Bから抽出側Cに進行するにつれて、上層
Dから下層Eに向つて進行する。
In this case, the sintering process progresses from the upper layer D to the lower layer E as the sintered raw material A advances from the charging side B to the extraction side C, as shown in FIG.

したがつて焼結原料Aが直線Fで示された最高温度に達
する溶融焼結反応域Gを境にして上層Dは焼結完了の熱
焼結鉱で占められ、下層Eは未焼結の水分を含む原料お
よび予熱途中の原料で占められることになる。また上層
Dから誘引されている空気Hは装入側Bの近辺では上層
Dの焼結を完了した、薄い熱焼結層を通過して、すぐに
焼結反応層に達する。
Therefore, the upper layer D is occupied by the thermally sintered ore that has completed sintering, and the lower layer E is occupied by the unsintered ore. This will be occupied by raw materials containing moisture and raw materials that are being preheated. Further, near the charging side B, the air H drawn from the upper layer D passes through the thin thermal sintering layer where the sintering of the upper layer D has been completed, and immediately reaches the sintering reaction layer.

そのため比較的低温のままでコークスの燃焼空気として
作用し、また過剰の空気はコークス燃焼ガスと一緒にな
つて下層Eの原料の乾燥、予熱源となり、自らは低温排
ガスとなって焼結機の排ガスとして排出される。一方、
抽出側Cの近辺の誘引空気は焼結完了後の厚い層を通過
して、比較的高温となつて焼結反応層に達するため、焼
結層全域から誘引される空気は、この焼結完了層におい
て予熱吸収される熱量の差だけ、装入側Bに対して抽出
側Cを熱量過・剰とし、その熱量差は焼結機の熱源単位
の5〜10%にも達している。
Therefore, the excess air remains at a relatively low temperature and acts as combustion air for the coke, and the excess air, together with the coke combustion gas, becomes a drying and preheating source for the raw materials in the lower layer E, and itself becomes low-temperature exhaust gas for the sintering machine. It is emitted as exhaust gas. on the other hand,
The induced air near the extraction side C passes through the thick layer after sintering is completed and reaches the sintering reaction layer at a relatively high temperature. The difference in the amount of heat preheated and absorbed in the layers makes the amount of heat on the extraction side C in excess and surplus with respect to the charging side B, and the difference in amount of heat reaches 5 to 10% of the heat source unit of the sintering machine.

実状では装入側Bの点火炉や保温炉の入熱で、この差が
いくぶん緩和されている。
In reality, this difference is somewhat alleviated by the heat input to the ignition furnace and heat retention furnace on the charging side B.

また通気性については焼結反応域Gを境にして、装入側
Bの湿原料層や乾燥原料層の通気抵抗が大で、抽出側C
の多孔質な焼結完了層の通気抵抗が小であるため、抽出
側Cが過剰空気気味つまり抽出側Cの焼結反応温度がや
や低くなる傾向となつて、その熱量差が緩和され、部分
的には不適当であつても全体的、平均的には許容範囲内
として操業され、生産性、品質がそれなりに維持されて
いる。しかし現状での焼結機の鍋歩留りは60〜70%
であり、焼結機の後の破砕過程などの方式による不可避
の微粒体発生による歩留りも含まれるが、十分満足でき
る鍋歩留り率とはいいがたい。
Regarding air permeability, with the sintering reaction zone G as the border, the air resistance of the wet raw material layer and dry raw material layer on the charging side B is large, and the ventilation resistance on the extraction side C is large.
Since the ventilation resistance of the porous sintered layer is small, the extraction side C tends to have a bit of excess air, which means the sintering reaction temperature on the extraction side C tends to be slightly lower, and the difference in heat amount is alleviated, and the partial Even if it is not suitable in terms of performance, it is operated within an acceptable range on average, and productivity and quality are maintained at a certain level. However, the current pot yield of the sintering machine is 60-70%.
Although this includes the yield due to the unavoidable generation of fine particles due to methods such as the crushing process after the sintering machine, it is difficult to say that the pot yield is fully satisfactory.

なぜならば、焼結鉱成品の品質の主要条件の1つは成品
強度であり、この強度は基本的には焼結層の焼結反応過
程で決定され、この強度が後工程の歩留りを左右する。
したがつて現状の焼結反応温度のバラツキをより均一に
することによつて、さらに鍋歩留り率が向上し、ひいて
は熱量損失を小さくして熱原単位の節減にもなると考え
られるからである。この発明は成品強度、鍋歩留りを改
善しかつ熱原単位を節減するために、コークスを均等に
配合する焼結原料を焼結機に装入して、その装入側から
抽出側へ焼結原料を移動させながら焼結原料を焼結させ
る鉄鉱石の焼結方法において、ガス燃料または液体燃料
の燃焼熱によつて上記焼結原料に誘引される必要空気を
、焼結機の原料装入側に多く、抽出側に少なく順次傾斜
的に加熱することにより、焼結反応域の原料装入、・抽
出方向における熱量不均衡を是正することを目的とする
This is because one of the main conditions for the quality of sintered mineral products is the strength of the finished product, and this strength is basically determined during the sintering reaction process of the sintered layer, and this strength affects the yield in the subsequent process. .
Therefore, it is thought that by making the current variation in sintering reaction temperature more uniform, the pot yield rate will further improve, and in turn, the heat loss will be reduced and the heat unit consumption will be reduced. In this invention, in order to improve product strength and pot yield and reduce heat consumption, sintering raw materials with evenly mixed coke are charged into a sintering machine and sintered from the charging side to the extraction side. In an iron ore sintering method in which the sintering raw material is sintered while moving the raw material, the necessary air that is attracted to the sintering raw material by the combustion heat of gas fuel or liquid fuel is charged into the sintering machine. The purpose is to correct the heat imbalance in the raw material charging and extraction directions in the sintering reaction zone by sequentially heating in a gradient manner, with more on the side and less on the extraction side.

以下、この発明の一実施例を第2図にもとづいて説明す
る。焼結原料は粒状鉄鉱石を主体として、その加熱焼結
に必要な粒状コークスを混合し、かつ微粒状物をより大
きな粒状物に付着造粒5させて原料層の通気性を上げる
ために、小量の水分添加をもつて混練される。焼結原料
は焼結機1の装入ホツパ一2からグレード式のコンベア
パレツト3上に平坦に装入される。
Hereinafter, one embodiment of the present invention will be described based on FIG. 2. The sintering raw material is mainly made of granular iron ore, and granular coke necessary for heating and sintering is mixed therein, and fine particles are attached to larger particles and granulated to increase the permeability of the raw material layer. It is kneaded with a small amount of water added. Sintering raw materials are flatly charged from a charging hopper 12 of a sintering machine 1 onto a grade type conveyor pallet 3.

コンベアパレツト3上では装入ホツパ一2の7次に設置
された点火用ガスバーナー4にて、焼結原料5の上層部
のコークスに点火されるとともに、コンベアパレツト3
の下に配置された、排ガスホツパ一6で゛の排ガスフア
ン7による吸引力により、焼結原料5の上層から下層へ
燃焼用空気がj誘引される。もつて焼結原料5が抽出側
に進行するにつれて、上層から下層に向かつて焼結過程
つまり焼結原料5の乾燥、予熱、溶融・焼結反応が進行
し、焼結原料5が熱焼結鉱としてコンベアパレツト3上
から順次抽出されていく。コンベアパレツト3上から抽
出された熱焼結鉱はホツトタラツシヤ8で粗破砕された
後、冷却機に至り、ここで冷却され、続いてコールドク
ラツシヤ、コールドスクリーンを通ることにより整粒さ
れ、高炉用の焼結鉱成品となる。
On the conveyor pallet 3, the coke in the upper layer of the sintering raw material 5 is ignited by the ignition gas burner 4 installed in the seventh position of the charging hopper 12, and the coke on the conveyor pallet 3 is ignited.
Combustion air is drawn from the upper layer to the lower layer of the sintering raw material 5 by the suction force of the exhaust gas fan 7 of the exhaust gas hopper 16, which is disposed below the sintering material 5. As the sintered raw material 5 advances toward the extraction side, the sintering process, that is, the drying, preheating, melting/sintering reaction of the sintered raw material 5 progresses from the upper layer to the lower layer, and the sintered raw material 5 is thermally sintered. The ore is extracted sequentially from the top of the conveyor pallet 3. The hot sintered ore extracted from the conveyor pallet 3 is coarsely crushed by a hot pulverizer 8, then sent to a cooler where it is cooled, and then passed through a cold crusher and a cold screen to be sized. It becomes a sintered mineral product for blast furnaces.

一方、コンベアパレツト3上には点火フード9から抽出
端近傍まで達する長さの保熱フード10が設けられ、ま
た保熱フード10の天井部には上記燃焼用空気に対する
補正熱量供給用の複数本の加熱バーナ1]が原料装入側
から抽出側へ順次間隔をあけて配置されるとともに、各
加熱バーナ11の間に空気が原料層に均等に誘引される
よう等間隔に配した吸気孔12が設けられる。
On the other hand, a heat retention hood 10 having a length extending from the ignition hood 9 to the vicinity of the extraction end is provided on the conveyor pallet 3, and the ceiling of the heat retention hood 10 has a plurality of heat retention hoods for supplying a correction amount of heat to the combustion air. Heating burners 1] are arranged at regular intervals from the raw material charging side to the extraction side, and air intake holes are equally spaced between each heating burner 11 so that air is evenly drawn into the raw material layer. 12 are provided.

このような構成はガス燃料または液体燃料の加熱バーナ
11の燃焼熱による燃焼用空気の加熱を、保熱フード1
0内の原料装入側に多く、抽出側に少なく順次傾斜的に
行わせることになる。
Such a configuration allows heating of the combustion air by the combustion heat of the heating burner 11 of gas fuel or liquid fuel to be performed by the heat retention hood 1.
0, the amount is increased on the raw material charging side and less on the extraction side.

このことはコークスを均等に配合した焼結原料5の、焼
結機1への装入から抽出までの過程において、この焼結
原料5に対する熱量が焼結機1の原料装入側で不足、抽
出側で過剰となることに対応して、その熱量の過不足分
を補正させることになる。したがつて焼結反応域の原料
装入・抽出方向における熱量不均衡は小さく抑えられる
。吸気孔12から誘引される大気の代わりに冷却機から
の排出熱空気を利用すれば、コークス燃料の原単位を節
減することができ、加熱バーナの燃焼空気に利用すれば
加熱バーナ]1による燃料消費を節減することができる
This means that during the process from charging the sintering raw material 5 with evenly mixed coke to the sintering machine 1 to extraction, the amount of heat for this sintering raw material 5 is insufficient on the raw material charging side of the sintering machine 1. In response to the excess on the extraction side, the excess or deficiency in the amount of heat is corrected. Therefore, the heat imbalance in the raw material charging/extracting direction in the sintering reaction zone can be kept small. If the hot air discharged from the cooler is used instead of the air drawn from the intake hole 12, the unit consumption of coke fuel can be reduced, and if it is used as combustion air for the heating burner, the fuel produced by the heating burner]1 can be reduced. Consumption can be reduced.

加熱バーナ11による傾斜的熱量供給方法は加熱バーナ
11の配置的関係にもとづくものとしたが、バーナ負荷
容量にもとづくものでもよい。
Although the gradient heat supply method using the heating burners 11 is based on the arrangement of the heating burners 11, it may also be based on the burner load capacity.

図中13は排ガス流量調整ダンパー、14は集塵・排ガ
ス処理装置、15は排ガス煙突である。なお焼結機には
保温炉付きのものがある。その保温炉は装入初期の表層
が大気と接触して急冷されて、焼結鉱成品としての強度
が十分得られないということから点火炉の後に補助的に
設置されている。表層の強度が十分得られない理由は先
の説明かられかるように、焼結層に誘引される大気の熱
量が原料装入側が不足気味であり、表層の温度が適正温
度に十分達していないことが原因である。本法において
は傾斜的熱量供給方式として原料装入側熱量を抽出側熱
量より高く設定させるので、原料装入側表層に適正熱量
を正確に与えることにより、成品の必要強度が得られる
はずであり、したがつて現行の目的を意味する保温炉は
不用で゛ある。以上のように、この発明によれば焼結反
応域の原料装入・抽出方向における熱量不均衡を小さく
抑えるため、冒頭の説明から解るように、成品強度、鍋
歩留りを改善させるとともに、熱量損失を小さくして焼
結機の熱原単位を節減させる利益がある。
In the figure, 13 is an exhaust gas flow rate adjustment damper, 14 is a dust collection/exhaust gas treatment device, and 15 is an exhaust gas chimney. Note that some sintering machines are equipped with a heat retention furnace. The heat retention furnace is installed auxiliary after the ignition furnace because the surface layer of the sintered ore product at the initial stage of charging is rapidly cooled by contact with the atmosphere, making it difficult to obtain sufficient strength as a sintered ore product. As can be seen from the previous explanation, the reason why the surface layer does not have sufficient strength is that the amount of heat from the atmosphere attracted to the sintered layer is insufficient on the raw material charging side, and the temperature of the surface layer has not reached the appropriate temperature. This is the cause. In this method, the heat amount on the raw material charging side is set higher than the heat amount on the extraction side as a gradient heat supply method, so by accurately applying the appropriate amount of heat to the surface layer on the raw material charging side, the required strength of the finished product should be obtained. Therefore, the insulating furnace for the current purpose is unnecessary. As described above, according to the present invention, in order to suppress the heat disparity in the direction of raw material charging and extraction in the sintering reaction zone, it is possible to improve product strength and pot yield, as well as improve the heat loss, as can be seen from the explanation at the beginning. There is an advantage in reducing the heat consumption of the sintering machine by making it smaller.

【図面の簡単な説明】 第]図は一般的な焼結過程モデル図、第2図はこの発明
の一実施態様を示す構成図である。
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a general sintering process model diagram, and Figure 2 is a configuration diagram showing one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 コークスが均等に配合された焼結原料を焼結機に装
入して、その装入側から抽出側へ焼結原料を移動させな
がら焼結させる鉄鉱石の焼結方法において、ガス燃料ま
たは液体燃料の燃焼熱によつて、上記焼結原料の燃焼用
空気を、上記焼結原料に対し焼結機の原料装入側に多く
、抽出側に少なく順次傾斜的に加熱することを特徴とす
る鉄鉱石の焼結方法。
1. An iron ore sintering method in which a sintering raw material containing evenly mixed coke is charged into a sintering machine and sintered while moving the sintering raw material from the charging side to the extraction side. The combustion air for the sintering raw material is gradually heated in a gradient manner by the combustion heat of the liquid fuel, with more air being heated on the raw material charging side of the sintering machine and less air being heated on the extraction side of the sintering machine. A method of sintering iron ore.
JP4170577A 1977-04-11 1977-04-11 Iron ore sintering method Expired JPS5950733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4170577A JPS5950733B2 (en) 1977-04-11 1977-04-11 Iron ore sintering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4170577A JPS5950733B2 (en) 1977-04-11 1977-04-11 Iron ore sintering method

Publications (2)

Publication Number Publication Date
JPS53125906A JPS53125906A (en) 1978-11-02
JPS5950733B2 true JPS5950733B2 (en) 1984-12-10

Family

ID=12615831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4170577A Expired JPS5950733B2 (en) 1977-04-11 1977-04-11 Iron ore sintering method

Country Status (1)

Country Link
JP (1) JPS5950733B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7006524B2 (en) * 2018-06-27 2022-01-24 日本製鉄株式会社 Dwightroid Sintering Machine

Also Published As

Publication number Publication date
JPS53125906A (en) 1978-11-02

Similar Documents

Publication Publication Date Title
US2750273A (en) Method of heat hardening iron ore pellets containing fuel
US3244507A (en) Method of indurating ore particles
JPH0814763A (en) Production sintered ore
JPS5950733B2 (en) Iron ore sintering method
GB573539A (en) Process for producing metals
JP2002121620A (en) Waste gas circulation type sintering operation method
KR100286675B1 (en) Method for sintering iron ore
JP2022039966A (en) Manufacturing method of sintered ore and production apparatus of sintered ore
US3043677A (en) Sintering method and apparatus
JPS5931576B2 (en) Iron ore sintering method
KR101022455B1 (en) Apparatus for Controlling Surface Layer Temperature of Sintered Ore Using Waste Heat of Exhaust Gas from Boiler and Method for Controlling the Same
JPH06212293A (en) Manufacture of sintered ore
JP3049617B2 (en) Sintering method using pulverized fuel-containing gas
JP6959590B2 (en) Sintered ore manufacturing method
US3288449A (en) Apparatus for indurating ore particles
JPS5933178B2 (en) Sensible heat recovery method for hot air discharged from a cooler in sintering equipment
US3057715A (en) Method and apparatus for cooling sinter
JPH0734141A (en) Production of sintered ore
JP2002180136A (en) Manufacturing method of sintered ore
SU1397518A1 (en) Method of sintering iron-ore materials
JPS5928829B2 (en) sintering machine
JPH07258755A (en) Production of sintered ore
JPS5933647B2 (en) Sintering raw material supply method
JPS60208427A (en) Method and apparatus for sintering iron ore
JPS5950732B2 (en) Sensible heat recovery method for hot air discharged from a cooler in sintering equipment