JPS5927865B2 - Packing material for high performance liquid chromatography - Google Patents

Packing material for high performance liquid chromatography

Info

Publication number
JPS5927865B2
JPS5927865B2 JP54079494A JP7949479A JPS5927865B2 JP S5927865 B2 JPS5927865 B2 JP S5927865B2 JP 54079494 A JP54079494 A JP 54079494A JP 7949479 A JP7949479 A JP 7949479A JP S5927865 B2 JPS5927865 B2 JP S5927865B2
Authority
JP
Japan
Prior art keywords
packing material
performance liquid
chromatography
liquid chromatography
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54079494A
Other languages
Japanese (ja)
Other versions
JPS564051A (en
Inventor
実 小原
光男 永田
文男 神山
和俊 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP54079494A priority Critical patent/JPS5927865B2/en
Priority to DE8080302102T priority patent/DE3071140D1/en
Priority to EP80302102A priority patent/EP0021817B1/en
Publication of JPS564051A publication Critical patent/JPS564051A/en
Priority to US06/349,252 priority patent/US4447328A/en
Publication of JPS5927865B2 publication Critical patent/JPS5927865B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 本発明は高速液体クロマトグラフィ用として用いられる
充填剤に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a filler used for high performance liquid chromatography.

液体クロマトグラフィを物質分離機構の観点から分類す
ると、吸着クロマトグラフィ、分配クロマトグラフィ、
ゲル浸とうクロマトグラフィ、逆相分配クロマトグラフ
ィ、イオン交換クロマトグラフィ等に大別される。
Liquid chromatography can be classified from the viewpoint of substance separation mechanism into adsorption chromatography, partition chromatography,
It is broadly classified into gel immersion chromatography, reversed phase partition chromatography, ion exchange chromatography, etc.

分離対象物は難揮発性の全ての物質でありそれを大別す
ると無機物と有機物とに、有機物はさらに親水性物質と
疎水性物質とに分類される。次に親水性物質を分離対象
とする市販の高速液体クロマトグラフィ用充填剤を分離
機構的に分類すると、ゲル浸とうクロマトグラフィ用充
填剤、逆相クロマトグラフィ用充填剤、イオン交換クロ
マトグラフィ用充填剤等となる。
The substances to be separated are all difficult-to-volatile substances, which can be broadly classified into inorganic substances and organic substances, and organic substances are further classified into hydrophilic substances and hydrophobic substances. Next, if we classify commercially available packing materials for high-performance liquid chromatography that separate hydrophilic substances based on their separation mechanism, they are classified into packing materials for gel immersion chromatography, packing materials for reversed-phase chromatography, packing materials for ion-exchange chromatography, etc. .

ここで高速液体クロマトグラフィとは高圧定流量ポンプ
等で溶離液を圧送し紫例線検出器等で分離状態を検出す
る等の機能を有する液体クロマトグラフィを総称する。
しかして、ゲル浸とうクロマトグラフィ用充填剤はその
内部に細孔を有しており、該細孔内に試料が拡散するこ
とによつて溶離時間に遅れを生じさせ、この遅れ時間の
相違によつて分離が行われるという分離機構を有するも
のである。
Here, high-performance liquid chromatography is a general term for liquid chromatography having functions such as pumping an eluent using a high-pressure constant flow pump or the like and detecting the separation state using a purple line detector or the like.
However, the packing material for gel immersion chromatography has pores inside it, and the diffusion of the sample into the pores causes a delay in the elution time, and the difference in this lag time causes a delay in the elution time. It has a separation mechanism in which separation is performed by

高速ゲル浸とうクロマトグラフィ用親水性充填剤として
は数社より市販されており入手可能である。又、イオン
交換クロマトグラフィにおいては、解離可能な置換基を
有する固定相表面と反対電荷を有する試料との静電的相
互作用によつて溶離時間の遅れが生じるという機構を有
している。
Hydrophilic packing materials for high-speed gel immersion chromatography are commercially available from several companies. Furthermore, ion exchange chromatography has a mechanism in which the elution time is delayed due to electrostatic interaction between the stationary phase surface having a dissociable substituent and a sample having an opposite charge.

高速イオン交換液体クロマトグラフィ用充填剤としても
数社より市販されている。又、逆相クロマトグラフィに
おいては固定相の疎水性表面と試料の疎水性基との相互
作用により試料の固定相への保持が行われるがゆえに疎
水性が大きい試料ほど溶離時間が長いという特徴を有す
る。
It is also commercially available from several companies as a packing material for high performance ion exchange liquid chromatography. In addition, in reversed-phase chromatography, the sample is retained on the stationary phase due to the interaction between the hydrophobic surface of the stationary phase and the hydrophobic groups of the sample, so the more hydrophobic the sample, the longer the elution time. .

スチレンージビニルベンゼン架橋体からなる球状充填剤
は、ゲル浸とうクロマトグラフイ用充填剤としての使用
が一般的ではあるが、逆相クロマトグラフイ用充填剤と
しても使用することが出来る。上述の充填剤はいずれも
疎水性の性質を有するものであり、有機溶媒が混合され
ていない水を溶離醇として使用することは不可能であり
、従つて親水性物質を分離する目的には不適当であるこ
とが多い。
A spherical filler made of a styrene-divinylbenzene crosslinker is generally used as a filler for gel immersion chromatography, but it can also be used as a filler for reversed phase chromatography. All of the above-mentioned fillers have hydrophobic properties, and it is impossible to use water without an organic solvent as an eluent; therefore, they are not suitable for the purpose of separating hydrophilic substances. Often appropriate.

この様な親水性物質を分離するための高速液体クロマト
グラフイ用充填剤としてはシリカゲル担体上に長鎖アル
キル基を化学結合させたものが知られているが、該充填
剤では試料とアルキル基との疎水性にもとずく相互作用
すなわち非極性物質の?離時間を長くする作用と、試料
とシラノール基との吸着作用すなわち極性物質の溶離時
間を長くする作用との二つの相巽なつた分離機構が同時
に働くことになるので、試料中の各成分の分離挙動の予
測が困難であり、又、水のみを浩離液とする場合は分離
能力が低下し、各成分の分離が困難となるので特に蛋白
質などの生化学物質の分離用として十分な性能を有する
ものとは言い難い。
As a packing material for high-performance liquid chromatography to separate such hydrophilic substances, a silica gel carrier with long-chain alkyl groups chemically bonded is known. What about interactions based on hydrophobicity with non-polar substances? Two intertwined separation mechanisms, the effect of prolonging the separation time and the adsorption effect between the sample and silanol groups, i.e. the effect of prolonging the elution time of polar substances, work simultaneously, so that each component in the sample is It is difficult to predict the separation behavior, and if only water is used as the separation liquid, the separation ability will decrease and it will be difficult to separate each component, so it is not sufficient for the separation of biochemical substances such as proteins. It is difficult to say that it has.

以上の如く、従来の高速液体クロマトグラフイ用充填剤
としては、親水性物質とくに生化学物質の分離を目的と
した用途において高性能を有するものは未だ提供されて
いないのである。本発明は上記の如き高速液体クロマト
グラフイ用充填剤の現状にかんがみ、親水性物質の分離
に有効であり、水のみを醇離液とする試料を精度よく分
離することの出来る高速液体クロマトグラフイ用充填剤
を提供することを目的として鋭意研究せる結果なされた
ものであり、その要旨はテトラメチロールメタントリア
クリレートを主成分とする重合体又は共重合体、及びヒ
ドロキシメチルメタクリレートとスチレンとの共重合体
から選ばれた合成高分子よりなる粒状充填剤にして、該
充填剤はポリエチレングリコールを試料とし水を溶離液
とするクロマトグラフイにおいて、温度上昇によつて試
料の浩離時間が長くなる挙動を示すものであることを特
徴とする高速液体クロマトグラフイ用充填剤に存する。
本発明の高速液体クロマトグラフイ用充填剤は、合成高
分子からなる粒状のものであり、該粒状の合成高分子は
それが充填剤として用いられた場合、ポリエチレングリ
コールを試料とし水を洛離液とする高速液体クロマトグ
ラフイにおいてカラム温度が上昇すると試料の洛離時間
が長くなる挙動を示すものである。
As mentioned above, as a conventional packing material for high performance liquid chromatography, there has not yet been provided one that has high performance in applications aimed at separating hydrophilic substances, particularly biochemical substances. In view of the current state of packing materials for high-performance liquid chromatography as described above, the present invention is a high-performance liquid chromatograph that is effective in separating hydrophilic substances and that can accurately separate samples containing only water as a liquid eluent. This study was made as a result of intensive research aimed at providing a filler for fillers, and the gist of the study was to develop a polymer or copolymer whose main component is tetramethylolmethane triacrylate, and a copolymer of hydroxymethyl methacrylate and styrene. A granular filler made of a synthetic polymer selected from polymers, which is used in chromatography using polyethylene glycol as a sample and water as an eluent, increases the sample exfoliation time due to temperature rise. The present invention relates to a packing material for high performance liquid chromatography, which is characterized in that it exhibits behavior.
The packing material for high performance liquid chromatography of the present invention is a granular material made of a synthetic polymer, and when the granular synthetic polymer is used as a packing material, water is eluted from polyethylene glycol as a sample. This behavior shows that in high performance liquid chromatography, when the column temperature increases, the sample separation time increases.

例えばカラム温度を室温(20℃)に保つた場合と50
℃に保つた場合とでは50℃に保つた場合の方が浩離時
間が長くなるのである。この様に、本発命の充填剤は水
を溶離液として使用することが出来ること及びカラム温
度の上昇によつて試料の醇離時間が長くなることの二つ
の特徴点を備えたものであり、この様な二つの特徴点を
併せ有する高速液体クロマトグラフイ用充填剤は従来に
おいて見当らなかつたものであり、本発明lこおいて始
めて親水性物質とくに蛋白質、アミノ酸、酵素等の生化
学物質の分離に有効であることを見い出されて提供され
たものである。又、該充填剤を用いて試料を分離する際
の温度としては水を?離液として使用するのに適した温
度の範囲、通常はO〜85℃の温度範囲を採用するのが
好適である〇本発明充填剤は前記の如く二つの特徴点を
備えたものであるが、このうち水を醇離液として使用出
来る点については、このためには該充填剤を構成する合
成高分子内に水との親和性を有する親水性基を有し、該
充填剤表面が水に濡れることが出来ることが必要である
ことが判明し、さらに親水性基についてもカルボキシル
基、アミノ基等の解離性置換基は親水性付与効果はある
がこれらの置換基が存在するとクロマトグラフイ実施に
際し、イオン交換機構が作用して分離挙動が複雑化し、
又、シラノール基に代表される無機親水性基もクロマト
グラフイ実施に際して強い吸着機構が働くために分離挙
動が複雑化するので、これらの解離性置換基や無機親水
性基は不適当であり、イオン交換機構や吸着機構が働ら
かずに親水性付与効果をもたらすことの出来る有機性の
非解離性親水性基が好適であることが判明した。
For example, when the column temperature is kept at room temperature (20℃) and when the column temperature is kept at room temperature (20℃),
The exfoliation time is longer when the temperature is kept at 50°C than when it is kept at 50°C. In this way, the packing material of this invention has two characteristics: water can be used as an eluent, and the dissolution time of the sample becomes longer as the column temperature increases. A packing material for high performance liquid chromatography that has both of these two characteristics has not been found in the past, and the present invention is the first to find a packing material for hydrophilic substances, especially biochemical substances such as proteins, amino acids, and enzymes. It was discovered that it is effective for the separation of Also, what is the temperature of water when separating samples using this packing material? It is preferable to adopt a temperature range suitable for use as syneresis, usually a temperature range of 0 to 85°C. The filler of the present invention has two characteristics as described above. Of these, water can be used as the eluent, in order to do this, the synthetic polymer constituting the filler has a hydrophilic group that has an affinity for water, and the surface of the filler is water-resistant. Furthermore, regarding hydrophilic groups, dissociative substituents such as carboxyl groups and amino groups have the effect of imparting hydrophilicity, but the presence of these substituents causes problems in chromatography. During implementation, the separation behavior becomes complicated due to the ion exchange mechanism.
In addition, inorganic hydrophilic groups such as silanol groups also have a strong adsorption mechanism during chromatography, which complicates the separation behavior, so these dissociative substituents and inorganic hydrophilic groups are inappropriate. It has been found that an organic non-dissociable hydrophilic group that can provide a hydrophilic effect without ion exchange mechanism or adsorption mechanism is suitable.

該非解離性親水性基としてはアルコール性水酸基、アミ
ド基、工チレンオキサィド基、プロピレンオキサイド基
が挙げられ得る。又、温度の上昇によつて試料の溶離時
間が長くなることは、本発明充填剤の分離作用の殆んど
が疎水性相互作用に基づくものであると結論出来る。
Examples of the non-dissociable hydrophilic group include an alcoholic hydroxyl group, an amide group, an engineered tylene oxide group, and a propylene oxide group. Furthermore, since the elution time of the sample becomes longer with increasing temperature, it can be concluded that most of the separation effect of the packing material of the present invention is based on hydrophobic interaction.

現在までに知られている水を醇離液とする逆相クロマト
グラフイにおいて充填剤が上記の如き挙動を示した例は
見当らない。なお疎水性相互作用とは、静電結合あるい
は水素結合等結合エネルギーによる安定化を主とした相
互作用とは巽なり、エントロピーの増大を主たる効果と
する統計熱力学 (的相互作用であり、この様な相互作
用を生じるためには、充填剤を構成する合成高分子中に
アルキル基、フエニル基、アルキレン基等の疎水性基が
存在していることが必要である。このため本発明充填剤
を構成する合成高分子に lおいては、その分子中に前
記非解離性親水基及び全記疎水性基の両方が含まれてい
ることが少くとも必要である。
There is no known example to date in which a filler exhibits the above behavior in reverse phase chromatography using water as a eluent. Note that hydrophobic interactions are different from interactions that are mainly stabilized by bond energy such as electrostatic bonds or hydrogen bonds, and are statistical thermodynamic interactions whose main effect is an increase in entropy. In order to cause such interaction, it is necessary that hydrophobic groups such as alkyl groups, phenyl groups, and alkylene groups exist in the synthetic polymer constituting the filler.For this reason, the present filler It is necessary for the synthetic polymer 1 to contain at least both the above-mentioned non-dissociable hydrophilic group and all the above-mentioned hydrophobic groups in the molecule.

本発明の充填剤を製造するにあたつては既知の水懸濁重
合の手法が最適である。
In producing the filler of the present invention, known water suspension polymerization techniques are most suitable.

前記非解離性親1水性基と前種疎水性基とを分子中に有
する単量体を水懸濁重合させることによつて重合粒子を
得ることができる。具体的な単量体としてはテトラメチ
ロールタントリアクリレートがあり、この単量体は単独
重合体とされるか又は該単量体を50重二量%以上含有
する共重合体となされて用いられる。又、非解離性親水
性基を有する単量体としてヒドロキシメチルメタクリレ
ート、疎水性基を有する単量体としてスチレンを採用し
て、これら単量体混合物を水懸濁重合させてもよい。
二上述の単量体の一種又は二種の混合物を
用いて、重合触媒、懸濁安定剤を加えて攪拌しつつ水懸
濁重合を行うことによつて直径5〜200ミクロンの重
合粒子を得ることができる。その重合法に関しては既知
の方法が採用出来る。又、重合を行うにあたつては上記
単量体を溶解するがその重合体は洛解しない有機溶媒を
添加しておくと生成する球状重合体が多孔質化し従つて
充填剤の表面積が増加し、分離効率を上げるために効果
的である。また高速液体クロマトグラフイ一用充填剤の
た.めの条件としてすぐれた機械的強度、少ない膨潤性
等を有することが要求されるので、このため充填剤は球
状であることが望ましく、さらに架橋していることが望
ましい。従つて、非解離性親水性基、疎水性基のいずれ
かまたは両者ともに多官能性基であることが望ましい。
水懸濁重合によつて得られた重合粒子は加熱等によつて
乾燥される。
Polymerized particles can be obtained by subjecting a monomer having the non-dissociable monohydrophilic group and the aforementioned hydrophobic group in its molecule to suspension polymerization in water. A specific monomer is tetramethylolthane triacrylate, and this monomer is used as a homopolymer or as a copolymer containing 50% or more of the monomer. . Alternatively, hydroxymethyl methacrylate may be used as the monomer having a non-dissociable hydrophilic group, and styrene may be used as the monomer having a hydrophobic group, and a mixture of these monomers may be subjected to water suspension polymerization.
2) Using one or a mixture of two of the above monomers, add a polymerization catalyst and a suspension stabilizer, and conduct water suspension polymerization with stirring to obtain polymerized particles with a diameter of 5 to 200 microns. be able to. As for the polymerization method, known methods can be used. In addition, during polymerization, if an organic solvent is added that dissolves the above monomer but does not dissolve the polymer, the resulting spherical polymer becomes porous and the surface area of the filler increases. and is effective for increasing separation efficiency. It is also used as a packing material for high performance liquid chromatography. For this purpose, the filler is required to have excellent mechanical strength, low swelling, etc. Therefore, it is desirable that the filler is spherical, and furthermore, it is desirable that it be crosslinked. Therefore, it is desirable that either or both of the non-dissociable hydrophilic group and the hydrophobic group be polyfunctional groups.
The polymer particles obtained by water suspension polymerization are dried by heating or the like.

そして乾燥粒子を水に分散させることによつて水に濡れ
るか否かを判別する。濡れない粒子は水は醇離液とする
高速液体クロマトグラフイに用いることが出来ないので
、本発明の充填剤とはなり得ない。次いで微粒および粗
粒を取り除いて得られる重合体粒子を液体クロマトグラ
フイ用カラムに充填し、イオン交換水を洛離液とし、そ
して試料として分子量400のポリエチレングリコール
(PEG4OO、平均重合度は8であるが4〜15の重
合度の各成分を含むポリエチレングリコール)を用いて
該ポリエチレングリコールの分離を行い、醇離挙動を観
察する。本発明の充填剤として採用するには、室温と5
0℃とでクロマトグラムを測定し、50℃における洛離
時間が室温におけるより長いという結果が得られること
が必要である。上記2試験法によつて選ばれた充填剤は
すぐれた親水性と疎水性相互作用とをかねそなえた本発
明の高速液体クロマトグラフイ用充填剤として使用され
るのである。
Then, by dispersing the dry particles in water, it is determined whether or not they get wet with water. Particles that cannot be wetted cannot be used as a filler in the present invention because they cannot be used in high-performance liquid chromatography in which water is used as the eluent. Next, the polymer particles obtained by removing fine particles and coarse particles were packed into a liquid chromatography column, ion-exchanged water was used as the separation liquid, and polyethylene glycol (PEG4OO, with a molecular weight of 400 and an average degree of polymerization of 8) was used as a sample. The polyethylene glycol is separated using a polyethylene glycol containing each component with a degree of polymerization of 4 to 15, and the dissolution behavior is observed. To be employed as a filler in the present invention, room temperature and
It is necessary to measure the chromatogram at 0°C and obtain a result that the separation time at 50°C is longer than at room temperature. The packing material selected by the above two test methods has both excellent hydrophilicity and hydrophobic interaction, and is used as the packing material for high performance liquid chromatography of the present invention.

本発明高速液体クロマトグラフイ用充填剤は土述の通り
のものであるので、親水性物質の分離を精度よく行い得
て、しかも水を洛離液とする試料を分離することができ
、従つて生化学物質とくに血清蛋白質、酵素、ビタミン
、アミノ酸等の分離にすぐれた性能を示すものである。
Since the packing material for high-performance liquid chromatography of the present invention is as described above, it is possible to accurately separate hydrophilic substances, and also to separate samples using water as a separating liquid, and it is possible to separate hydrophilic substances with high precision. Therefore, it shows excellent performance in separating biochemical substances, especially serum proteins, enzymes, vitamins, amino acids, etc.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例 1 冷却器、攪拌機、温度計および滴下ロードの設置された
2tセパラブルフラスコに4重量%のポリビニルアルコ
ール水洛液400m1!とテトラメチロールメタントリ
アクリレート100r及びベンゾイルバーオキサイド1
.5fよりなる混合液を供給した。
Example 1 400ml of 4% by weight polyvinyl alcohol aqueous solution was placed in a 2t separable flask equipped with a cooler, stirrer, thermometer, and dripping load! and tetramethylolmethane triacrylate 100r and benzoyl peroxide 1
.. A mixed solution consisting of 5f was supplied.

次に400rpmの攪拌速度で攪拌しながら80℃に昇
温し10時間反応を行つて冷却した。
Next, the temperature was raised to 80° C. while stirring at a stirring speed of 400 rpm, reaction was carried out for 10 hours, and the mixture was cooled.

冷却後重合生成物を母液分離した後、熱水およびアセト
ンで洗浄して粒子径が5〜20ミクロンの球状ポリマー
を得た。そのうち微粒子および粗粒子を取除いて得られ
た8〜12ミクロンの粒子を800dのイオン交換水に
分散し、ステンレスカラム(直径7.9Wr!FLl長
さ50c!n)に高圧定流量ポンプによりイオン交換水
を1.6mt/Minの速度で圧送することにより充填
した。得られた充填カラムを高速液体クロマトグラフ(
商品名島津デユポン高速液体クロマトグラフ830型)
に接続しカラム温度を室温35℃、50℃及び70℃に
それぞれ保つて分子量400のポリエチレングリコール
(PEG4OO、和光純薬社製)を試料としてイオン交
換水を溶離液としてクロマトグラフ分析を行つた。
After cooling, the polymerization product was separated from the mother liquor and washed with hot water and acetone to obtain a spherical polymer having a particle size of 5 to 20 microns. Particles of 8 to 12 microns obtained by removing fine particles and coarse particles are dispersed in 800 d of ion-exchanged water, and ionized into a stainless steel column (diameter 7.9 Wr! FLl length 50 c! n) using a high-pressure constant flow pump. Replacement water was filled by pumping at a rate of 1.6 mt/min. The obtained packed column was subjected to high performance liquid chromatography (
Product name: Shimadzu DuPont High Performance Liquid Chromatograph Model 830)
Chromatographic analysis was performed using polyethylene glycol (PEG4OO, manufactured by Wako Pure Chemical Industries, Ltd.) with a molecular weight of 400 as a sample and ion-exchanged water as an eluent while maintaining the column temperature at room temperature of 35° C., 50° C., and 70° C., respectively.

得られた各温度でのクロマトグラムを第1図に示す。試
料中の谷成分は分子量の小さいほど早く洛出する傾向を
示し、その浩出は早い方からエチレングリコール、ジエ
チレングリコール、トリエチレングリコール、・・・・
・・・・・の如き順序であつた。各成分とも温度が高く
なるにつれて醇離時間が長くなり、そして50℃におい
て各成分が最も明瞭に分離されていることが分かる。実
施例 2 モノマーとしてヒドロキシメチルメタクリレート40t
及びスチレン30fを用いる以欠は実施例1と同様な重
合条件で重合された粒子径5〜15ミクロンの球状ポリ
マーを実施例1と同様のステンレスカラムに同様に圧送
して充填した。
The obtained chromatograms at each temperature are shown in FIG. The lower the molecular weight of the trough components in the sample, the faster they tend to extrude, and the extrusion begins with ethylene glycol, diethylene glycol, triethylene glycol, etc.
The order was as follows. It can be seen that the dissolution time of each component increases as the temperature increases, and that each component is most clearly separated at 50°C. Example 2 40t of hydroxymethyl methacrylate as monomer
A spherical polymer having a particle size of 5 to 15 microns was polymerized under the same polymerization conditions as in Example 1, except that styrene 30f was used, and the same stainless steel column as in Example 1 was filled by pressure-feeding.

得られた充填カラムは水によく親和性を有して2いた。
高速液体クロマトグラフ(実施例1に同じ)に接続し、
室温(20℃)および50℃でポリエチレングリコール
(実施例1に同じ)を試料とし、イオン交換水を溶離液
としてクロマトグラフ分析を行つた。重合度の異なる各
成分とも50℃にお2いて溶離時間が長くなつているこ
とが観察された。1なわち例えば重合度8の成分の洛離
時間は室温において12分、50℃において32分であ
つた。
The resulting packed column had good affinity for water.
Connect to a high-performance liquid chromatograph (same as in Example 1),
Chromatographic analysis was performed at room temperature (20° C.) and 50° C. using polyethylene glycol (same as in Example 1) as a sample and using ion-exchanged water as an eluent. It was observed that the elution time became longer at 50° C. for each component having a different degree of polymerization. 1, that is, for example, the separation time of a component with a polymerization degree of 8 was 12 minutes at room temperature and 32 minutes at 50°C.

実施例 3実施例1と同様な重合装置に4重量%のポリ
ビ3ニルアルコール水洛液400dとテトラメチロール
メタントリアクリレート50fおよびネオペンチルグラ
イコールジメタクリレート50t1トルエン100t1
ベンゾイルパーオキサイド1.5fよりなる混合液を供
給した。
Example 3 In a polymerization apparatus similar to Example 1, 400 d of 4% by weight polyvinyl alcohol aqueous solution, 50 f of tetramethylolmethane triacrylate, 50 t of neopentyl glycol dimethacrylate, 100 t of toluene were added.
A mixed solution consisting of 1.5 f of benzoyl peroxide was supplied.

次に400rpmの3攪拌速度で攪拌しながら75℃に
昇温し10時間反応を行つて冷却した。冷却後重合生成
物を母液分離した後熱水およびアセトンで洗浄して粒子
径が5〜25ミクロンの球状多孔質ポリマーを得た。そ
のうち微粒子および粗粒子を取り除いて得られ4・た1
0〜15ミクロンの粒子を100dのイオン交換水に分
散しステンレスカラム(直径7.9wn1長さ50cm
)に高圧定流量ポンプによりイオン交換水を2。01m
1nの速度で圧送して充填した。
Next, the temperature was raised to 75° C. while stirring at a stirring rate of 400 rpm, and the reaction was carried out for 10 hours, followed by cooling. After cooling, the polymerization product was separated from the mother liquor and washed with hot water and acetone to obtain a spherical porous polymer having a particle size of 5 to 25 microns. 4・Ta1 obtained by removing fine particles and coarse particles
Particles of 0 to 15 microns were dispersed in 100 d of ion-exchanged water, and a stainless steel column (diameter 7.9 wn 1 length 50 cm) was used.
) to 2.01 m of ion-exchanged water using a high-pressure constant flow pump.
It was filled by force feeding at a speed of 1 n.

得られた充填カラムを高速液体クロマトグラフ(実施例
1におけるのと同じ)に接続し室温および50℃でポリ
エチレングリコール(実施例1と同じ)を試料としてイ
オン交換水を后離液としてクロマトグラフ分析を行つた
。各成分とも50℃において室温におけるより溶離時間
の増大が観察された。実施例 4 実施例1によつて製造された充填剤を用いてアミノ酸の
分離を行つた。
The obtained packed column was connected to a high performance liquid chromatograph (same as in Example 1), and chromatographic analysis was performed at room temperature and 50°C using polyethylene glycol (same as in Example 1) as a sample and ion-exchanged water as a separation liquid. I went to For each component, elution time was observed to be longer at 50°C than at room temperature. Example 4 The packing material prepared according to Example 1 was used to separate amino acids.

諸条件は以下のとうり。The terms and conditions are as follows.

得られたクロマトグラムは第2図に示される通りであつ
た。
The obtained chromatogram was as shown in FIG.

この図において、1はアラニン、2はロイシン、3はチ
ロシン、4はフエニルアラニンのピークである。
In this figure, 1 is the peak of alanine, 2 is the peak of leucine, 3 is the peak of tyrosine, and 4 is the peak of phenylalanine.

実施例 5 実施例2によつて製造された充填剤を用いてグルコース
オキシダーゼのクロマトグラフ的精製を行つた。
Example 5 Chromatographic purification of glucose oxidase was carried out using the packing material prepared according to Example 2.

諸条件は以下のとうり 得られたクロマトグラムは3つのピークからなりその面
積は洛出順に1:1.3:3.8であつた。
The conditions were as follows, and the obtained chromatogram consisted of three peaks, the areas of which were 1:1.3:3.8 in order of peak appearance.

それらの醇出液をピーク別に分取し酵素活性をパラオキ
シダーゼーインダミン色素法によつて定量すると、最終
溶出ピークに相当する分取液のみが酵素活性を示した。
よつて本充填剤は酵素精製に有効に使用し得ることが分
かる。実施例 6 実施例3によつて製造された充填剤を用いて人血清中の
主要蛋白質の分離を行つた。
When the eluates were fractionated into peaks and the enzyme activity was quantified by the paraoxidase-indamine dye method, only the fraction corresponding to the final elution peak showed enzyme activity.
Therefore, it can be seen that the present packing material can be effectively used for enzyme purification. Example 6 Using the packing material produced in Example 3, major proteins in human serum were separated.

諸条件は以下のとうり。The terms and conditions are as follows.

得られたクロマトグラムは2つのピークからなり、標準
物を用いる同定によりそれぞれ浩出順にγ−グロブリン
およびアルブミンであることを確認した。
The obtained chromatogram consisted of two peaks, which were confirmed to be γ-globulin and albumin, respectively, in the order of excretion, by identification using standards.

比較例 1 スチレンージビニルベンゼン系の多孔質体からなる市販
のGPC用疎水性充填剤(商品名HSG6O、島津製作
所製)を高速液体クロマトグラフ(実施例1に同じ)に
接続し水を圧送してみた。
Comparative Example 1 A commercially available hydrophobic packing material for GPC (trade name: HSG6O, manufactured by Shimadzu Corporation) consisting of a styrene-divinylbenzene-based porous material was connected to a high-performance liquid chromatograph (same as in Example 1), and water was pumped. I tried it.

しかし入口圧が100Kfになつてもカラムから液の流
出はなく本カラムを水系GPC用充填剤として使用する
ことは不可能であつた。比較例 2 モノマーがテトラエチレングリコールジメタクリレート
である以男は実施例1と同様にして重合された生成物の
うち微粒子および粗粒子を除いて得られた10〜15ミ
クロンの粒子を実施例1と同様のステンレスカラムに充
填した。
However, even when the inlet pressure reached 100 Kf, no liquid flowed out of the column, making it impossible to use this column as a packing material for aqueous GPC. Comparative Example 2 The monomer is tetraethylene glycol dimethacrylate. Ito obtained 10 to 15 micron particles obtained by removing fine particles and coarse particles from the product polymerized in the same manner as in Example 1. It was packed into a similar stainless steel column.

得られたカラムを高速液体クロマトグラフ(実施例1と
同じ)に接続し室温および50℃でポリエチレングリコ
ール(実施例1と同じ)を試料としてイオン交換水を溶
離液としてクロマトグラフ分析を行つた。
The obtained column was connected to a high performance liquid chromatograph (same as in Example 1), and chromatographic analysis was performed at room temperature and 50°C using polyethylene glycol (same as in Example 1) as a sample and ion-exchanged water as an eluent.

得られたクロマトグラムは室温と50℃においてほとん
ど爵離時間に差は認められず、50℃における溶離時間
が室温の場合よりも長くなることはなく、また各成分の
分離はまつたく行われていなかつた。本充填剤は極めて
弱い疎水性相互作用しか示さずそれゆえ生化学物質の分
離用としても不適当であつた。
The obtained chromatogram showed that there was almost no difference in the separation time between room temperature and 50°C, and the elution time at 50°C was not longer than that at room temperature, and the separation of each component was performed well. Nakatsuta. This packing material exhibited only extremely weak hydrophobic interactions and was therefore unsuitable for the separation of biochemical substances.

例えば実施例6と同様の分離を行おうとしても2成分と
もまつたく充填剤に保持されることなく溶出し従つて2
成分の分離は不可能であつた。
For example, even if an attempt was made to perform the same separation as in Example 6, both of the two components would elute without being retained by the packing material.
Separation of the components was not possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1において得られたクロマトグラムを、
第2図は実施例4において得られたクロマトグラムを示
す。 1・・・・・・アラニン、2・・・・・・ロイシン、3
・・・・・・チロシン、4・・・・・・フエニルアラニ
ン。
Figure 1 shows the chromatogram obtained in Example 1.
FIG. 2 shows the chromatogram obtained in Example 4. 1...Alanine, 2...Leucine, 3
...Tyrosine, 4...Phenylalanine.

Claims (1)

【特許請求の範囲】 1 テトラメチロールメタントリアクリレートを主成分
とする重合体又は共重合体、及びヒドロキシメチルメタ
クリレートとスチレンとの共重合体から選ばれた合成高
分子よりなる粒状充填剤にして、該充填剤はポリエチレ
ングリコールを試料とし水を溶離液とするクロマトグラ
フィにおいて、温度上昇によつて試料の溶離時間が長く
なる挙動を示すものであることを特徴とする高速液体ク
ロマトグラフィ用充填剤。 2 充填剤の形状が球状である第1項記載の充填剤。
[Scope of Claims] 1. A granular filler made of a synthetic polymer selected from a polymer or copolymer containing tetramethylolmethane triacrylate as a main component, and a copolymer of hydroxymethyl methacrylate and styrene, A packing material for high performance liquid chromatography, characterized in that the packing material exhibits a behavior in which the elution time of the sample becomes longer as the temperature rises in chromatography using polyethylene glycol as a sample and water as an eluent. 2. The filler according to item 1, wherein the filler has a spherical shape.
JP54079494A 1979-06-22 1979-06-22 Packing material for high performance liquid chromatography Expired JPS5927865B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP54079494A JPS5927865B2 (en) 1979-06-22 1979-06-22 Packing material for high performance liquid chromatography
DE8080302102T DE3071140D1 (en) 1979-06-22 1980-06-20 Filler for liquid chromatography, method for separating water-soluble substances using said filler and use of said filler in separating water-soluble biochemical substances
EP80302102A EP0021817B1 (en) 1979-06-22 1980-06-20 Filler for liquid chromatography, method for separating water-soluble substances using said filler and use of said filler in separating water-soluble biochemical substances
US06/349,252 US4447328A (en) 1979-06-22 1982-02-16 Filler for liquid chromatography and method for separating water-soluble substances using said filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54079494A JPS5927865B2 (en) 1979-06-22 1979-06-22 Packing material for high performance liquid chromatography

Publications (2)

Publication Number Publication Date
JPS564051A JPS564051A (en) 1981-01-16
JPS5927865B2 true JPS5927865B2 (en) 1984-07-09

Family

ID=13691453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54079494A Expired JPS5927865B2 (en) 1979-06-22 1979-06-22 Packing material for high performance liquid chromatography

Country Status (1)

Country Link
JP (1) JPS5927865B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425260Y2 (en) * 1986-08-01 1992-06-16
JPH059100Y2 (en) * 1986-07-31 1993-03-05

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186167A (en) * 1981-05-12 1982-11-16 Sekisui Chem Co Ltd Packing agent for liquid chromatography

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059100Y2 (en) * 1986-07-31 1993-03-05
JPH0425260Y2 (en) * 1986-08-01 1992-06-16

Also Published As

Publication number Publication date
JPS564051A (en) 1981-01-16

Similar Documents

Publication Publication Date Title
EP0320023B1 (en) Macroporous polymeric membranes, their preparation and their use for polymer separation
Tennikova et al. High-performance membrane chromatography of proteins, a novel method of protein separation
US5522994A (en) Single column chromatographic determination of small molecules in mixtures with large molecules
Ugelstad et al. Preparation and biochemical and biomedical applications of new monosized polymer particles
EP0763064B1 (en) A method of manufacturing particles, and particles that can be produced in accordance with the method
JP2896571B2 (en) Composite separating agent and method for producing the same
EP1194479B1 (en) Process for making fluorinated polymer adsorbent particles
EP0021817B1 (en) Filler for liquid chromatography, method for separating water-soluble substances using said filler and use of said filler in separating water-soluble biochemical substances
US4368275A (en) Isocyanurate-vinyl alcohol-vinyl ester chromatographic packing
US4696745A (en) Separating agent with fluoroalkyl group
AU653414B2 (en) Article for separations and purifications and method of controlling porosity therein
US6746608B2 (en) Use of adsorbent polymer particles in DNA separation
JPS5927865B2 (en) Packing material for high performance liquid chromatography
Gong et al. Synthesis of non-porous poly (glycidylmethacrylate-co-ethylenedimethacrylate) beads and their application in separation of biopolymers
Gong et al. Preparation of weak cation exchange packings based on monodisperse poly (glycidyl methacrylate-co-ethylene dimethacrylate) beads and their chromatographic properties
Chaves et al. Hydrodynamics and dynamic capacity of cryogels produced with different monomer compositions
JPH02280833A (en) Compounding and separating agent and its preparation
Dawkins et al. Reversed-phase high-performance liquid chromatography with a C18 polyacrylamide-based packing
JPH11189601A (en) Manufacture of fine polymer particle and manufacture of filler for liquid chromatography
CN114369182A (en) Preparation method of porous high-molecular polymer microspheres with amphoteric structures
JPH11302304A (en) Production of polymer file particle and production of filler for liquid chromatography
JPH055731A (en) Carrier for affinity chromatography
JPH087198B2 (en) Quantitative method for glycated hemoglobin
Blondeau et al. Methacrylic copolymers prepared by the ultrasound method: chiral HPLC and GC applications
JP2002306974A (en) Cation exchange material, method for manufacturing the same and its use