JPS592805B2 - Air conditioning control method - Google Patents

Air conditioning control method

Info

Publication number
JPS592805B2
JPS592805B2 JP53164283A JP16428378A JPS592805B2 JP S592805 B2 JPS592805 B2 JP S592805B2 JP 53164283 A JP53164283 A JP 53164283A JP 16428378 A JP16428378 A JP 16428378A JP S592805 B2 JPS592805 B2 JP S592805B2
Authority
JP
Japan
Prior art keywords
room temperature
value
proportional gain
capacity
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53164283A
Other languages
Japanese (ja)
Other versions
JPS5592835A (en
Inventor
正憲 阿川
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP53164283A priority Critical patent/JPS592805B2/en
Publication of JPS5592835A publication Critical patent/JPS5592835A/en
Publication of JPS592805B2 publication Critical patent/JPS592805B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は空気調和装置の室温制御を行なう空気調和制
御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioning control method for controlling the room temperature of an air conditioner.

従来の空気調和装置の室温制御はサーモスタットによる
オンオフ制御がほとんどである。
Most of the room temperature controls in conventional air conditioners are on/off controlled by thermostats.

この場合、周知の通り室温の上下の最大変動幅が±2度
はどあり、不快を感する原因となっている。
In this case, as is well known, the maximum fluctuation range of the room temperature up and down is ±2 degrees, which causes discomfort.

また、もう少し精度のよい制御となるとPID制御があ
る。
In addition, PID control is available for more precise control.

PID制御は次式で表わされる。ただし tR:室温、
tS:室温設定値、e(t):エラー、Kp :比例ゲ
イン、TI :積分時間、TD:微分時間、 m(t):操作信号、t:時間、 しかしながら(1)式におけるKp、TI 、TD
などの定数を決定することが非常に困難である。
PID control is expressed by the following equation. However, tR: room temperature,
tS: Room temperature set value, e(t): Error, Kp: Proportional gain, TI: Integral time, TD: Differential time, m(t): Operation signal, t: Time, However, Kp and TI in equation (1), T.D.
It is very difficult to determine constants such as

通常は限界感度法などで定数を決定しているが、この場
合には二度、運転を異常状態にさせねばならず、しかも
、室内の動特性が変化するとそのたびに定数をかえなけ
ればならないので極めて不都合である。
Normally, constants are determined using the limit sensitivity method, but in this case, the operation must be brought into an abnormal state twice, and the constants must be changed each time the indoor dynamic characteristics change. This is extremely inconvenient.

室温制御において注意しなければならないことは系が安
定しているかどうかである。
What must be taken into account when controlling room temperature is whether the system is stable.

もしく1)式における定数が適尚でなければ室温tRは
室温設定値tSに収束することなく、発散してしまう。
If the constant in equation 1) is not appropriate, the room temperature tR will diverge without converging to the room temperature set value tS.

この発明は上記従来方式における種々の欠点を解消し、
簡単な制御方法で最適な室温制御を行なわせることを目
的とする。
This invention solves the various drawbacks of the above conventional method,
The purpose is to perform optimal room temperature control using a simple control method.

以下、本発明について説明する。The present invention will be explained below.

本発明の室温制御システムは(3) 、 (4)式のよ
うにする。
The room temperature control system of the present invention is expressed by equations (3) and (4).

m(t)−K (t) ・e (t) ・
”・−”(3)e (t)= t S −tR・・・・
・・・・・(4)ただし、tR:室温、tS:室温設定
値、e(t):エラー、K(t):比例ゲイン、m(t
):操作信号、t:時間、 ここで、(3)式は従来のP(比例)制御と形は似てい
るが比例ゲインK(t)が時間の関数となっているとこ
ろが従来と異なる。
m(t)−K(t) ・e(t) ・
”・−”(3)e (t)=t S −tR・・・・
...(4) However, tR: room temperature, tS: room temperature set value, e(t): error, K(t): proportional gain, m(t
): operation signal, t: time, where equation (3) is similar in form to conventional P (proportional) control, but differs from conventional control in that the proportional gain K(t) is a function of time.

本発明はこのK (t)の決定方法に特徴をもつもので
ある。
The present invention is characterized by the method for determining K (t).

今、説明をわかりやすくするだめにK(t)の大きさを
固定してP制御におけるK(t)の値が非常に小さい場
合の室温tRの変動を第1図に、K(t)の値が非常に
大きい場合の室温tRの変動を第2図に、またK(t)
の値が部屋の動特性に割合マツチしている場合の室温t
Rの変動を第3図にそれぞれ示した。
Now, to make the explanation easier to understand, we fixed the magnitude of K(t), and the fluctuation of room temperature tR when the value of K(t) in P control is very small is shown in Figure 1. Figure 2 shows the fluctuation of room temperature tR when the value is very large, and also K(t)
The room temperature t when the value of t matches the dynamic characteristics of the room
The variations in R are shown in Figure 3.

図かられかるように、比例ゲインK (t)が小さいと
きは室温tRの応答が遅いがなめらかな制御となり、逆
にK (t)が太きいときは室温tRの応答が速いが変
動が激しいものとなる。
As can be seen from the figure, when the proportional gain K (t) is small, the response of the room temperature tR is slow but smooth control is achieved, and conversely, when the proportional gain K (t) is large, the response of the room temperature tR is fast but fluctuates sharply. Become something.

このような現象を逆に利用することによって最適な比例
ゲインK(t)を決めることができる。
By inversely utilizing such a phenomenon, the optimal proportional gain K(t) can be determined.

ただし、部屋の動特性の変動を考慮することによりK
(t)の最大値Kmax と最小値Kmmを与えること
が必要である。
However, by considering changes in the dynamic characteristics of the room, K
It is necessary to provide the maximum value Kmax and minimum value Kmm of (t).

すなわち、比例ゲインK(t)はKmax とKmmの
間で可変する。
That is, the proportional gain K(t) varies between Kmax and Kmm.

このK(t)を決定するのは室温tRの過去のデータで
ある。
This K(t) is determined by past data of the room temperature tR.

過去、一定時間内の室温tRの変動幅を調べるために、
その期間における室温tRの最大値tRmax と最
小値tRmrrを見出す。
In the past, in order to investigate the fluctuation range of room temperature tR within a certain period of time,
The maximum value tRmax and minimum value tRmrr of the room temperature tR during that period are found.

その差をyとすれば、y=tRmax−tRmm
・””(5)となる。
If the difference is y, then y=tRmax-tRmm
・””(5).

すなわちyの値がある一定値C1(C1>0 )よりも
大きいときは室温tRの変動が大きいのであるから比例
ゲインK(t)を小さくする。
That is, when the value of y is larger than a certain constant value C1 (C1>0), the fluctuation in the room temperature tR is large, so the proportional gain K(t) is made small.

またyの値がC1よりも小さいときは室温tRの変動が
小さいから室温tRの特性としてはよいが、次の急激な
室内負荷変動にすぐ応答できないのでK(t)の値を大
きくする。
Further, when the value of y is smaller than C1, the fluctuation in the room temperature tR is small, so the characteristic of the room temperature tR is good, but since it is not possible to immediately respond to the next sudden change in the indoor load, the value of K(t) is increased.

後者の場合は、室温tRが室温設定値tSにほとんど等
しくなっているのでK(t)を大きくしても室温tRの
変動は微小である。
In the latter case, since the room temperature tR is almost equal to the room temperature set value tS, even if K(t) is increased, the fluctuation in the room temperature tR is minute.

また、空気調和装置のスタート時、あるいは、室温tR
が室温設定値tSから大きくはずれた場合には比例ゲイ
ンK(t)を強制的にK m a x としてやるこ
とが連応性のある制御を行なうことになる。
Also, when starting the air conditioner, or when the room temperature tR
When the temperature deviates significantly from the room temperature set value tS, forcing the proportional gain K(t) to be Kmax results in coordinated control.

本発明の一実施例として冷房運転時の室温制御特性を第
4図に示す。
FIG. 4 shows room temperature control characteristics during cooling operation as an embodiment of the present invention.

第4図においてj1yj2+t3.t4はそれぞれ比例
ゲインK(t)を決定する時刻で空気調和装置のスター
ト時をt二〇とすればtl−△t、t2−2△t+t3
=3△1.14=4△tである。
In FIG. 4, j1yj2+t3. t4 is the time at which the proportional gain K(t) is determined, and if the start time of the air conditioner is t20, then tl-△t, t2-2△t+t3
=3Δ1.14=4Δt.

tRHは室温設定値tSよりもC2(C2〉0)だけ大
きい値、tRLは室温設定値tSよりもC2だけ小さい
値であって、室温tRがtRHよりも大きいか、室温t
RがtRLよりも小さい場合は比例ゲインK(t)は強
制的にKmax とする。
tRH is a value larger than the room temperature set value tS by C2 (C2>0), tRL is a value smaller than the room temperature set value tS by C2, and whether the room temperature tR is larger than tRH or the room temperature t
If R is smaller than tRL, the proportional gain K(t) is forced to be Kmax.

A1はスタート時の室温tRであると同時に時刻t1
までの△t1時間における室温の最大値tRmax
FBlは時刻t1 までの△を時間における室温の最小
値tRmmy A2+B2はそれぞれ時刻t、から時刻
t2までの△を時間における室温の最大値tRmax
と最小値tRmm。
A1 is the room temperature tR at the start, and at the same time, the time t1
Maximum value tRmax of room temperature in △t1 hour until
FBl is △ from time t1 to the minimum value of room temperature in time tRmmy A2+B2 is the maximum value of room temperature in time tRmax and △ from time t to time t2, respectively
and the minimum value tRmm.

A3 とB3はそれぞれ時刻t2から時刻131での△
を時間における室温の最大値tRmax と最小値tR
珊を示す。
A3 and B3 are △ from time t2 to time 131, respectively.
The maximum value tRmax and the minimum value tR of room temperature in time
Showing coral.

次に第4図について動作説明を行なうと、まずスタート
して時刻t1 までは室温tRがtRHよりも大きいの
で、K(t)=Kmax で(3)式による室温制御を
行なう。
Next, the operation will be explained with reference to FIG. 4. From the start until time t1, the room temperature tR is greater than tRH, so room temperature control is performed using equation (3) with K(t)=Kmax.

次に時刻t1 において過去の△を時間の室温tRを調
べると最大値はA1 であり最小値はB1 であるから
その差yは非常に大きくC1より犬であったとする。
Next, at time t1, when examining the past Δ and the time room temperature tR, the maximum value is A1 and the minimum value is B1, so the difference y is very large and is greater than C1.

従ってK(t)はK m a x よりも1ランクさ
けた値としなければならず、その状態で時刻t2 まで
(3)式による室温制御を行なう。
Therefore, K(t) must be set to a value one rank higher than Kmax, and in this state, room temperature control is performed according to equation (3) until time t2.

時刻t2において、同様に過去の△を時間の室温tRを
調べると最大値A2で、最小値B2であるからその差y
はC1より大きく、さらにK(t)を1ランクさげて時
刻t3 まで運転し時刻t3においても同様にyが01
より大きいとすればさらにK(t)を1ランクさげ
て運転する。
At time t2, when we similarly examine the past △ and the time room temperature tR, we find that it is the maximum value A2 and the minimum value B2, so the difference y
is larger than C1, and further lowers K(t) by one rank and operates until time t3, and y is 01 at time t3 as well.
If it is larger, the operation is performed with K(t) further lowered by one rank.

この場合、K(t)がKmmより小さくなった場合は当
然K(t)=Kmmとする。
In this case, if K(t) becomes smaller than Kmm, it is natural that K(t)=Kmm.

時刻t4ではyはほとんど零に近くC1より小さいので
、K(t)は前回の値よりも1ランクあげる。
At time t4, y is almost zero and smaller than C1, so K(t) is raised by one rank from the previous value.

このため、室温tRは少し変動するがその幅は非常に小
さい。
Therefore, although the room temperature tR fluctuates a little, the range is very small.

ここで、この発明の制御方法を適用し得る空気調和装置
の1例として、特公昭47−2943号公報に示された
システム構成図を第5図に示し、説明する。
Here, as an example of an air conditioner to which the control method of the present invention can be applied, a system configuration diagram shown in Japanese Patent Publication No. 47-2943 is shown in FIG. 5 and will be described.

第5図に於て、1,2,3,4は圧縮機、5,6,7.
8は吐出管、9は凝縮器、10は冷媒液管、11は膨張
弁、12は蒸発器、13は冷媒吸込ガス管、14はバイ
パス管、16は定圧式膨張弁、19は制御装置、20は
サーモスタット(室温検知)である。
In FIG. 5, 1, 2, 3, 4 are compressors, 5, 6, 7.
8 is a discharge pipe, 9 is a condenser, 10 is a refrigerant liquid pipe, 11 is an expansion valve, 12 is an evaporator, 13 is a refrigerant suction gas pipe, 14 is a bypass pipe, 16 is a constant pressure expansion valve, 19 is a control device, 20 is a thermostat (room temperature detection).

この様な空気調和装置に、この発明の制御方法を適用し
た場合の動作について次に説明する。
The operation when the control method of the present invention is applied to such an air conditioner will be described next.

制御装置19は一般的に室温設定器21と演算機能と記
憶機能ならびにタイマー機能を備えていて、室温検知サ
ーモスタット20からの信号と室温設定器21の設定値
とを比較し、圧縮機をオンオフするとともにタイマー機
能から直前の一定時間内における室温の最高温度と最低
温度の変化中の最大値を記憶し、これを一定時間に読み
出して最大変化中yが01(C1〉0)より大きければ
比例ゲインK(t)を減じて操作信号m(t)を小さく
し、圧縮機の運転台数を減じ、最大変化中yがC1より
小さければ比例ゲインK(t)を増して操作信号m(t
)を大きくし圧縮機の運転台数を増す。
The control device 19 generally includes a room temperature setting device 21, a calculation function, a memory function, and a timer function, and compares the signal from the room temperature detection thermostat 20 with the set value of the room temperature setting device 21 to turn on and off the compressor. At the same time, the timer function stores the maximum value of the change in the maximum and minimum temperature of the room temperature within a certain period of time immediately before, reads this at a certain time, and if y is larger than 01 (C1>0) during the maximum change, the proportional gain is applied. K(t) is decreased to make the operating signal m(t) smaller, the number of operating compressors is reduced, and if y is smaller than C1 during the maximum change, the proportional gain K(t) is increased to reduce the operating signal m(t).
) and increase the number of compressors in operation.

このようにして圧縮機(全体)の能力を増減するもので
ある。
In this way, the capacity of the compressor (as a whole) is increased or decreased.

また、上述した複数台の圧縮機による能力制御のほか、
昭和40年に朝食書店から発行された「冷凍機械工学・
・ンドブツク」の容量制御装置の項に示された圧縮機の
回転数を変化させて能力制御する装置等もあり、いずれ
の装置に於ても、最大変化「t′Jyが01 より犬
ならば比例ゲインkを減じ、yが01 より小ならば
kを増大させることにより、この発明の制御方法を適用
し得るものである。
In addition to capacity control using multiple compressors as mentioned above,
“Refrigerating Mechanical Engineering/
・There are also devices that control the capacity by changing the rotation speed of the compressor, as shown in the section on capacity control devices in the Japanese book, and in any device, if the maximum change ``t'Jy is 01, The control method of the present invention can be applied by reducing the proportional gain k and increasing k if y is less than 01.

以上述べたように、この発明の特徴は比例ゲインK (
t)を最適に決定することにあり、室温tRの変動が大
きいときには比例ゲインK(t)を小さくして室温変動
をなめらかになるようにし、逆に室温tRの時間に対す
る変化率が小さいときは比例ゲインK(t)を大きくし
て、急激な室内負荷変動に備えるようにしている。
As mentioned above, the feature of this invention is the proportional gain K (
t), and when the fluctuation of the room temperature tR is large, the proportional gain K(t) is made small to smooth the room temperature fluctuation, and conversely, when the rate of change of the room temperature tR with respect to time is small, The proportional gain K(t) is increased to prepare for sudden indoor load fluctuations.

従って室内の動特性が変化しても即座に応答し、かつ室
温tRを室温設定値tSに近づけることができる。
Therefore, even if the indoor dynamic characteristics change, it is possible to respond immediately and bring the room temperature tR closer to the room temperature set value tS.

なお、当然のことながら、この制御方法は冷房運転のみ
ならず、暖房運転にも同じように適用できる。
Note that, as a matter of course, this control method can be applied not only to cooling operation but also to heating operation.

さらに室温制御のみならず、湿度制御にも適用できるこ
とはいうまでもない。
Furthermore, it goes without saying that it can be applied not only to room temperature control but also to humidity control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はP制御における比例ゲインが小さいときの室温
tRの変動特性、第2図は同様に比例ゲインが大きいと
きの室温tRの変動特性、第3図は比例ゲインが適当な
値のときの室温tRの変動特性をそれぞれ示す図である
。 第4図はこの発明の一実施例で冷房運転時における室温
tRの制御特性を示しだ図、第5図はこの発明の実施例
による制御方法が適用し得る空気調和装置の−fIIを
示す構成図である。 図中の符号A1〜A3、及びB1〜B3ばある単位時間
△を当りの各最大値及び最小値である。
Figure 1 shows the fluctuation characteristics of room temperature tR when the proportional gain is small in P control, Figure 2 shows the fluctuation characteristics of room temperature tR when the proportional gain is large, and Figure 3 shows the fluctuation characteristics of room temperature tR when the proportional gain is a suitable value. FIG. 6 is a diagram showing the fluctuation characteristics of room temperature tR. FIG. 4 is an embodiment of the present invention showing the control characteristics of the room temperature tR during cooling operation, and FIG. 5 is a configuration showing -fII of an air conditioner to which the control method according to the embodiment of the present invention can be applied. It is a diagram. The symbols A1 to A3 and B1 to B3 in the figure are the maximum and minimum values per unit time Δ.

Claims (1)

【特許請求の範囲】 1 室温tRと室温設定値tSとの差に比例ゲインK(
t)を乗算しその値m(t)(操作信号)によって上記
空気調和装置の能力を増減する制御方法において、過去
の一定時間△tにおける室温tRの最大変化幅yをとら
えて、この最大変化幅yが一定値C1(自〉0)より太
きければ比例ゲインK (t)を減じ、最大変化幅yが
一定値C1より小さければ比例ゲインK(t)を増大さ
せ、上記操作信号m(t)が大きくなると能力を大きく
するとともに、上記m (t)が小さくなると能力を小
さくし、室温tRを室温設定値tSに接近させることを
特徴とする空気調和制御方法。 2 室温tRと室温設定値tSとの差に比例ゲインK(
t)を乗算しその値m(t)(操作信号)によって上記
空気調和装置の能力を増減する制御方法において、上記
比例ゲインK (t)に最大値Kmax と最小値Km
mを設定し、且つ、最小値Kmmと最大値Kmaxの間
を数段階に分け、過去の一定時間△tにおける室温tR
の最大変化幅yをとらえて、この最大変化幅yが一定値
C1(C1〉O)より太きければ比例ゲインK(t)を
1段階毎に減じ、最大変化幅yが一定値C1より小さけ
れば比例ゲインK(t)を1段階毎に増大させ、上記操
作信号m(t)が大きくなると能力を大きくするととも
に、上記m(t)が小さくなると能力を小さくし、室温
tRを室温設定値tSに接近させることを特徴とする空
気調和制御方法。 3 室温tRと室温設定値tSとの差に比例ゲインK
(t)を乗算しその値m(t)(操作信号)によって上
記空気調和装置の能力を増減する制御方法において、過
去の一定時間△tにおける室温tRの最大変化幅yをと
らえて、この最大変化幅yが一定値C1(C1〉0)よ
り大きければ比例ゲインK (t)を減じ、最大変化幅
yが一定値C1より小さければ比例ゲインK(t)を増
大させ、上記操作信号m (t)が大きくなると能力を
大きくするとともに、上記m(t)が小さくなると能力
を小さくし、上記室温設定値tSよりC2(C2〉0)
だけ大きい値tRHとtSよりC2だけ小さい値tRL
を設定し、室温tRがtRI(より大きいかまたは室
温tRがtRL よりも小さい場合に上記K(t)を
K(t)=Kmax とし、室温tRを室温設定値t
Sに接近させることを特徴とする空気調和制御方法。
[Claims] 1. A proportional gain K (
In the control method of increasing/decreasing the capacity of the air conditioner according to the value m(t) (operation signal) by multiplying t) by If the width y is thicker than the constant value C1 (self>0), the proportional gain K (t) is decreased, and if the maximum change width y is smaller than the constant value C1, the proportional gain K (t) is increased, and the above operation signal m ( An air conditioning control method characterized by increasing the capacity as t) increases, and decreasing the capacity as m (t) decreases to bring the room temperature tR closer to the room temperature set value tS. 2 Proportional gain K (
t) and increases or decreases the capacity of the air conditioner according to the value m(t) (operation signal), in which the proportional gain K(t) is multiplied by a maximum value Kmax and a minimum value Km.
Set m, and divide the range between the minimum value Kmm and the maximum value Kmax into several stages, and calculate the room temperature tR at a certain period of time Δt in the past.
If the maximum change width y is larger than the constant value C1 (C1〉O), reduce the proportional gain K(t) step by step, and if the maximum change width y is smaller than the constant value C1. For example, the proportional gain K(t) is increased step by step, and when the operation signal m(t) increases, the capacity is increased, and when the m(t) decreases, the capacity is decreased, and the room temperature tR is set to the room temperature set value. An air conditioning control method characterized by bringing the temperature close to tS. 3 Proportional gain K to the difference between room temperature tR and room temperature set value tS
(t) and increases or decreases the capacity of the air conditioner according to the resulting value m(t) (operation signal). If the width of change y is larger than the constant value C1 (C1>0), the proportional gain K (t) is decreased, and if the maximum width of change y is smaller than the constant value C1, the proportional gain K (t) is increased, and the above operation signal m ( When t) increases, the capacity is increased, and when the above m(t) decreases, the capacity is decreased, and from the above room temperature set value tS, C2 (C2>0)
A value tRH that is larger by C2 and a value tRL that is smaller than tS by C2.
If the room temperature tR is larger than tRI (or the room temperature tR is smaller than tRL), the above K(t) is set as K(t)=Kmax, and the room temperature tR is set as the room temperature set value t.
An air conditioning control method characterized by making the air conditioner approach S.
JP53164283A 1978-12-29 1978-12-29 Air conditioning control method Expired JPS592805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53164283A JPS592805B2 (en) 1978-12-29 1978-12-29 Air conditioning control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53164283A JPS592805B2 (en) 1978-12-29 1978-12-29 Air conditioning control method

Publications (2)

Publication Number Publication Date
JPS5592835A JPS5592835A (en) 1980-07-14
JPS592805B2 true JPS592805B2 (en) 1984-01-20

Family

ID=15790146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53164283A Expired JPS592805B2 (en) 1978-12-29 1978-12-29 Air conditioning control method

Country Status (1)

Country Link
JP (1) JPS592805B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4338791A (en) * 1980-10-14 1982-07-13 General Electric Company Microcomputer control for heat pump system
JPH0754207B2 (en) * 1986-11-25 1995-06-07 日本電装株式会社 Refrigeration cycle equipment
EP3006847B1 (en) * 2013-05-27 2021-03-31 Mitsubishi Electric Corporation Air-conditioning device

Also Published As

Publication number Publication date
JPS5592835A (en) 1980-07-14

Similar Documents

Publication Publication Date Title
JP3492849B2 (en) Vehicle air conditioner
JP2634139B2 (en) Refrigeration apparatus and control method thereof
US5369597A (en) System for controlling heating or cooling capacity in heating or air conditioning systems
CN112628984A (en) Control method and device for electronic expansion valve of air conditioner internal unit and air conditioner
JPS592805B2 (en) Air conditioning control method
JPH04240355A (en) Controlling method for electronic expansion valve of air conditioner
JP2982322B2 (en) Automatic temperature control device for absorption refrigerator
JP3100490B2 (en) Annual cooling control device for air conditioner
JPS6018899B2 (en) Air conditioner capacity control method
JPS6162770A (en) Method of controlling refrigerating air conditioner
JPH02219941A (en) Method for controlling air conditioner
JPS58205057A (en) Air conditioner
JP2667137B2 (en) Temperature control method of refrigerator using microprocessor
JP2646917B2 (en) Refrigeration equipment
JPS6239346B2 (en)
JP3178453B2 (en) Refrigeration equipment
JPH0386620A (en) Air conditioner for vehicle
JP2922925B2 (en) Refrigeration equipment
CN109855257B (en) Control method and device for improving comfort of air conditioner, air conditioner and storage medium
JPH0275858A (en) Refrigerating air conditioner
JP3465217B2 (en) Air conditioner
JPS6189455A (en) Flow controller for refrigerant in refrigeration cycle
JPH06201198A (en) Refrigerating cycle control device
JPH0712780B2 (en) Air conditioner for vehicle
JPS62196573A (en) Refrigerant flow controller