JPS5928253B2 - Method for detecting coagulation state of blood, etc. - Google Patents

Method for detecting coagulation state of blood, etc.

Info

Publication number
JPS5928253B2
JPS5928253B2 JP10917976A JP10917976A JPS5928253B2 JP S5928253 B2 JPS5928253 B2 JP S5928253B2 JP 10917976 A JP10917976 A JP 10917976A JP 10917976 A JP10917976 A JP 10917976A JP S5928253 B2 JPS5928253 B2 JP S5928253B2
Authority
JP
Japan
Prior art keywords
electrical signal
signal
specimen
blood
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10917976A
Other languages
Japanese (ja)
Other versions
JPS5334596A (en
Inventor
義道 米沢
道夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10917976A priority Critical patent/JPS5928253B2/en
Publication of JPS5334596A publication Critical patent/JPS5334596A/en
Publication of JPS5928253B2 publication Critical patent/JPS5928253B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は血液等の凝集反応状態を光学的、電気的に検出
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for optically and electrically detecting the state of an agglutination reaction in blood or the like.

検体のある成分に対して試薬あるいは血清等を混入して
凝集反応させ、母体の検体に凝集が起るか否かを調べて
、検体の生理的状態を判定する医学的検査が従来から行
なわれている。
Traditionally, medical tests have been carried out to determine the physiological state of a sample by mixing reagents or serum, etc. with certain components of the sample, causing an agglutination reaction, and checking whether or not agglutination occurs in the maternal sample. ing.

これらの検査はその操作、最終判定を共に人為的に行な
うものであるから誤判定の危険性を多分に含んでいる。
フ 本発明は、凝集反応の結果を凝集あるいは非凝集の
いずれかに判定する作業を電子的に行なうよう構成し、
判定動作が迅速であり、信頼性の高い判定をすることの
できる方法を得ることを目的としたものである。透明基
板上で凝集反応させた検体を光学的に見ると次のような
特徴が現われる。
Since both the operation and final judgment of these tests are performed manually, there is a considerable risk of erroneous judgments.
F. The present invention is configured to electronically perform the operation of determining the result of an agglutination reaction as either agglutination or non-aggregation,
The purpose of this invention is to provide a method that allows quick determination and highly reliable determination. When a sample subjected to an agglutination reaction on a transparent substrate is viewed optically, the following characteristics appear.

1)非凝集状態では反応域における光透過率は、場所的
にその変動が少なくほぼ一様な値となつている。
1) In the non-agglomerated state, the light transmittance in the reaction zone has a substantially uniform value with little local variation.

92)凝集状態では、反応域上に光透過率の小さい凝集
塊と光透過率の大きい液状部とが発生するため光透過率
は場所的に大きな差異を生じる。
92) In the agglomerated state, agglomerates with low light transmittance and liquid parts with high light transmittance are generated on the reaction zone, so that the light transmittance varies greatly depending on the location.

本発明は上記(1)(2)の相対的な特徴に着目して発
明されたものである。即ち、微小断面積の光束で5反応
域を走査して微小断面積の光透過量を得、これを光電変
換して電気信号とし、この電気信号を上記特徴に応じて
置き換えた電気的な条件によつて識別し、検体の凝集状
態を判別するように構成したものである。0 次に本発
明方法を実施するように構成した装置を示す図面につい
て本発明を説明する。
The present invention was invented focusing on the relative characteristics of (1) and (2) above. That is, the five reaction regions are scanned with a light beam having a minute cross-sectional area to obtain the amount of light transmitted through the minute cross-sectional area, and this is photoelectrically converted into an electric signal, and this electric signal is replaced according to the above-mentioned characteristics. This system is configured to identify the agglutination state of the specimen by identifying the specimen. 0 The invention will now be explained with reference to the drawings which show an apparatus configured to carry out the method of the invention.

第1図は本装置の検出部を略示するもので、透明基板1
の上には、検体を載せ試薬を注入して反応域2が形成さ
れている。
FIG. 1 schematically shows the detection section of this device, in which a transparent substrate 1
A reaction zone 2 is formed on top by placing a specimen and injecting a reagent.

図示例は凝集を生じて5いる場合を示す。光源3から照
射された微小断面積の光束4は反応域2を透過してレン
ズ系5により集束され、光導電素子6に入射する。光束
4は矢印7,8に示すように直角方向の移動を組み合わ
せて動かされ、反応域2をくまなく等速走査する。光導
電素子6を含む電気閉回路9には、直流電源10、固定
抵抗11を直列接続してある。該固定抵抗11の両端電
圧は電気信号12となり接地電位に対して図示の極性を
有する。この装置において例えば、光束4が凝集塊に当
つている時は光透過量が少なく、従つて光導電素子6へ
の光照射量も少ないため、該素子6の抵抗は大きくなる
The illustrated example shows a case where aggregation occurs. A light beam 4 having a minute cross-sectional area emitted from the light source 3 passes through the reaction area 2, is focused by the lens system 5, and enters the photoconductive element 6. The light beam 4 is moved by a combination of movements in the right angle directions as shown by arrows 7 and 8, and scans the entire reaction area 2 at a constant speed. An electric closed circuit 9 including the photoconductive element 6 is connected in series with a DC power source 10 and a fixed resistor 11. The voltage across the fixed resistor 11 becomes an electrical signal 12 having the illustrated polarity with respect to the ground potential. In this device, for example, when the light beam 4 hits an agglomerate, the amount of light transmitted is small, and therefore the amount of light irradiated to the photoconductive element 6 is also small, so that the resistance of the element 6 becomes large.

従つて閉回路9を流れる電流が少なく、出力電圧たる電
気信号12も小さい。しかし光束4が凝集塊を外れた液
状部にあるときは、光透過量が大きく、光導電素子6へ
の光照射が強いため、電気信号12は大きな値となる。
このように電気信号12は反応域2の光透過量に対応し
た大きさの電気信号として得られる。第2図は電気信号
12を入力信号として凝集塊の有無を判定する識別装置
のプロツク図である。
Therefore, the current flowing through the closed circuit 9 is small, and the electrical signal 12, which is the output voltage, is also small. However, when the light beam 4 is in the liquid part outside the aggregate, the amount of light transmitted is large and the photoconductive element 6 is irradiated with light, so the electric signal 12 has a large value.
In this way, the electrical signal 12 is obtained as an electrical signal having a magnitude corresponding to the amount of light transmitted through the reaction area 2. FIG. 2 is a block diagram of an identification device that uses the electric signal 12 as an input signal to determine the presence or absence of aggregates.

13はある期間において入力した電気信号12の極大値
を保持し出力信号32とするピーク値ホールド回路、1
4は信号32からある基準値15(後述)を引算した値
を出力信号33とする引算回路、16は引算回路14の
出力信号33と電気信号12とを比較して引算回路14
の信号33が電気信号12に比べて大きい場合(比較条
件)に一定振幅のパルス信号34を発生する比較器であ
る。
13 is a peak value hold circuit that holds the maximum value of the electrical signal 12 input during a certain period and outputs it as an output signal 32;
4 is a subtraction circuit that outputs a value obtained by subtracting a reference value 15 (described later) from the signal 32, and 16 is a subtraction circuit 14 that compares the output signal 33 of the subtraction circuit 14 with the electric signal 12.
This is a comparator that generates a pulse signal 34 with a constant amplitude when the signal 33 is larger than the electric signal 12 (comparison condition).

17は比較器16のパルス信号34を微分する微分器、
18は微分器17の出力信号35の中から負の信号のみ
を通す整流器であり、この負の信号はピーク値ホールド
回路13の動作をリセツトする。
17 is a differentiator that differentiates the pulse signal 34 of the comparator 16;
A rectifier 18 passes only a negative signal from the output signal 35 of the differentiator 17, and this negative signal resets the operation of the peak value hold circuit 13.

ピーク値ホールド回路13のりセツトはこの他に、一走
査の完了時毎に走査駆動系(図示せず)から発せられる
一定走査完了信号19によつても行なわれる。20は比
較器16の出力信号34を反応域全体を走査する全走査
時間に亘つて積分する積分器、21は比較器で、積分器
20の出力信号36を基準値22(後述)と比較して積
分器20の出力信号36の方がより大きければ凝集あり
の信号23を出す。
The peak value hold circuit 13 is also reset by a constant scan completion signal 19 issued from a scan drive system (not shown) each time one scan is completed. 20 is an integrator that integrates the output signal 34 of the comparator 16 over the entire scanning time of scanning the entire reaction area, and 21 is a comparator that compares the output signal 36 of the integrator 20 with a reference value 22 (described later). If the output signal 36 of the integrator 20 is larger, a signal 23 indicating aggregation is output.

基準値15は、しきい値変動幅とも称するものであり、
凝集状態を呈する反応域において、凝集塊を示すに十分
な大きさの電圧Xからなる電気信号と、同じく液状部を
示すに十分な大きさの電圧Y(Y>X)からなる電気信
号との電位差(Y−X)に相当する電位とする。
The reference value 15 is also referred to as the threshold fluctuation width,
In a reaction zone exhibiting an agglomerated state, an electric signal consisting of a voltage X large enough to indicate an agglomerate and an electric signal consisting of a voltage Y (Y>X) large enough to indicate a liquid part are generated. The potential corresponds to the potential difference (Y-X).

基準値22は、凝集ありと判定するに十分な凝集塊の面
積に相当する走査時間を電気信号に変換したものである
The reference value 22 is a scanning time corresponding to an area of an agglomerate sufficient to determine that aggregation is present, which is converted into an electrical signal.

以上の各基準値15,22は判定の正確さを確保するた
め重要な値であるから、それぞれ検体の性質や、判定目
的に応じて適正な大きさに設定する。
Since each of the above reference values 15 and 22 is an important value for ensuring accuracy of determination, each is set to an appropriate size depending on the properties of the specimen and the purpose of determination.

次に、実際の検査例を示す第3〜4図について本発明を
説明する。
Next, the present invention will be explained with reference to FIGS. 3 and 4 showing actual inspection examples.

第3図は、凝集のある場合(A列)と非凝集の場合(B
列)とについて本装置の各部における出力信号波形を示
したものである。
Figure 3 shows the case with aggregation (column A) and the case with no aggregation (column B).
The output signal waveforms at each part of the device are shown for each column (column).

AOは凝集、BOは非凝集の各状態を示す反応域2a,
2bの光学的特徴を示すモデル図であり、AOは凝集塊
と一部未反応検体とが共に液状部に浮遊している状態を
示し、BOは検体がほぼ均質に分布している状態を示す
。A1〜A5,Bl〜B4,Cに示す出力信号波形は、
全走査線の中でA。,BOに示す一本の走査線29a,
29bで走査した場合の波形を示す。A1は固定抵抗1
1の両端に発生する電気信号12aを示す。A2はピー
ク値ホールド回路13の出力信号32aを示す。A2に
おいてはC,dの2個所でりセツトされているがこれに
ついては後述する。A3はピーク値ホールド回路13の
出力信号32aから基準値15を引いた大きさの引算回
路14の出力信号33aを示す。またA3には原電気信
号12aを破線で示してある。A3に示す出力信号33
aと原電気信号12aとは比較器16で比較され、前述
の比較条件を満す部分E,fにおいて該比較器16から
A4に示す一定振幅のパルス信号34aが発生される。
B列について同様にして見ると、゛電気信号12bはB
1の通りほぼ平担となり、ビーク値ホールド回路13の
出力信号32bはB3の通りとなる。
reaction zone 2a, where AO indicates aggregation and BO indicates non-agglomeration;
2b is a model diagram showing the optical characteristics of sample 2b, where AO indicates a state in which aggregates and a partially unreacted sample are both suspended in the liquid part, and BO indicates a state in which the sample is almost homogeneously distributed. . The output signal waveforms shown in A1 to A5, Bl to B4, and C are:
A among all scan lines. , one scanning line 29a shown in BO,
29b shows a waveform when scanning is performed. A1 is fixed resistance 1
1 shows an electrical signal 12a generated at both ends of 1. A2 indicates the output signal 32a of the peak value hold circuit 13. In A2, two positions C and d are reset, which will be described later. A3 indicates the output signal 33a of the subtraction circuit 14 having a magnitude obtained by subtracting the reference value 15 from the output signal 32a of the peak value hold circuit 13. Further, in A3, the original electrical signal 12a is shown by a broken line. Output signal 33 shown in A3
A and the original electrical signal 12a are compared by a comparator 16, and a pulse signal 34a of constant amplitude shown at A4 is generated from the comparator 16 in portions E and f that satisfy the above-mentioned comparison conditions.
If we look at column B in the same way, we can see that ``the electrical signal 12b is
1, and the output signal 32b of the peak value hold circuit 13 becomes as shown in B3.

引算回路14の出力信号33bはB3に示すように原電
気信号12bより小さいため、前述の比較条件を満さな
いからB4の通り比較器16の出力は無い。A4の出力
信号34aは微分器17で微分されてC,に示すパルス
信号35aとなり、その負信号がピーク値ホールド回路
13をC,dの2個所でりセツトさせている。
Since the output signal 33b of the subtraction circuit 14 is smaller than the original electrical signal 12b as shown in B3, it does not satisfy the above-mentioned comparison condition, so there is no output from the comparator 16 as shown in B4. The output signal 34a of A4 is differentiated by the differentiator 17 to become a pulse signal 35a shown at C, and its negative signal resets the peak value hold circuit 13 at two points C and d.

そのC,dの時刻はA4のパルス信号34aの立下り時
点である。この走査線29aの途中におけるりセツトは
、電気信号12aの変動幅の検討を、走査方向に対して
凝集塊より前部(AOにおいて左部)であり該凝集塊に
なるべく近い反応域部分における電気信号12aの極大
値を基準にして行なうために必要である。一方B列では
、比較器16からの出力信号がないので、走査終了後一
定走査完了信号19によりりセツトされる。比較器16
から出たパルス信号34aの中、積分器20へ進んだも
のはA5〜A7に示すように処理される。
The times C and d are the falling points of the pulse signal 34a of A4. This resetting in the middle of the scanning line 29a allows the study of the fluctuation range of the electrical signal 12a to be performed in the direction of the scanning direction, in order to examine the electric signal in the reaction zone that is in front of the agglomerate (left side in AO) and as close to the agglomerate as possible. This is necessary because the determination is performed based on the maximum value of the signal 12a. On the other hand, in column B, since there is no output signal from the comparator 16, it is reset by the constant scan completion signal 19 after the scan is completed. Comparator 16
Among the pulse signals 34a outputted from the integrator 20, those that proceed to the integrator 20 are processed as shown in A5 to A7.

即ちA4に示すパルス信号34aは積分器20によりパ
ルス発生時間を積算されてA5に示す積算時間信号36
aとなり、比較器21に入る。A6は全走査時間Tに亘
つて得られた積算時間信号36aと基準値22を示す。
積算時間信号36aが基準値22を越えると比較器21
から凝集ありの信号23が発せられる。このA,〜A7
に示す判定方法は特許請求の範囲1に記載した方法であ
る。
That is, the pulse signal 34a shown at A4 is integrated by the pulse generation time by the integrator 20, and the pulse signal 34a shown at A4 is integrated into the integrated time signal 36 shown at A5.
a, and enters the comparator 21. A6 shows the integrated time signal 36a obtained over the entire scanning time T and the reference value 22.
When the cumulative time signal 36a exceeds the reference value 22, the comparator 21
A signal 23 indicating that there is aggregation is emitted. This A, ~A7
The determination method shown in is the method described in claim 1.

この判定方法は、亀気信号12aが直前の極大値から基
準値15の幅以上に減少しているときは、光束4が凝集
塊上を走査しているときであるという対応から、全走査
時間の中でこのような状態の起つている全時間は凝集塊
の総面積に比例したものになるという原理に基づくもの
であり、凝集状態を検出するための有力な方法であると
いえる。なお上記した方法はおいて、基準値15を各凝
集塊の検出の始めと終りとにおいて異なる値とすると、
第4図に示すように凝集塊に相当する電気信号の微変動
に基づく識別装置の誤判定を防ぐことが可能である。
This determination method is based on the fact that when the tortoise signal 12a decreases from the previous maximum value to more than the reference value 15, it means that the light beam 4 is scanning the aggregate. It is based on the principle that the total time during which such a state occurs is proportional to the total area of the agglomerate, and it can be said to be an effective method for detecting the agglomerate state. In addition, in the above method, if the reference value 15 is set to a different value at the beginning and end of detection of each aggregate,
As shown in FIG. 4, it is possible to prevent an erroneous determination by the identification device based on minute fluctuations in the electrical signal corresponding to an agglomerate.

第4図D2〜D4は誤動作の場合を示し、同図E,〜E
3は基準値15を変えて正常動作させた場合の信号波形
を示す。
Fig. 4 D2 to D4 show cases of malfunction, and Fig. 4 E, to E
3 shows a signal waveform when normal operation is performed by changing the reference value 15.

例えば同図D。For example, figure D.

に示すような微小間隔30を介して2つの凝集塊が隣接
する反応域2dにおいて、該間隔30を通る走査線29
dにより得られる電気信号12dは、D,に示す通り該
間隔30に応じた小ピーク値31がg点に形成される。
この電気信号12dを第2図に示す装置により、前記の
方法と同様に処理すると次のようになる。
In a reaction zone 2d where two aggregates are adjacent to each other with a minute interval 30 as shown in FIG.
In the electric signal 12d obtained at point d, a small peak value 31 corresponding to the interval 30 is formed at point g, as shown at point D.
When this electric signal 12d is processed by the apparatus shown in FIG. 2 in the same manner as in the above method, the following results are obtained.

即ち、ヒータ値ホールド回路13の出力信号32dはD
2に示す通りとなりg点でりセツト(後述)されている
。引算回路14の出力信号33dはD3に示す通りとな
り、比較器16のパルス信号34dはD4に示す通り左
方の凝集塊に相当する信号のみとなる。このパルス信号
34dは凝集塊の大きさと対応しない不都合がある。パ
ルス信号34dの立下り部(g点)の微分信号によりヒ
ータ値ホールド回路13はりセツトされてしまう。そこ
で今、基準値15をD4のパルス侶号34dが発生して
いる時は電位差(Y−X)からある値F(第4図E2)
だけ減じた小さな値とすると、引算回路14からE2に
示す出力信号33eが発せられる。
That is, the output signal 32d of the heater value hold circuit 13 is D.
2, and is set at point g (described later). The output signal 33d of the subtraction circuit 14 is as shown in D3, and the pulse signal 34d of the comparator 16 is only a signal corresponding to the left agglomerate as shown in D4. This pulse signal 34d has the disadvantage that it does not correspond to the size of the aggregate. The heater value hold circuit 13 is overset by the differential signal at the falling edge (point g) of the pulse signal 34d. So now, when the reference value 15 is generated, when the pulse number 34d of D4 is generated, a certain value F (Fig. 4 E2) is obtained from the potential difference (Y-X).
If a small value is obtained by subtracting the value by E2, the subtraction circuit 14 outputs an output signal 33e shown as E2.

この出力信号33eと原電気信号12dとを比較すると
、E3に示すように小ピーク値31の存在には左右され
ることなく2つの凝集塊の大きさに応じたパルス信号3
4eが発せられる。このパルス信号34eの立下り部(
h点)の微分信号によりピーク値ホールド回路13は初
めてりセツトされる。上記したある値Fは基準値15と
同様に十分吟味して定める必要がある。
Comparing this output signal 33e with the original electrical signal 12d, we see that the pulse signal 3 corresponds to the size of the two aggregates without being affected by the presence of the small peak value 31, as shown in E3.
4e is emitted. The falling part of this pulse signal 34e (
The peak value hold circuit 13 is reset for the first time by the differential signal at point h). As with the reference value 15, the above-mentioned certain value F needs to be determined after careful consideration.

なお、E3のパルス信号34eはその後積分器20に進
んで、それぞれの判定を受ける。
Note that the pulse signal 34e of E3 then proceeds to the integrator 20 and undergoes respective determinations.

このD,,E,〜E3に示す処理方法を付加した判定方
法は特許請求の範囲2に記載した方法である。
The determination method to which the processing methods shown in D, E, to E3 are added is the method described in claim 2.

なお、実際にこのような処理方法に基づいて第2図に示
す識別装置を動作させるには、比較器16のパルス信号
を受けて基準値15をある値Fだけ減少させるバイアス
回路(図示せず)を付加すればよい。
Note that, in order to actually operate the identification device shown in FIG. ) can be added.

以上に各実施例から判るように本発明の方法は、凝集反
応させた検体の凝集有無を光学的、電気的に判定するも
のであるから、判定時間が短かく、常に一定条件の下で
判定することができて信頼性の高い判定が得られ、肉眼
で行なう従来法のような個人差も生じない等効果が大き
い。
As can be seen from the above examples, the method of the present invention optically and electrically determines the presence or absence of agglutination of a sample subjected to an agglutination reaction, so the determination time is short and the determination can always be made under constant conditions. This method has great effects, such as providing highly reliable judgments and eliminating individual differences unlike conventional methods, which are performed with the naked eye.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜2図は本発明を実施する装置の概略を示し、第1
図は査走および光電変換装置の概略図、第2図は識別装
置のプロツク図、第3図A−Cは検体例とそれぞれの検
体における走査信号とを示す説明図、第4図A−Bは第
3図同様の説明図である。 2:反応域、6:光導電素子、12,12a,12b,
12d:電気信号、15:基準値、16,21:比較器
、22:基準値。
1 and 2 schematically show an apparatus for carrying out the present invention, and the first
The figure is a schematic diagram of the scanning and photoelectric conversion device, FIG. 2 is a block diagram of the identification device, FIGS. 3A-C are explanatory diagrams showing specimen examples and scanning signals for each specimen, and FIGS. 4A-B is an explanatory diagram similar to FIG. 3. 2: reaction zone, 6: photoconductive element, 12, 12a, 12b,
12d: Electrical signal, 15: Reference value, 16, 21: Comparator, 22: Reference value.

Claims (1)

【特許請求の範囲】 1 検体を微小断面積の光束で走査し、該検体を通過し
た光につき光電変換を行なつてその透過光量に応じた大
きさの電気信号を取出し、該電気信号の隣接する極大値
と極小値との変動幅が基準値の幅を越えている時間を全
走査時間に亘つて積算し、この積算時間が基準時間を越
えた場合に凝集有りと判定することを特徴とする血液等
の凝集状態を検出する方法。 2 検体を微小断面積の光束で走査し、該検体を通過し
た光につき光電変換を行なつてその透過光量に応じた大
きさの電気信号を取出し、該電気信号の隣接する極大値
と極小値との変動幅が基準値の幅を越えている時間を全
走査時間に亘つて積算し、この積算時間が基準時間を越
えた場合に凝集ありと判定する血液等の凝集状態を検出
する方法において、該電気信号の極大値から極小値へ変
動する時と、極小値部において細かく変動している時と
をそれぞれ異なつた基準値を用いて電気信号を識別する
ことを特徴とする血液等の凝集状態を検出する方法。
[Claims] 1. A specimen is scanned with a light beam having a minute cross-sectional area, and the light passing through the specimen is subjected to photoelectric conversion to extract an electrical signal of a size corresponding to the amount of transmitted light, and the electrical signal adjacent to the electrical signal is The method is characterized in that the time during which the range of variation between the local maximum value and the local minimum value exceeds the width of the reference value is integrated over the entire scanning time, and if this integrated time exceeds the reference time, it is determined that there is aggregation. A method for detecting the coagulation state of blood, etc. 2. Scan the specimen with a light beam with a minute cross-sectional area, perform photoelectric conversion on the light that has passed through the specimen, extract an electrical signal of a size corresponding to the amount of transmitted light, and calculate the adjacent maximum and minimum values of the electrical signal. In a method for detecting the state of aggregation of blood, etc., the time during which the range of fluctuations between , an aggregation of blood, etc., characterized in that an electrical signal is identified using different reference values when the electrical signal changes from a local maximum value to a local minimum value, and when it fluctuates finely in the local minimum value portion. How to detect the condition.
JP10917976A 1976-09-10 1976-09-10 Method for detecting coagulation state of blood, etc. Expired JPS5928253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10917976A JPS5928253B2 (en) 1976-09-10 1976-09-10 Method for detecting coagulation state of blood, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10917976A JPS5928253B2 (en) 1976-09-10 1976-09-10 Method for detecting coagulation state of blood, etc.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4028584A Division JPS6023296B2 (en) 1984-03-05 1984-03-05 Method for detecting coagulation state of blood, etc.

Publications (2)

Publication Number Publication Date
JPS5334596A JPS5334596A (en) 1978-03-31
JPS5928253B2 true JPS5928253B2 (en) 1984-07-11

Family

ID=14503649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10917976A Expired JPS5928253B2 (en) 1976-09-10 1976-09-10 Method for detecting coagulation state of blood, etc.

Country Status (1)

Country Link
JP (1) JPS5928253B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562562A (en) * 1979-06-21 1981-01-12 Olympus Optical Co Ltd Deciding method for particle coagulation pattern
JPS56133648A (en) * 1980-03-24 1981-10-19 Joko:Kk Method and device for measuring agglutination reaction by optical method
US4560881A (en) * 1984-03-13 1985-12-24 Syntex (U.S.A.) Inc. Method and apparatus for enhanced detection of electromagnetic signals
JPS6352725A (en) * 1987-05-30 1988-03-05 Asahi Seiki Kogyo Kk Spring forming device
JP6606961B2 (en) * 2015-10-05 2019-11-20 栗田工業株式会社 Aggregation monitoring apparatus, aggregation monitoring method, and aggregation treatment system

Also Published As

Publication number Publication date
JPS5334596A (en) 1978-03-31

Similar Documents

Publication Publication Date Title
US3864044A (en) Method and apparatus for the analysis of a dispersed phase capable of transmitting and focusing light
JP2641927B2 (en) Particle measurement device
US4188121A (en) Multiple ratio single particle counter
CA1107984A (en) Method and apparatus for discriminating red blood cells from platelets
JPS5928253B2 (en) Method for detecting coagulation state of blood, etc.
WO2015099116A1 (en) Particle counting method and particle counting apparatus
JPH06174724A (en) Immunologically measuring apparatus
JP3113720B2 (en) Pollen detector
JPS6023296B2 (en) Method for detecting coagulation state of blood, etc.
Doubrovski et al. An acousto-optical method for registration of erythrocytes’ agglutination reaction—sera color influence on the resolving power
JPH04337460A (en) Device for analyzing cell in urine
JP2636051B2 (en) Particle measurement method and device
JPS5928252B2 (en) Method for detecting coagulation state of blood, etc.
US5344544A (en) Diagnostic electrode for evaluating circuitry of an analyzer
JPH0474951A (en) Method and apparatus for inspection
JP3340312B2 (en) Surface defect inspection equipment
JPH02114146A (en) Method and device for measuring crack length and strain in structure part and test piece
JP2821201B2 (en) Particle measurement method and device
JPS5918656B2 (en) Surface inspection method
JPH0410581B2 (en)
JPH0262180B2 (en)
JPH0336925Y2 (en)
JPS63210650A (en) Surface flaw detector for object
Thomas et al. Automated method for measuring contrast-to-noise-ratio (CNR) and signal-to-noise-ratio (SNR) on a full field digital mammography system (FFDMS)
JPH02228565A (en) System for judging measuring state of speed