JPS5928016A - Control method of cooling of water-cooled internal combustion engine for vehicle and device therefor - Google Patents

Control method of cooling of water-cooled internal combustion engine for vehicle and device therefor

Info

Publication number
JPS5928016A
JPS5928016A JP13814082A JP13814082A JPS5928016A JP S5928016 A JPS5928016 A JP S5928016A JP 13814082 A JP13814082 A JP 13814082A JP 13814082 A JP13814082 A JP 13814082A JP S5928016 A JPS5928016 A JP S5928016A
Authority
JP
Japan
Prior art keywords
temperature
cooling water
water
cooling
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13814082A
Other languages
Japanese (ja)
Other versions
JPS6347885B2 (en
Inventor
Hiroto Masai
政井 弘人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP13814082A priority Critical patent/JPS5928016A/en
Publication of JPS5928016A publication Critical patent/JPS5928016A/en
Publication of JPS6347885B2 publication Critical patent/JPS6347885B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To perform cooling of cooling water appropriately always, by a method wherein a bypass circuit which is made to diverge from a circulating circuit at the lower stream of a water jacket is opened and closed according to a cooling water temperature and a flow of the cooling water of the circulating circuit is controlled according to the cooling water temperature. CONSTITUTION:A circulating circuit P1 of cooling water is constituted by arranging a water pump WP, a water jacket J and a radiator R and connecting them with each other, and a first and a second bypass circuits P2 and P3 detouring around the radiator and a cylinder block part J1 are provided by diverging the circuits P2 and P3 from the circulating circuit P1. Then, a directional control valve V2 is switched over to a conduction side of the bypass circuit P2 when a cooling water temperature T1 is less than a first established temperature T1 is less than a first established temperature t1 (for example 84 deg.C) and the directional control valve V2 is changed over to a conduction side of the circulating circuit P1 when an inequality T1>t1 is given. Then, when an inequality of T1<t2(>t1) is given, an opening of a flow adjusting valve V1 in the circuit P1 is squeezed, and when an inequality of T1>t3(>t2) is given, a titled device is controlled so as to increase the opening of the valve V1.

Description

【発明の詳細な説明】 本発明は車両用水冷式内燃機関の冷却制御方法及びその
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling control method and apparatus for a water-cooled internal combustion engine for a vehicle.

一般に、車両用水冷式内燃機関の冷却装置は、ウォータ
ポンプから吐出する冷却水を内燃機関のシリンダブロッ
ク及びシリンダヘッドに設けたウォータジャケットを通
して流通させてラジェータにて冷却し前記ウォータポン
プに還流させる冷却水の循環回路と、前記ウォータジャ
ゲットの下流にて前記循環回路から分岐して前記ウォー
タジャケットを通過した冷却水を前記ウォータポンプに
還流させる冷却水のバイパス回路を基本的に備える。し
かして、当該冷却装置によって内燃機関を最適に冷却す
るためには多様に変化する運転状態に応じて当該冷却装
置の冷却能力を制御する必要がある。
Generally, a cooling system for a water-cooled internal combustion engine for a vehicle circulates cooling water discharged from a water pump through a water jacket provided in the cylinder block and cylinder head of the internal combustion engine, cools it in a radiator, and then flows it back to the water pump. It basically includes a water circulation circuit and a cooling water bypass circuit that branches off from the circulation circuit downstream of the water jacket and returns the cooling water that has passed through the water jacket to the water pump. Therefore, in order to optimally cool the internal combustion engine using the cooling device, it is necessary to control the cooling capacity of the cooling device in accordance with variously changing operating conditions.

ところで、従来は、前記循環回路又は前記バイパス回路
に流れる冷却水を、前記循環回路と前記バイパス回路の
分岐部に設けられて冷却水の温度に応答して作動するサ
ーモバルブにより制御している。かかる制御においては
、サーモバルブのもつヒステリシスにより前記ウォータ
ジャケット内を流れる冷却水の温度を精度よく制御する
ことができないため、(すなわち、サーモバルブによっ
て制御される冷却水の最高温度と最低温度の差を小さく
することができるないため)通富は、サーモバルブによ
って制御される冷却水の最高温度が内燃機関の冷却最適
温度に近似するように、サーモバルブの作動タイミング
が設定されている。(これは、内燃機関が異密に加熱し
て運転不能となることを防止するためである。)したが
って、冷却水の温度がその最低温度に近似している場合
には、内燃機関が必要以」二に冷却されて所謂、冷却1
N失が増大し、燃費の低下をまねく。
By the way, conventionally, the cooling water flowing into the circulation circuit or the bypass circuit is controlled by a thermovalve that is provided at a branch part of the circulation circuit and the bypass circuit and operates in response to the temperature of the cooling water. In such control, the temperature of the cooling water flowing in the water jacket cannot be accurately controlled due to the hysteresis of the thermovalve (i.e., the difference between the maximum and minimum temperature of the cooling water controlled by the thermovalve). (because it is not possible to reduce the temperature), the operating timing of the thermovalve is set so that the maximum temperature of the cooling water controlled by the thermovalve approximates the optimum cooling temperature of the internal combustion engine. (This is to prevent the internal combustion engine from heating up abnormally and becoming inoperable.) Therefore, if the temperature of the cooling water is close to its minimum temperature, the internal combustion engine will not be able to operate as needed. ”2, the so-called cooling 1
N loss increases, leading to a decrease in fuel efficiency.

本発明はかかる実状に鑑みなされたもので、その目的は
前記ウォータジャケット内を流れる冷却水の温度を簡単
な手段にて迅速にかつ精度よく制御して冷却最適温度と
なし燃費の向上を図ることにある。
The present invention has been made in view of the above circumstances, and its purpose is to quickly and accurately control the temperature of the cooling water flowing inside the water jacket using simple means to reach the optimum cooling temperature, thereby improving fuel efficiency. It is in.

しかして、本発明の要旨は、車両用水冷式内燃機関の冷
却装置において、前記ウォータジャケット内の冷却水の
温度が第1設定温度未満であるとき前記循環回路を遮断
しかつ前記バイパス回路を連通させ、また同冷却水の温
度が前記第1設定温度以上であるとき前記バイパス回路
を遮断しがっ前記循環回路を連通させて同循環回路を流
れる冷却水の流量を車両の速度変化状態及び前記内燃機
関の吸気負圧の変化状態に応じて予め定めた値に設定し
、前記ウォータジャケット内の冷却水の温度が前記第1
設定温度より高い第2設定温度未満であるとき前記fA
!i環回路を流れる冷却水の流量を減少させ、前記つA
−タジャケソト内の冷却水の温度が前記第2設定温度よ
り高い第3設定温度以上であるとき前記循環回路を流れ
る冷却水の流量を増大さ・口るようにした車両用水冷式
内燃機関の冷却制御方法及びその装置にある。かがる方
法及び装置においては、特に車速及び吸気負圧がら想定
される運転状態に応じて前記循環回路を流れる冷却水の
流量を予め定めた値とすることができるので、前記ウォ
ータジャケット内を流れる冷却水の温度を迅速に冷却最
適温度とすることができ、また前記ウォータシャケ・ノ
ド内を流れる冷却水の温度変化に応じて前記循環回路を
流れる冷却水の流量を制御することができるので、前記
ウォータジャケット内を流れる冷却水の温度を冷却最適
温度に精度よく制御することができる。したがって、冷
却損失を低減することができ、燃費を向上させることが
できる。
The gist of the present invention is, in a cooling device for a water-cooled internal combustion engine for a vehicle, to cut off the circulation circuit and open the bypass circuit when the temperature of the cooling water in the water jacket is lower than a first set temperature. Further, when the temperature of the cooling water is equal to or higher than the first set temperature, the bypass circuit is shut off and the circulation circuit is opened, so that the flow rate of the cooling water flowing through the circulation circuit is controlled according to the speed change state of the vehicle and the above-mentioned. The temperature of the cooling water in the water jacket is set to a predetermined value depending on the state of change in the intake negative pressure of the internal combustion engine, and the temperature of the cooling water in the water jacket is set to the first value.
When the fA is lower than the second set temperature higher than the set temperature
! The flow rate of cooling water flowing through the i-ring circuit is reduced, and
- Cooling of a water-cooled internal combustion engine for a vehicle in which the flow rate of the cooling water flowing through the circulation circuit is increased when the temperature of the cooling water in the tank is equal to or higher than a third set temperature which is higher than the second set temperature. Control method and device. In this method and device, the flow rate of the cooling water flowing through the circulation circuit can be set to a predetermined value depending on the expected operating conditions, especially the vehicle speed and intake negative pressure, so that the inside of the water jacket can be adjusted to a predetermined value. The temperature of the flowing cooling water can be quickly brought to the optimum cooling temperature, and the flow rate of the cooling water flowing through the circulation circuit can be controlled in accordance with the temperature change of the cooling water flowing inside the water shaker throat. , the temperature of the cooling water flowing inside the water jacket can be precisely controlled to the optimum cooling temperature. Therefore, cooling loss can be reduced and fuel efficiency can be improved.

以下に本発明の一実施例を図面に基づいて説明する。第
1図において、内燃機関EのシリンダブロックE1及び
シリンダヘッドE2に設けたウォータジャケットJの流
入口JaとウォータポンプWPの吐出口WPbが接続さ
れ、ウォータジャケットJの流出口JbとラジェータR
の流入口Raが接続され、ラジェータRの流出口Rbと
ウォータポンプWPの吸込口Paが接続されていて、冷
却水の循環回路P1が形成されている。また、ウォータ
ジャケットJの下流にて循環回路PLから分岐してラジ
ェータRをバイパスするバイパス回路P2が形成されて
いる。更に、ウォータポンプWPの下流にて循環回路P
1から分岐してウォータジャケソl Jのシリンダブロ
ック部分J1をバイパスする第2のバイパス回路P3が
形成されている。
An embodiment of the present invention will be described below based on the drawings. In FIG. 1, an inlet Ja of a water jacket J provided in a cylinder block E1 and a cylinder head E2 of an internal combustion engine E is connected to an outlet WPb of a water pump WP, and an outlet Jb of the water jacket J is connected to a radiator R.
The inlet port Ra of the radiator R is connected to the inlet port Rb of the radiator R, and the inlet port Pa of the water pump WP is connected to form a cooling water circulation circuit P1. Furthermore, a bypass circuit P2 is formed downstream of the water jacket J, branching from the circulation circuit PL and bypassing the radiator R. Furthermore, a circulation circuit P is provided downstream of the water pump WP.
A second bypass circuit P3 is formed which branches off from the cylinder block portion J1 of the water jacket IJ.

しかして、循環回路Pl中には該循環回路PIを流れる
冷却水の流量を制御する可変絞り弁Vlが介装され、循
環回路Piとバイパス回路P2の接続部には循環回路P
1とバイパス回路P2のいずれか一方を選択的に閉じ他
方を連通させる切換弁■2が介装され、第2のバイパス
回路1) 3中には該バイパス回路P3を流れる冷却水
の流量を制御する第2の可変絞り弁■3が介装されてい
る。
A variable throttle valve Vl for controlling the flow rate of cooling water flowing through the circulation circuit PI is interposed in the circulation circuit PI, and a circulation circuit P
A switching valve 2 is interposed to selectively close either one of the second bypass circuit 1 and the bypass circuit P2 and communicate the other, and the second bypass circuit 1) controls the flow rate of cooling water flowing through the bypass circuit P3. A second variable throttle valve (3) is installed.

可変絞り弁■1はその開度が負圧調整弁■4によって得
られる負圧に応じて制御されるように構成されており、
負圧調整弁■4は電気的制御回路10からの信号に応答
して作動し吸気マニホルド20にて得られチェックバル
ブ21を介してタンク22内に貯えられた負圧を調整し
て可変絞り弁■1に付与するように構成されている。切
換弁V2は電磁切換弁■5を介して付与されるタンク2
2内負圧により作動するように構成されており、電磁切
換弁■5は電気的制御回路10からの信号に応答して作
動し切換弁■2に負圧を接続するとともに非作動時切換
弁■2に大気を接続するように構成されている。第2の
可変絞り弁■3はその開度が負圧調整弁■6によって得
られる負圧に応じて制御されるように構成されており、
負圧調整弁V6は電気的制御回路10からの信号に応答
して作動しタンク22内に貯えられた負圧を調整して可
変絞り弁■3に付与するように構成されている。
The variable throttle valve ■1 is configured such that its opening degree is controlled according to the negative pressure obtained by the negative pressure regulating valve ■4,
The negative pressure regulating valve 4 operates in response to a signal from the electric control circuit 10, and adjusts the negative pressure obtained from the intake manifold 20 and stored in the tank 22 via the check valve 21, thereby forming a variable throttle valve. ■It is configured to be given to 1. The switching valve V2 is connected to the tank 2 provided via the electromagnetic switching valve ■5.
The electromagnetic switching valve ■5 operates in response to a signal from the electrical control circuit 10, connects the negative pressure to the switching valve ■2, and also switches the switching valve when not in operation. ■It is configured so that the atmosphere is connected to 2. The second variable throttle valve ■3 is configured such that its opening degree is controlled according to the negative pressure obtained by the negative pressure regulating valve ■6,
The negative pressure regulating valve V6 operates in response to a signal from the electric control circuit 10, and is configured to regulate the negative pressure stored in the tank 22 and apply it to the variable throttle valve (3).

また、ラジェータRには冷却ファンFとシャッタSTが
付設されている。冷却ファンFは電動モータFMによっ
て駆動されるもので、電動モータFMは電気的制御回路
10と変速回路30によって回転数が制御されるように
構成されている。シャッタSTはアクチュエータAによ
って開閉されるように構成されており、アクチュエータ
Aは電磁切換弁■7を介して付与されるタンク22内負
圧により作動するように構成されている。電磁切換弁■
7は電気的制御回路10からの信号に応答して作動しア
クチュエータAに負圧を接続するとともに非作動時アク
チュエータAに大気を接続するように構成されていて、
この電磁切換弁v7の作動時にはアクチュエータAが作
動してシャ・ツタSTが開き、また非作動時にはアクチ
ュエータAが非作動状態にあってシャッタS′Fは閉じ
てむする。
Further, the radiator R is provided with a cooling fan F and a shutter ST. The cooling fan F is driven by an electric motor FM, and the electric motor FM is configured so that its rotational speed is controlled by an electrical control circuit 10 and a speed change circuit 30. The shutter ST is configured to be opened and closed by an actuator A, and the actuator A is configured to be operated by negative pressure inside the tank 22 applied via an electromagnetic switching valve (7). Solenoid switching valve■
7 is configured to operate in response to a signal from the electrical control circuit 10 to connect negative pressure to the actuator A, and to connect the actuator A to the atmosphere when not in operation,
When the electromagnetic switching valve v7 is activated, the actuator A is activated to open the shutter ST, and when it is not activated, the actuator A is inactive and the shutter S'F is closed.

電気的制御回路10は、その入力信号として、ウォータ
ジャケットJの出口近傍に設けた水温センサS1により
検出される冷却水の温度を表す信%D1、シリンダヘッ
ドE2内の第2ノ1イノマス回路P3に設けた水温セン
サS2により検出される冷却水の温度を表す信号1) 
2、ドライブシャフト40に設けた車速センサS3によ
り検出される車速を表す信号1) 3、内燃機関Eの吸
気マニホルド20に設けた負圧センサS4により検出さ
れる吸気負圧を表す信号1) 4、及び気温センサS5
により検出される気温を表す信号D5等を付与され、こ
れらの入力信号Di−D5に応して上記した負圧1)1
1整弁V4.V6、電磁切換弁V5.V7及び電動モー
タF’Mの作動を制御する種々の出力信号を発生するた
めに第2図のフローチャートに示したプログラムを予め
記憶して実行するマイクロコンピュータにより構成され
ている。
The electrical control circuit 10 receives, as its input signals, a signal %D1 representing the temperature of the cooling water detected by a water temperature sensor S1 provided near the outlet of the water jacket J, and a second No. 1 innomous circuit P3 in the cylinder head E2. Signal 1) representing the temperature of the cooling water detected by the water temperature sensor S2 installed in
2. Signal 1) representing the vehicle speed detected by the vehicle speed sensor S3 provided on the drive shaft 40. 3. Signal 1) representing the intake negative pressure detected by the negative pressure sensor S4 provided on the intake manifold 20 of the internal combustion engine E. 4. , and temperature sensor S5
The above-mentioned negative pressure 1) 1 is applied in accordance with these input signals Di-D5.
1 Valve adjustment V4. V6, solenoid switching valve V5. It is composed of a microcomputer that stores and executes a program shown in the flowchart of FIG. 2 in advance to generate various output signals for controlling the operation of V7 and electric motor F'M.

第2図に示したフローチャートの第1ステツプ51にお
いてはイグニッションキーのONによりマイクロコンピ
ュータが作動状態とされ、プログラムの実行を開始する
。しかして、第2ステツプ52においてはマイクロコン
ピュータの初期化が、なされ、第3ステツプ53におい
てはウォータジャケットJの出口近傍における冷却水の
温度T1が第1設定温度tl(例えば、84°C)以上
であるか判別する。ここで、冷却水の温度TIが第1設
定温度t1未満である場合には、ステップ53aにて負
圧調整弁V4.V6及び電磁切換弁V5に第1出力信号
を発生して付与し、この第1出力信号に応答して両絞り
弁■1・V3がその開度を最小とされかつ切換弁v2が
作動状態とされた後第3ステツプ53に進む。冷却水の
温度T1が第1設定温度t1以上である場合には、第4
ステツプ54に進む。第4ステツプ54においては入力
信号D1〜D4に基づいて現在車両が下記°第1表に示
した如何なる走行モードにあるか判別し、第5ステツプ
55において走行モード及び気温に応じて予め定めた設
定値を決定する。この設定値に基づいて、上記した両絞
り弁Vl、V3、切換弁v2、冷却ファンF及びシャッ
タSTの初期状態が下記第2表となるように負圧調整弁
V4.V6、電磁切換弁V5.V7、電動モータFMを
制御する第2出力信号を発生する。
In the first step 51 of the flowchart shown in FIG. 2, the microcomputer is activated by turning on the ignition key and starts executing the program. Thus, in the second step 52, the microcomputer is initialized, and in the third step 53, the temperature T1 of the cooling water near the outlet of the water jacket J is equal to or higher than the first set temperature tl (for example, 84°C). Determine if it is. Here, if the temperature TI of the cooling water is less than the first set temperature t1, in step 53a, the negative pressure regulating valve V4. A first output signal is generated and applied to V6 and the electromagnetic switching valve V5, and in response to this first output signal, both throttle valves 1 and V3 are minimized in their opening degrees, and the switching valve V2 is activated. After that, the process proceeds to the third step 53. When the cooling water temperature T1 is equal to or higher than the first set temperature t1, the fourth
Proceed to step 54. In the fourth step 54, it is determined based on the input signals D1 to D4 which driving mode the vehicle is currently in as shown in Table 1 below, and in the fifth step 55, the settings are set in advance according to the driving mode and the temperature. Determine the value. Based on these set values, the negative pressure regulating valve V4. V6, solenoid switching valve V5. V7, which generates a second output signal that controls electric motor FM.

以下余白 第   1   表 第   2   表 上記第2表において、■1は可変絞り弁Vlの開度(%
)を示し、■3は第2の可変絞り弁■3の開度(%)を
示し、Fは冷却ファンFの回転数(rpm)を示し、S
TはシャッタSTの開閉状態を示す。また、登板Iは車
速35Km/h以上の走行モードを示し、登板■は車速
35に+n/h未満の走行モードを示し、降板lは車速
35Km/h以上の走行モードを示し、降板■は車速3
5Km/h未満の走行モードを示し、高速ホントソーク
Iは、経過時間20秒未満の走行モードを示し、高速ホ
ットソーク■は、経過時間20秒以上の走行モードを示
し、登板ホットソーク■は経過時間20秒未満の走行モ
ードを示し、登板ホントソーク■は経過時間20秒以上
の走行モードを示し、その他Iは車速35Km/h以上
の走行モードを示し、その他■は車速35Km/h未満
の走行モードを示す。
Margin below: Table 1 Table 2 In Table 2 above, ■1 is the opening degree (%) of the variable throttle valve Vl.
), ■3 indicates the opening degree (%) of the second variable throttle valve ■3, F indicates the rotation speed (rpm) of the cooling fan F, and S
T indicates the open/closed state of the shutter ST. In addition, up I indicates a driving mode in which the vehicle speed is 35 km/h or more, up ■ indicates a driving mode in which the vehicle speed is less than 35+n/h, down l indicates a driving mode in which the vehicle speed is 35 km/h or more, and down ■ indicates a driving mode in which the vehicle speed is less than 35 + n/h. 3
High-speed hot soak I indicates a running mode in which the elapsed time is less than 20 seconds, High-speed hot soak ■ indicates a driving mode in which the elapsed time is 20 seconds or more, and Pitching hot soak ■ indicates a driving mode in which the elapsed time is less than 20 seconds. Indicates a driving mode in which the elapsed time is less than 20 seconds, "Top Real Soak" indicates a driving mode in which the elapsed time is 20 seconds or more, "Other I" indicates a driving mode in which the vehicle speed is 35 km/h or more, and "Other ■" indicates a driving mode in which the vehicle speed is less than 35 km/h. Indicates mode.

以下余白 また第2図に示したフローチャートの第6ステツプ56
においては冷却水の温度T1が第1設定温度t1より高
い第2設定温度t2(例えば、95°C)以上であるか
判別する。ここで、冷却水の温度Tlが第2設定温度t
2未満である場合には、ステップ56aにて可変絞り弁
VlO開度を所定量減少させるべく負圧#N!!弁V4
に第3出力信号を発生して付与するとともに、冷却ファ
ンFの回転数を所定量減少させるべく電動モータF M
に第3出力信号を発生して付与し、その後第5ステツプ
55に進む。冷却水の温度TIが第2設定温度t2以上
である場合には、第7ステソプ57に進む。第7ステツ
プ57においては冷却水の温度Tlが第2設定温度t2
より高い第3設定温度t3(例えば97°C)未満であ
るか判別する。
The margin below also shows the sixth step 56 of the flowchart shown in FIG.
In this step, it is determined whether the temperature T1 of the cooling water is equal to or higher than the second set temperature t2 (for example, 95° C.) which is higher than the first set temperature t1. Here, the cooling water temperature Tl is the second set temperature t
If the negative pressure #N! is less than 2, in step 56a, the opening degree of the variable throttle valve VlO is decreased by a predetermined amount. ! valve V4
The electric motor F M generates and applies a third output signal to the electric motor F M in order to reduce the rotation speed of the cooling fan F by a predetermined amount.
A third output signal is generated and applied to the output signal, and the process then proceeds to a fifth step 55. If the coolant temperature TI is equal to or higher than the second set temperature t2, the process proceeds to the seventh step 57. In the seventh step 57, the temperature Tl of the cooling water is changed to the second set temperature t2.
It is determined whether the temperature is lower than a higher third set temperature t3 (for example, 97°C).

ここで、冷却水の温度T1が第3設定温度t3以上であ
る場合には、ステップ57aにて可変絞り弁■1の開度
を所定量増大させるべく負圧調整弁v4に第4出力信号
を発生して付与するとともに、冷却ファンFの回転数を
所定量増大させるべく電動モータFMに第4出力信号を
発生して付与し、その後第5ステツプ55に進む。冷却
水の温度T1が第3設定温度t3未満である場合には、
第8ステンプ58に進む。
Here, if the cooling water temperature T1 is equal to or higher than the third set temperature t3, a fourth output signal is sent to the negative pressure regulating valve v4 in order to increase the opening degree of the variable throttle valve 1 by a predetermined amount in step 57a. At the same time, a fourth output signal is generated and applied to the electric motor FM in order to increase the rotational speed of the cooling fan F by a predetermined amount, and then the process proceeds to the fifth step 55. When the cooling water temperature T1 is less than the third set temperature t3,
Proceed to the eighth step 58.

第8ステツプ58においてはシリンダヘッド上2内の第
2バイパス回路P2における冷却水の温度T2が第3設
定温度t3未満であるか判別する。ここで、冷却水の温
度T2が第3設定温度t3以上である場合には、ステッ
プ58aにて第2の可変絞り弁■3の開度を所定量増大
させるべく負圧調整弁v6に第5出力信号を発生して付
与し、その後第6ステツプ56に進む。冷却水の温度T
2が第3設定温度t3未満である場合には第9ステツプ
59に進む。第9ステツプ59においては冷却水の温度
T2が第2設定温度t2以上であるか判別する。ここで
、冷却水の温度T2が第2設定温度t2h未満である場
合には、ステップ59aにて第2の可変絞り弁■3の開
度を所定量減少させるべく負圧調整弁v6に第6出力信
号を発生して付与し、その後第6ステソプ56に進む。
In the eighth step 58, it is determined whether the temperature T2 of the cooling water in the second bypass circuit P2 in the upper cylinder head 2 is lower than the third set temperature t3. Here, if the cooling water temperature T2 is equal to or higher than the third set temperature t3, in step 58a, the negative pressure regulating valve v6 is set to the fifth An output signal is generated and applied, after which the process proceeds to a sixth step 56. Cooling water temperature T
2 is less than the third set temperature t3, the process proceeds to the ninth step 59. In the ninth step 59, it is determined whether the temperature T2 of the cooling water is equal to or higher than the second set temperature t2. Here, if the cooling water temperature T2 is lower than the second set temperature t2h, in step 59a, the sixth variable throttle valve v6 is set to decrease the opening degree of the second variable throttle valve 3 by a predetermined amount. Generate and apply an output signal, then proceed to a sixth step 56.

冷却水の温度T2が第2設定温度t2以上である場合に
は第4ステツプ54に進む。第8ステツプ58及び第9
ステツプ59にて1NO」と判別したのちステップ58
a及び59aを経て第6ステソプ56に進むのは、第2
の可変絞り弁■3の開度が変ることにより循環回路1)
 lを流れる流量が変化し冷却水の温度TIが変るため
、これを迅速に補正するためである。また第9ステツプ
59にてrYEsJと判別したのち第4ステツプ54に
進むのは、走行モードの変化に追従させて冷却水の温度
TI及びT2を最適に制御するためである。
If the cooling water temperature T2 is equal to or higher than the second set temperature t2, the process proceeds to the fourth step 54. 8th step 58 and 9th step
After determining "1NO" in step 59, step 58
Proceeding to the sixth step 56 via steps a and 59a is the second step.
Circulation circuit 1) by changing the opening degree of variable throttle valve ■3
This is to quickly correct the temperature TI of the cooling water, which changes as the flow rate changes. The reason why the process proceeds to the fourth step 54 after determining rYEsJ in the ninth step 59 is to optimally control the cooling water temperatures TI and T2 in accordance with changes in the driving mode.

以上の説明から理解されるように、本実施例においては
、例えば長時間停止していた車両の内燃機関を始動させ
ると、その暖気運転時、すなわち冷却水の温度1゛1が
第1設定温度t1未満であるとき、切換弁■2が循環回
路P1を閉じバイパス回路P2を開くように作動し、第
2の可変絞り弁v3が第2のバイパス回路P3を閉じる
ように作動する。このため、ウォータポンプWPから吐
出される冷却水はシリンダブロックEl、  シリンダ
ヘッドE2を通り、かつバイパス通路P2を通ってウォ
ータポンプWPにもどり、ラジェータRには流れない。
As can be understood from the above description, in this embodiment, for example, when the internal combustion engine of a vehicle that has been stopped for a long time is started, during warm-up operation, that is, the cooling water temperature 1゛1 becomes the first set temperature. When it is less than t1, the switching valve ■2 operates to close the circulation circuit P1 and open the bypass circuit P2, and the second variable throttle valve v3 operates to close the second bypass circuit P3. Therefore, the cooling water discharged from the water pump WP passes through the cylinder block El and the cylinder head E2, and returns to the water pump WP through the bypass passage P2, but does not flow into the radiator R.

したがって、暖気運転が短時間になされる。なお、この
ときには、第2の可変絞り弁■3が第2のバイパス回路
P3を閉じていて、第2のバイパス回路P3には冷却水
が流れない。
Therefore, warm-up operation is performed for a short time. Note that at this time, the second variable throttle valve 3 closes the second bypass circuit P3, and no cooling water flows into the second bypass circuit P3.

かくして、冷却水の温度TIが第1設定温度t1以上と
なって暖気運転が終わり、車両が走行を始めると、その
走行に応じた走行モードが繰り返し判別され、切換弁■
2が循環回路P1を開きバイパス回路P2を閉じるよう
に作動するとともに、両絞り弁Vl、’V3の開度、及
び冷却ファンFの回転数、並びにシャッタSTの開閉状
態が上記走行モードにより予め定めた第2表の設定値に
初期設定される。この状態にては、冷却水が循環回路P
1を通って循環しく第2のバイパス回路P2を通ること
もある。)、可変絞り弁■1の開度。
In this way, when the cooling water temperature TI becomes equal to or higher than the first set temperature t1 and the warm-up operation ends and the vehicle starts traveling, the driving mode corresponding to the driving is repeatedly determined and the switching valve ■
2 operates to open the circulation circuit P1 and close the bypass circuit P2, and the opening degrees of both throttle valves Vl and 'V3, the rotation speed of the cooling fan F, and the opening/closing state of the shutter ST are predetermined according to the above-mentioned driving mode. The settings are initialized to the values shown in Table 2. In this state, the cooling water flows through the circulation circuit P.
1 and may pass through a second bypass circuit P2 in a circular manner. ), opening degree of variable throttle valve ■1.

冷却ファンFの回転数及びシャッタSTの開閉により(
第2のバイパス回路P2を冷却水が通るときには第2の
可変絞り弁■3の開度によっても)冷却能力が直ちに予
め定めた設定値とされ、この設定された冷却能力にてシ
リンダブロックE1及びシリンダヘソI” E 2が迅
速かつ適確に冷却される。
Depending on the rotation speed of the cooling fan F and the opening/closing of the shutter ST (
When the cooling water passes through the second bypass circuit P2, the cooling capacity (depending on the opening degree of the second variable throttle valve 3) is immediately set to a predetermined setting value, and this set cooling capacity is used to control the cylinder block E1 and The cylinder bottom I"E2 is cooled quickly and precisely.

この冷却条件にて冷却水の温度TI(又は1゛2)が第
2設定温度t2以上とならない場合には、順次可変絞り
弁Vl(又はV3)の開度が所定量減少されるとともに
冷却ファンFの回転数が所定量減少されて冷却能力が順
次所定量減少され、また冷却水の温度TI(又は1゛2
)が第3設定温度t3以上となった場合には、順次可変
絞り弁■1(又はV3)の開度が所定量増大されるとと
もに冷却ファンFの回転数が所定量増大されて冷却能力
が順次所定量増大され、冷却水の温度]゛1及びT2が
第2設定温度t2と第3設定温度L2間に精度よく制御
される。
If the cooling water temperature TI (or 1゛2) does not exceed the second set temperature t2 under this cooling condition, the opening degree of the variable throttle valve Vl (or V3) is sequentially reduced by a predetermined amount, and the cooling fan The rotation speed of F is reduced by a predetermined amount, the cooling capacity is sequentially reduced by a predetermined amount, and the cooling water temperature TI (or 1゛2
) becomes equal to or higher than the third set temperature t3, the opening degree of the variable throttle valve ■1 (or V3) is sequentially increased by a predetermined amount, and the rotation speed of the cooling fan F is increased by a predetermined amount to increase the cooling capacity. The temperature of the cooling water is increased by a predetermined amount one after another, and the temperature of the cooling water [1] and T2 are precisely controlled to be between the second set temperature t2 and the third set temperature L2.

なお、上記実施例においては、ウォータジャケットJと
ラジェータ8間の循環回路P1に可変絞り弁v1を設け
たが、この可変絞り弁■1を第3図<a>にて示したよ
うにウォータポンプWPとウォータジャケット5間の循
環回路P1に設けて実施することも可能である。この場
合には、可変絞り弁■1の開度をCa (1−Cb)と
し第2の可変絞り弁■3の開度をCa−Cbとすること
により(但し、CaH上記実施例の可変絞り弁V1の開
度、Cbi上記実施例の第2の可変絞り弁■3の開度)
上記実施例と同じ制御をすることができる。また、第3
図(b)及び(C)にて示したように、第2の可変絞り
弁■3に代えて開閉弁V3′にて実施することも可能で
ある。第3図(b)の実施に際しては、上記実施例の第
2の可変絞り弁■3の開度が0%のとき閉としかつその
他のとき開とすることにより、上記実施例に近似した制
御をすることができる。また第3図(c)の実施に際し
ては、可変絞り弁V1の開度をCa  (1−Cb)と
し、また上記実施例の第2の可変絞り弁V3の開度が0
%のとき開閉弁V3’を閉としかつその他のとき開閉弁
V3’を開とすることにより、上記実施例に近似した制
御をすることもできる。
In the above embodiment, the variable throttle valve v1 is provided in the circulation circuit P1 between the water jacket J and the radiator 8, but this variable throttle valve v1 is connected to the water pump as shown in FIG. It is also possible to implement it by providing it in the circulation circuit P1 between the WP and the water jacket 5. In this case, by setting the opening degree of the variable throttle valve ■1 to Ca (1-Cb) and the opening degree of the second variable throttle valve ■3 to Ca-Cb (however, by setting the opening degree of the variable throttle valve ■1 to Ca (1-Cb) (however, the variable throttle valve of the above embodiment Opening degree of valve V1, Cbi opening degree of second variable throttle valve ■3 in the above embodiment)
The same control as in the above embodiment can be performed. Also, the third
As shown in FIGS. (b) and (C), it is also possible to use an on-off valve V3' instead of the second variable throttle valve (3). When implementing FIG. 3(b), control similar to the above embodiment is achieved by closing the second variable throttle valve 3 of the above embodiment when the opening degree is 0% and opening at other times. can do. Further, when implementing FIG. 3(c), the opening degree of the variable throttle valve V1 is set to Ca (1-Cb), and the opening degree of the second variable throttle valve V3 in the above embodiment is 0.
%, and by opening the on-off valve V3' at other times, it is also possible to perform control similar to the above embodiment.

また上記実施例においては、冷却ファンFの回転数及び
シャッタSTの開閉動作をも制御してラジェータRを通
過する空気量を変化させるようにしたが、従来の手段に
よってラジェータRを通過する空気量を変化させて本発
明を実施することができる。
Further, in the above embodiment, the rotation speed of the cooling fan F and the opening/closing operation of the shutter ST are also controlled to change the amount of air passing through the radiator R, but the amount of air passing through the radiator R is changed by conventional means. The present invention can be practiced by changing the.

更に上記実施例においては、第2のバイパス回路P3及
び第2の可変絞り弁■3を設けて、シリンダヘッドE2
を2系統にて冷却し得るようにしたが、第2のバイパス
回路P3及び第2の可変絞り弁V3を設けずして本発明
を実施することもできる(なお、上記実施例のごとくシ
リンダヘッドE2を2系統にて冷却し得るようにした場
合には、シリンダヘッドE2を迅速に冷却することがで
きるため、ノッキング等を未然に防止することができる
)。
Furthermore, in the above embodiment, a second bypass circuit P3 and a second variable throttle valve (3) are provided to control the cylinder head E2.
Although the cylinder head can be cooled by two systems, it is also possible to carry out the present invention without providing the second bypass circuit P3 and the second variable throttle valve V3. If the cylinder head E2 can be cooled by two systems, the cylinder head E2 can be cooled quickly, so knocking, etc. can be prevented.)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略構成図、第2図は
フローチャート、第3図は本発明の他の実施例を示す部
分概略構成図である。 符号の説明 10・・・電気的制御回路、wp・・・ウォータポンプ
、E・・・内燃機関、El・・・シリンダブロック、E
2・・・シリンダヘッド、J・・・ウォータジャケット
、R・・・ラジェータ、Pl・・・循環回路、P2・・
・バイパス・回路、Sl・・・水温センサ、S3・・・
車速センサ、S4・・・負圧センサ、tl・・・第1設
定温度、t2・・・第2設定温度、t3・・・第3設定
温度、■1・・・可変絞り弁、■2・・・切換弁、。 出願人  アイシン精機株式会社 代理人  弁理士 長 谷 照 −
FIG. 1 is a schematic block diagram showing one embodiment of the present invention, FIG. 2 is a flowchart, and FIG. 3 is a partial schematic block diagram showing another embodiment of the present invention. Explanation of symbols 10...Electrical control circuit, wp...Water pump, E...Internal combustion engine, El...Cylinder block, E
2...Cylinder head, J...Water jacket, R...Radiator, Pl...Circulation circuit, P2...
・Bypass circuit, SL...Water temperature sensor, S3...
Vehicle speed sensor, S4... negative pressure sensor, tl... first set temperature, t2... second set temperature, t3... third set temperature, ■1... variable throttle valve, ■2. ...Switching valve. Applicant Aisin Seiki Co., Ltd. Representative Patent Attorney Teru Hase −

Claims (2)

【特許請求の範囲】[Claims] (1)ウォータポンプから吐出する冷却水を内燃機関の
シリンダブロック及びシリンダヘッドに設けたウォータ
ジャケットを通して流通させてラジェータにて冷却し前
記ウォータポンプに還流させる冷却水の循環回路と、前
記ウォータジャケットの下流にて前記循環回路から分岐
して前記ウォータジャケットを通過した冷却水を前記ウ
ォータポンプに還流させる冷却水のバイパス回路を備え
てなる車両用水冷式内燃機関の冷却装置において、前記
ウォータジャケット内の冷却水の温度が第1設定温度未
満であるとき前記循環回路を遮断しがつ前記バイパス回
路を連通させ、また同冷却水の温度が前記第1設定温度
以上であるとき前記バイパス回路を遮断しかつ前記循環
回路を連通させて同循環回路を流れる冷却水の流量を車
両の速度変化状態及び前記内燃機関の吸気負圧の変化状
態に応じて予め定めた値に設定し、前記ウォータジャケ
ット内の冷却水の温度が前記第1設定温度より高い第2
設定温度未満であるとき前記循環回路を流れる冷却水の
流量を減少させ、前記ウォータジャケット内の冷却水の
温度が前記第2設定温度より高い第3設定温度以上であ
るとき前記循環回路を流れる冷却水の流量を増大させる
ようにした車両用水冷式内燃機関の冷却制御方法。
(1) A cooling water circulation circuit in which cooling water discharged from a water pump is circulated through a water jacket provided in a cylinder block and cylinder head of an internal combustion engine, cooled by a radiator, and then returned to the water pump; In a cooling device for a water-cooled internal combustion engine for a vehicle, comprising a cooling water bypass circuit that branches off from the circulation circuit downstream and returns the cooling water that has passed through the water jacket to the water pump, When the temperature of the cooling water is less than the first set temperature, the circulation circuit is cut off and the bypass circuit is opened; and when the temperature of the cooling water is higher than the first set temperature, the bypass circuit is cut off. The circulation circuit is connected to the flow rate of the cooling water flowing through the circulation circuit, and the flow rate of the cooling water flowing through the circulation circuit is set to a predetermined value depending on the speed change state of the vehicle and the change state of the intake negative pressure of the internal combustion engine. A second cooling water whose temperature is higher than the first set temperature.
reducing the flow rate of cooling water flowing through the circulation circuit when the temperature is below a set temperature; and reducing the flow rate of cooling water flowing through the circulation circuit when the temperature of the cooling water in the water jacket is equal to or higher than a third set temperature higher than the second set temperature. A cooling control method for a water-cooled internal combustion engine for a vehicle that increases the flow rate of water.
(2)ウォータポンプから吐出する冷却水を内燃機関の
シリンダブロック及びシリンダヘッドに設けたウォータ
ジャケットを通して流通さ・lてラジェータにて冷却し
前記ウォータポンプに還流させる冷却水の循環回路と、
前記ウォータジャケットの下流にて前記循環回路から分
岐して前記ウォータジャケットを通過した冷却水を前記
ウォータポンプに還流させる冷却水のバイパス回路を備
えてなる車両用水冷式内燃機関の冷却装置において、前
記ウォータジャケット内の冷却水の温度を検出する温度
検出手段、前記内燃機関の吸気負圧を検出する負圧検出
手段、車両の速度を検出する車速検出手段、前記温度検
出手段によって検出された検出温度が第1設定温度未満
であるとき第1出力信号を発生し同検出温度が前記第1
設定温度以上であるとき負圧検出手段及び車速検出手段
によって検出された負圧の変化状態及び車速の変化状態
に応じて予め定めた設定値を表す第2出力信号を発生し
前記検出温度が第1設定温度より高い第2設定温度未満
であるとき第3出力信号を発生し前記検出温度が第2設
定温度より高い第3設定温度以上であるとき第4出力信
号を発生する電気的制御回路、前記第1出力信号に応答
して作動しその作動時前記循環回路を遮断しかつ前記バ
イパス回路を連通させまたその非作動時前記バイパス回
路を遮断しかつ前記循環回路を連通させる切換弁、前記
循環回路中に配設されて前記第2出力信号により規定さ
れる開度に初期開度が設定されまた前記第3出力信号に
応答して開度を減少されかつ前記第4出力信号に応答し
て開度を増大される可変絞り弁を備えてなる車両用水冷
式内燃機関の冷却制御装置。
(2) a cooling water circulation circuit in which the cooling water discharged from the water pump is circulated through a water jacket provided in the cylinder block and cylinder head of the internal combustion engine, and then cooled by a radiator and returned to the water pump;
A cooling device for a water-cooled internal combustion engine for a vehicle, comprising a cooling water bypass circuit that branches from the circulation circuit downstream of the water jacket and returns the cooling water that has passed through the water jacket to the water pump. temperature detection means for detecting the temperature of the cooling water in the water jacket; negative pressure detection means for detecting the intake negative pressure of the internal combustion engine; vehicle speed detection means for detecting the speed of the vehicle; and the detected temperature detected by the temperature detection means. is lower than the first set temperature, a first output signal is generated, and the detected temperature is lower than the first set temperature.
When the detected temperature is higher than or equal to the set temperature, a second output signal representing a predetermined set value is generated according to the change state of the negative pressure and the change state of the vehicle speed detected by the negative pressure detection means and the vehicle speed detection means. an electrical control circuit that generates a third output signal when the detected temperature is less than a second set temperature higher than the second set temperature, and generates a fourth output signal when the detected temperature is equal to or higher than a third set temperature higher than the second set temperature; a switching valve that operates in response to the first output signal, and when activated cuts off the circulation circuit and connects the bypass circuit; and when not actuated, cuts off the bypass circuit and connects the circulation circuit; disposed in the circuit, the initial opening is set to the opening defined by the second output signal, the opening is decreased in response to the third output signal, and the opening is decreased in response to the fourth output signal. A cooling control device for a water-cooled internal combustion engine for a vehicle, comprising a variable throttle valve whose opening degree is increased.
JP13814082A 1982-08-09 1982-08-09 Control method of cooling of water-cooled internal combustion engine for vehicle and device therefor Granted JPS5928016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13814082A JPS5928016A (en) 1982-08-09 1982-08-09 Control method of cooling of water-cooled internal combustion engine for vehicle and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13814082A JPS5928016A (en) 1982-08-09 1982-08-09 Control method of cooling of water-cooled internal combustion engine for vehicle and device therefor

Publications (2)

Publication Number Publication Date
JPS5928016A true JPS5928016A (en) 1984-02-14
JPS6347885B2 JPS6347885B2 (en) 1988-09-26

Family

ID=15214932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13814082A Granted JPS5928016A (en) 1982-08-09 1982-08-09 Control method of cooling of water-cooled internal combustion engine for vehicle and device therefor

Country Status (1)

Country Link
JP (1) JPS5928016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121714A (en) * 1990-02-16 1992-06-16 Nippondenso Co., Ltd. Cooling of an internal-combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121714A (en) * 1990-02-16 1992-06-16 Nippondenso Co., Ltd. Cooling of an internal-combustion engine

Also Published As

Publication number Publication date
JPS6347885B2 (en) 1988-09-26

Similar Documents

Publication Publication Date Title
JP2662187B2 (en) Cooling system for an internal combustion engine of a vehicle, comprising a thermostat valve having an electrically heatable expansion material element
WO2016076324A1 (en) Cooling control device for internal combustion engine, and method for controlling cooling of same
KR102398887B1 (en) Cooling system for vehicles and thereof controlled method
CN107429601A (en) The cooling system and its control method of internal combustion engine
WO2014027238A1 (en) Coolant control device
JP3917206B2 (en) Cooling device for automobile engine having thermostat valve
JPS5928016A (en) Control method of cooling of water-cooled internal combustion engine for vehicle and device therefor
JP3809349B2 (en) Cooling device for internal combustion engine
JP3075289B2 (en) Engine cooling device
JP3821349B2 (en) Engine cooling system
US10113474B2 (en) Cooling device for internal combustion engine
JPS5874824A (en) Cooling device of engine
JPH0347422A (en) Cooling method for internal combustion engine
JPH08144790A (en) Cooling device of internal combustion engine
JP2001271644A (en) Method and device for adjusting engine oil temperature
JPS598512A (en) Room heating device of car mounted with water-cooled engine
WO2017090548A1 (en) Engine cooling device
JPH08177491A (en) Cooling device for internal combustion engine
US11181036B2 (en) Cooling water control apparatus for internal combustion engine
WO2023189900A1 (en) Cooling system for internal combustion engine
JP7124576B2 (en) Control device for internal combustion engine
JP2002188443A (en) Cooling device for internal combustion engine
JPH034566Y2 (en)
JPH0479849B2 (en)
JP2022021765A (en) Cooling system for engine