JPS5927641B2 - Manufacturing method and equipment for small diameter wire - Google Patents

Manufacturing method and equipment for small diameter wire

Info

Publication number
JPS5927641B2
JPS5927641B2 JP2821979A JP2821979A JPS5927641B2 JP S5927641 B2 JPS5927641 B2 JP S5927641B2 JP 2821979 A JP2821979 A JP 2821979A JP 2821979 A JP2821979 A JP 2821979A JP S5927641 B2 JPS5927641 B2 JP S5927641B2
Authority
JP
Japan
Prior art keywords
rolling
wire
temperature
heat
wire rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2821979A
Other languages
Japanese (ja)
Other versions
JPS55120402A (en
Inventor
幸四郎 青柳
幸雄 野口
浩衛 中島
浩 矢田
誠二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2821979A priority Critical patent/JPS5927641B2/en
Publication of JPS55120402A publication Critical patent/JPS55120402A/en
Publication of JPS5927641B2 publication Critical patent/JPS5927641B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、細径線、就中5.5朋φ以下の線材を製造す
る方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for manufacturing a small diameter wire, particularly a wire rod having a diameter of 5.5 mm or less.

従来、線材は、鋼塊或は溶鋼を連続鋳造して得らねる鋳
片を分塊圧延工程で圧延してビレットを得、または分塊
工程を通さずに線材圧延工程に送り10数〜20数台の
熱間連続圧延機群によって、ビレット、または鋼塊或は
鋳片を、最小5.5 nutφまで圧延して得られてい
た。
Conventionally, wire rods are produced by rolling ingots, which are obtained by continuously casting steel ingots or molten steel, in a blooming process to obtain billets, or by sending them to a wire rod rolling process without going through the blooming process. Billets, steel ingots, or slabs were rolled to a minimum diameter of 5.5 nutφ using several continuous hot rolling mills.

このようにして得られた線材は、こねを素線として冷間
伸線或は冷間圧延によって、5.5朋φ以下の線に加工
される。
The thus obtained wire rod is processed into a wire having a diameter of 5.5 mm or less by cold wire drawing or cold rolling using the kneaded wire as a wire.

前述のような、従来のプロセスにおける細線製造過程に
おいては、細線製造過程を、単なる細線化過程として捉
えると、次のような問題がある。
In the thin wire manufacturing process in the conventional process as described above, if the thin wire manufacturing process is viewed as a simple wire thinning process, the following problems arise.

(1)冷間加工であるから、熱間加工に比し、減面に要
するエネルギーを多く必要とする。
(1) Since it is cold working, more energy is required for area reduction than in hot working.

(11)線材材質によっては、冷間加工では加工限界が
あるから、冷間加工過程の途中で軟化焼鈍(パテンティ
ング)を施す必要がある。
(11) Depending on the wire material, there is a processing limit in cold working, so it is necessary to perform softening annealing (patenting) during the cold working process.

この中間焼鈍等の熱処理工程は、最終製品において要求
される材質特性からは必要のないものである。
This heat treatment process such as intermediate annealing is not necessary in view of the material properties required for the final product.

これらの問題を解決するために、5.5 mmφ未満の
線径のものまでを熱間圧延によって得ようとすると、た
とえば線材二次加工メーカから要求される各種製品サイ
ズ毎の小さなロフト単位で熱間圧延をしなければならな
いから、従来の圧延法では生産能率の著しい低下を余儀
なくされる。
In order to solve these problems, if we try to obtain wires with a diameter of less than 5.5 mmφ by hot rolling, for example, it is necessary to heat rolls in small loft units for each product size required by secondary wire processing manufacturers. Since inter-rolling must be performed, conventional rolling methods are forced to significantly reduce production efficiency.

線材の熱間圧延において圧延材断面積と速度の積が最大
になるのは、従来の5.5 mmφを主体に製造する細
物線材ミルでは、たとえば線径が7mmφ前後或は9m
mφ前後等のときであるから、この線径で熱間圧延する
ことが、圧延能率の面では一番好ましい。
In hot rolling of wire rods, the product of the rolling material cross-sectional area and the speed becomes maximum when the wire diameter is around 7 mmφ or 9 m in conventional thin wire mills that mainly manufacture wire rods of 5.5 mmφ.
Since the wire diameter is around mφ, hot rolling with this wire diameter is most preferable in terms of rolling efficiency.

従って、5.5朋φ以下の線径のものを小さなロフト単
位毎に熱間圧延すると、圧延能率の低下と、ロール替え
等による設備稼動率の低下の双方の要因によって生産性
の低下を招きコスト高を惹起する。
Therefore, if wire diameters of 5.5 mm or less are hot-rolled in small loft units, productivity will decrease due to both a decrease in rolling efficiency and a decrease in equipment operation rate due to changes in rolls, etc. This causes high costs.

従来熱間圧延は、これら相反する2つの要求をある程度
満足させるために、5.5朋φの線径に集約して行なわ
れていた。
Conventionally, in order to satisfy these two conflicting demands to a certain extent, hot rolling has been carried out to a wire diameter of 5.5 mm.

熱間圧延における生産性の低下は、圧延速度を高くする
ことによっである程度改善されるけれども、圧延速度を
高くすることに設備上限界があるほか、線径が小さくな
ると、材料の断面剛性率が線径の2乗の比で低下するか
ら圧延中、所謂腰折れ等によるミスロールが発生する等
、操業上の問題を惹起するため多くを期待できない。
The decrease in productivity in hot rolling can be improved to some extent by increasing the rolling speed, but there are equipment limitations to increasing the rolling speed, and as the wire diameter becomes smaller, the cross-sectional rigidity of the material decreases. Since this decreases in proportion to the square of the wire diameter, it causes operational problems such as misrolling due to so-called buckling during rolling, so not much can be expected.

何れにしても、生産能率(単位時間当りの生産高)Sは
、SOCd” −y (d ;線径、V;速度)で表わ
され、生雀能率に対する線径の影響は、速度の影響をは
るかに上まわる。
In any case, the production efficiency (output per unit time) S is expressed as SOCd''-y (d: wire diameter, V: speed), and the effect of wire diameter on raw mahjong efficiency is the effect of speed. far exceeds.

従って熱間圧延で線材を得るに際し、多額の設備費を要
する熱間圧延設備で小ロフトの5.5 mmφ未満のも
のを圧延することは得策ではない。
Therefore, when obtaining wire rods by hot rolling, it is not a good idea to roll wire rods with a small loft and a diameter of less than 5.5 mm using hot rolling equipment that requires a large amount of equipment cost.

本発明は、従来の線材熱間圧延における上述の問題を解
決するためになされた。
The present invention was made to solve the above-mentioned problems in conventional wire rod hot rolling.

本発明は、従来の圧延プロセスである粗圧延、中間圧延
、仕上圧延を経て得られる線材を中間製品とし、二次ス
ケールの生成が抑制される温度にまで冷却した後、従来
の圧延プロセスに副列的に配置した保熱或は加熱用の炉
に装入し保熱或は加熱後、細線専用圧延装置によって、
熱処理開始温度となるような加工発熱を伴なう細線圧延
を行なった後、加熱することなく、熱処理を行なう点に
よって特徴づけられる。
The present invention uses wire rods obtained through conventional rolling processes such as rough rolling, intermediate rolling, and finishing rolling as an intermediate product, and after cooling to a temperature that suppresses the formation of secondary scale, After being charged into heat retention or heating furnaces arranged in rows and heat retention or heating, the thin wire is rolled using a special rolling machine.
It is characterized by the fact that the heat treatment is carried out without heating after thin wire rolling is performed with heat generated during processing to reach the heat treatment start temperature.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に従ったプロセスにおいては、先ず従来公知のプ
ロセスである加熱、粗圧延、中間圧延および仕上圧延の
各過程を通じて、細線用素材が得られる。
In the process according to the present invention, a thin wire material is first obtained through the conventionally known processes of heating, rough rolling, intermediate rolling and finish rolling.

仕上圧延後の中間製品は、たとえばクリーニングトラフ
で600〜700℃の温度域才で冷却するか或は850
〜900℃の温度域でガラス粉末、ビオ燐酸カルシウム
等のスケール発生防止剤を塗布して、二次スケールの発
生をできる限り小さく抑える。
The intermediate product after finish rolling is cooled, for example, in a cleaning trough at a temperature range of 600 to 700°C or at 850°C.
A scale generation preventive agent such as glass powder or biocalcium phosphate is applied at a temperature range of ~900°C to suppress the generation of secondary scale as much as possible.

かかる処理は、従来のプロセスである、上に述べた中間
圧延、仕上圧延を含むラインにおいて行なってもよいけ
れども、後に述べる、従来の圧延ラインに副列的に設け
られる細線専用圧延ラインのエントリセクションで行な
ってもよい。
Although such processing may be carried out in a conventional process line including the above-mentioned intermediate rolling and finish rolling, it may be carried out in the entry section of a thin wire dedicated rolling line provided as a sub-column to a conventional rolling line, which will be described later. You can also do it with

二次スケールの発生を抑える処理を施された線材は、保
熱炉に装入され、600〜700℃に保熱或は加熱され
る。
The wire rod, which has been treated to suppress the generation of secondary scale, is placed in a heat retention furnace and is retained or heated to 600 to 700°C.

保熱炉から取り出された中間製品は、細線専用圧延機で
圧延され、細線とされる。
The intermediate product taken out from the heat retention furnace is rolled into a thin wire using a rolling mill dedicated to thin wire.

この圧延過程での加工発熱によって、圧延後の線材の温
度が熱処理開始温度と一致するように材料寸法、中間製
品温度(保熱炉から抽出したときの温度)、細線専用圧
延機における各パスの延伸□ 等の条件の1つ以上を変
化させる。
Due to heat generation during this rolling process, the material dimensions, intermediate product temperature (temperature when extracted from the heat retention furnace), and each pass in the thin wire rolling mill are adjusted so that the wire rod temperature after rolling matches the heat treatment start temperature. One or more conditions such as stretching □ are changed.

このようにして、細線に加工された植材は、その後オン
ライン熱処理され製品となる。
The plant material processed into fine wires in this way is then subjected to online heat treatment to become a product.

このような、圧延条件設定の手順の一例を第3図に示す
An example of such a procedure for setting rolling conditions is shown in FIG. 3.

材料断面直径dn、細線専用圧延機入口における材料の
速度V、材料温度T。
Material cross-sectional diameter dn, material speed V at the entrance of a rolling mill dedicated to fine wire, and material temperature T.

、細線専用圧延機における各パスの延伸λ1.λ2・・
・、λ1・・・λ。
, the stretching λ1 of each pass in a rolling mill dedicated to thin wire. λ2...
・,λ1...λ.

を与え、細線専用圧延機における加工発熱による昇温量
2nを演算する。
is given, and the amount of temperature increase 2n due to processing heat in the rolling mill exclusively for thin wire is calculated.

さらに、圧延過程における冷却による降温量を計算し、
最終的に仕上り状態における線材の直径d と温度T。
Furthermore, we calculated the amount of temperature drop due to cooling during the rolling process,
Diameter d and temperature T of the wire in the final finished state.

を求める。dnとTnが、圧延製品として要求される線
径と、熱処理開始温度に一致しておれば、続いて熱処理
を開始すべくその条件で圧延を遂行する。
seek. If dn and Tn match the wire diameter required for the rolled product and the heat treatment start temperature, then rolling is performed under those conditions to start heat treatment.

一致していなければ、各パス延伸等操作可能な初期条件
におけるパラメータを変化させて、再度演算を行なう。
If they do not match, the calculation is performed again by changing the parameters in the initial conditions that can be operated for each pass extension, etc.

而して、dn、Tnを満足する条件で圧延を遂行する。Thus, rolling is performed under conditions that satisfy dn and Tn.

先に述べた中間製品を得るための従来公知のプロセスで
はたとえば5.5朋φ以上の線材を得ることは勿論可能
である。
It is of course possible to obtain a wire rod having a diameter of 5.5 mm or more using the conventionally known process for obtaining the intermediate product described above.

以下本発明を具体的に説明する。The present invention will be specifically explained below.

第1図の■は従来の線材の圧延工程の概略を示したもの
である。
1 in FIG. 1 schematically shows a conventional wire rod rolling process.

すなわち80巾〜120巾のビレットは加熱炉1で所定
の温度に加熱された後に、粗圧延機2、中間圧延機3、
仕上げ圧延機4および図示せぬ各種冷却装置とクーリン
グトラフ5を経て、仕上げ圧延後の調整冷却装置6に入
り巻取り機7で巻取られ、続いて精整工程に送られる。
That is, a billet with a width of 80 to 120 widths is heated to a predetermined temperature in a heating furnace 1, and then passed through a rough rolling mill 2, an intermediate rolling mill 3,
After passing through a finish rolling mill 4, various cooling devices (not shown), and a cooling trough 5, it enters an adjustment cooling device 6 after finish rolling, where it is wound up by a winding machine 7, and then sent to a refining process.

本発明の細線専用圧延ライン[F]は上記の線材圧延工
程■の途中から、枝わかれする形で別ライン[F]に移
る。
The thin wire exclusive rolling line [F] of the present invention branches off to another line [F] from the middle of the above-mentioned wire rod rolling process (2).

この際線材は一度巻きとられるが■の圧延工程を出た直
後、■ラインあるいは■ラインのクーリングトラフ等の
設備で冷却され、巻きとられる。
At this time, the wire rod is wound once, but immediately after exiting the rolling process (①), it is cooled in equipment such as the cooling trough of the (① line) or the (③ line), and is then wound.

なお、圧延終了後から巻取りまでの間の任意の個所で、
すなわち、クーリングトラフの前あるいは後でガラス粉
末、あるいはビオ燐酸カルシウム等の二次スケール発生
防止剤を塗布すればつづく第二次圧延工程に移るまでの
移送、保熱、アンコイリング間の二次スケールの発生を
極めて小量におさえることが出来、細線仕上り後の製品
の表面肌を極めて良好に仕上げることができる。
In addition, at any point between the end of rolling and the time of winding,
In other words, if a secondary scale prevention agent such as glass powder or biocalcium phosphate is applied before or after the cooling trough, secondary scale will be removed during transport, heat retention, and uncoiling until the subsequent secondary rolling process. It is possible to suppress the occurrence of this to an extremely small amount, and it is possible to achieve an extremely good surface texture of the product after fine line finishing.

なお、二次スケール防止剤の成分によってクーリングト
ラフの前にするか後にするかは決められる。
Note that depending on the components of the secondary scale inhibitor, it is determined whether it is applied before or after the cooling trough.

たとえば、ガラス粉末の場合は850〜900℃前後で
の塗布が好ましい。
For example, in the case of glass powder, it is preferable to apply the coating at a temperature of about 850 to 900°C.

まきとられたコイルは所定の通路を経て、低温保熱炉で
所定の温度に保護され順次アンコイラ−に導ひかれる。
The wound coil passes through a predetermined path, is protected at a predetermined temperature in a low-temperature heat retention furnace, and is sequentially led to an uncoiler.

アンコイラ−ではアンコイリングが完了するまで同様に
コイルは所定の温度に保熱される。
In the uncoiler, the coil is similarly kept at a predetermined temperature until the uncoiling is completed.

たとえば、1個が12φの2 tonコイルの場合で試
算すると表1の通りで1個のコイルのアンコイリングが
完了するまですなわち圧延が終了するまで約30分を要
することになり、当然のことながらこの間も保熱が必要
となる。
For example, in the case of a 2 ton coil with a diameter of 12 mm, as shown in Table 1, it will take about 30 minutes to complete the uncoiling of one coil, that is, until the rolling is finished. Heat retention is required during this time as well.

なお、各コイルについてその両端は、相前後するコイル
の夫々の端部と、たとえばフラッシュバット溶接法等に
よって接合してエンドンス圧延することも可能で更に圧
延能率は向上する。
Note that it is also possible to join both ends of each coil to the respective ends of the preceding and following coils by, for example, flash butt welding, and perform endless rolling, thereby further improving the rolling efficiency.

移送から保熱炉、アンコイラ−に亘っての保熱温度は6
00〜700℃が好ましい。
Heat retention temperature from transfer to heat retention furnace and uncoiler is 6.
00-700°C is preferred.

その理由は素線段階すなわち移送中、保熱中等での二次
スケールの発生、脱炭の防止および圧延中の材料の変形
抵抗および熱間脆性、すなわち変形能、さらに細線圧延
完了時のインライン熱処理を行うための十分な仕上り温
度等の点から考えて最も好ましい温度範囲が600〜7
00℃テアル。
The reasons for this are the occurrence of secondary scale during the strand stage, that is, during transportation, heat retention, etc., prevention of decarburization, deformation resistance and hot brittleness of the material during rolling, ie deformability, and in-line heat treatment at the completion of thin wire rolling. The most preferable temperature range is 600 to 7 in terms of sufficient finishing temperature etc.
00℃ teal.

第2図に模式的な材料の温度推移をビレットの抽出時か
ら工程に従って示したが、1はクーリングトラフでの冷
却過程、2はコイル巻取から保熱炉までの移送過程、3
は保熱中、4は圧延中の温度である。
Figure 2 schematically shows the temperature transition of the material according to the process from the time of billet extraction. 1 is the cooling process in the cooling trough, 2 is the transfer process from coil winding to the heat retention furnace, and 3
is the temperature during heat retention, and 4 is the temperature during rolling.

4で材料温度が上昇しているのは加工発熱によるもので
、本発明の要点も、この加工発熱を有効に利用しインラ
イン熱処理を行うことにあり、熱エネルギーを極めて無
駄なく利用している。
The rise in material temperature in No. 4 is due to processing heat generation, and the key point of the present invention is to effectively utilize this processing heat generation to perform in-line heat treatment, so that thermal energy is utilized extremely efficiently.

なお、加熱発熱は圧延過程の各孔型での平均減面率、ス
タンド間きより、圧延速度、圧延材の材質と密接に関係
する。
The heating heat generation is closely related to the average area reduction rate of each hole type during the rolling process, the stand distance, the rolling speed, and the material of the rolled material.

たとえば、5WRH62A等の高炭素鋼線材では、表2
に示すごとく保熱温度を600℃に保つことによって、
圧延速度をAIパス入口で1.25Ml5にすることに
より3φ仕上り時で、1000℃を確保することが出来
、つづくインライン熱処理を極めて良好な条件で行うこ
とが出来た。
For example, for high carbon steel wire rods such as 5WRH62A, Table 2
By keeping the heat retention temperature at 600℃ as shown in
By setting the rolling speed to 1.25 Ml5 at the entrance of the AI path, it was possible to secure a temperature of 1000°C at the time of 3φ finishing, and the subsequent in-line heat treatment could be performed under extremely good conditions.

次に、圧延機以降について詳しく説明する。Next, the rolling mill and subsequent parts will be explained in detail.

圧延機は縦方向、横方向から圧下を交互に加える方式の
H〜V配列あるいはロール水平軸を±45゜交互に傾斜
させたX型配列の通常ブロックミルと呼ばれるタイプの
連続圧延機を用いるのが好ましG)。
The rolling mill is a continuous rolling mill of the type usually called a block mill, which has an H to V arrangement in which rolling is applied alternately from the longitudinal and lateral directions, or an X-shaped arrangement in which the horizontal axis of the rolls is tilted alternately by ±45°. G) is preferred.

この際線材が細径となるので従来ミルをそのまま用いる
ことはミスロール等のトラブルを招く頻度が多くなるた
め次のような条件を設定することが好ましい。
At this time, since the wire rod has a small diameter, using the conventional mill as it is increases the frequency of troubles such as misrolling, so it is preferable to set the following conditions.

すなわち、12φ→3φの実施例をもとに説明すると ア)可能な限り小径ロール(D=100〜150φ)を
用いる、 イ)相隣なるロール対間のきよりは可能な限り近接(t
=300〜500關)させる、 つ)相隣なるスタンド間には圧延中に積極的に張力(σ
t/k = 0.01〜0.30但しに;降伏応力)を
附加する、 等の改善により安定した圧延が行なわれると同時に、伸
び効率も高くなり圧延機全体を極めてコンパクトにでき
、設備費を著るしく節約できる。
In other words, based on the example of 12φ→3φ, a) use small diameter rolls (D=100 to 150φ) as much as possible, and b) keep the distance between adjacent roll pairs as close as possible (t
= 300 to 500 degrees), 2) Active tension (σ) is applied between adjacent stands during rolling.
By adding t/k = 0.01 to 0.30 (yield stress), etc., stable rolling is performed, and at the same time, elongation efficiency is increased, making the entire rolling mill extremely compact and reducing equipment costs. can save significantly.

圧延速度はブロックミルの入口で1.25M/S前後、
最終で20 M/S (3φの場合)前後にすることに
より圧延終了時の材料温度を950℃〜1000℃まで
加工熱によって上昇させることが出来続くインライン熱
処理を行うのに十分な状態になる。
The rolling speed is around 1.25M/S at the entrance of the block mill.
By setting the final rolling speed to around 20 M/S (in the case of 3φ), the temperature of the material at the end of rolling can be raised to 950° C. to 1000° C. by processing heat, which is sufficient to carry out the subsequent in-line heat treatment.

たとえば5.5φ以上は高Cの硬鋼線材で通常用いられ
る恒温変態熱処理すなわちダイレクトパテンティング処
理等も3φで行うことによって冷却速度のコントロール
がしやすく、かつ、表層の中心の温度差も、極めて小さ
くできるから、断面全体に亘って極めて均一な状態で理
想冷却曲線に近ずけることが可能で、当然のことながら
高水準の線材品質が得られる。
For example, for 5.5φ or more, it is easier to control the cooling rate by performing isothermal transformation heat treatment, or direct patenting treatment, which is normally used for high C hard steel wire rods, with 3φ, and the temperature difference at the center of the surface layer is extremely small. Since it can be made small, it is possible to approach the ideal cooling curve in an extremely uniform state over the entire cross section, and naturally a high standard of wire quality can be obtained.

なお、保熱炉の入側で接合された接合部は圧延終了後に
自動検出、マーキングされ適当な段階で切断して除去す
ることができる。
Note that the joints joined at the entrance side of the heat retention furnace are automatically detected and marked after rolling, and can be cut and removed at an appropriate stage.

なお圧延速度20〜30 M/Sの水準は各種の材質の
線材について加工発熱でインライン熱処理をするのに十
分な仕上り温度を得るのに十分なだけでなく前述の接合
部の検出あるいは寸法、疵の検出、インライン切断、イ
ンライン熱処理のやり易さ等からみても極めて有利な速
度となる。
The rolling speed of 20 to 30 M/S is not only sufficient to obtain a finishing temperature sufficient for in-line heat treatment of wire rods made of various materials, but also to detect the aforementioned joints, dimensions, and defects. This speed is extremely advantageous in terms of ease of detection, in-line cutting, and in-line heat treatment.

たとえば5.5φ以上で従来性なわれるステルモア方式
調整冷却法のかわりに仕上げ圧延後の直線状の移送過程
での恒温変態熱処理を可能にするもので、従来法のルー
ズコイル状での線材と線材の重なり部、搬送コンベアー
と線材の重なり部等が原因となる材質のバラツキをさけ
ることが出来、良好な製品を得ることが可能である。
For example, instead of the conventional Stelmore adjustment cooling method used for 5.5φ or more, it enables isothermal transformation heat treatment during the linear transfer process after finish rolling. It is possible to avoid variations in material quality caused by overlapping parts of wire rods, transport conveyors and wire rods, etc., and it is possible to obtain good products.

以上のごとく本発明はビレットから線材をつくるまでの
一次圧延および大物線材から細物線材をつくる二次圧延
いずれの圧延も生産効率よくかつ熱エネルギーを有効に
生かし、かつ、従来の二次圧延のスケールロス等の欠点
も解消でき、高水準の高、低いずれの炭素鋼線材をも自
在に得ることができる極めて優れた線材圧延の圧延方法
ならびにレイアウトを提供するものである。
As described above, the present invention improves production efficiency and makes effective use of thermal energy in both the primary rolling from a billet to a wire rod and the secondary rolling from a large wire rod to a thin wire rod. The present invention provides an extremely excellent wire rod rolling method and layout that can eliminate drawbacks such as scale loss and freely obtain high-level and low-level carbon steel wire rods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来圧延法と本発明の関連、および本発明の各
工程を示した図、第2図は第一次圧延、第二次圧延の模
式的材料温度推移を示した図、第3図は圧延方法設定の
ための方法の一例を示す図である。 第1図、1:加熱炉、2:粗圧延機、3:中間圧延機、
4:仕上げ圧延機、5:クーリングトラフ、6:調整冷
却装置、7:巻取り機、第3図、QIW:塑性加工発熱
量、Qlp :塑性加工摩擦熱量、Q2 R:輻射によ
る冷却装置、Q2CV1:空気の対流による冷却熱量、
Q2CV2:水の対流による冷却熱量、Q2CD’ロー
ルとの接触で生ずる熱伝導による冷却水量、C:比熱、
γ:比重量、a:熱伝導率、12時間、T二線付温度、
d:線材寸法。
Fig. 1 is a diagram showing the relationship between the conventional rolling method and the present invention, and each process of the present invention, Fig. 2 is a diagram showing a schematic material temperature transition in the primary rolling and secondary rolling, and Fig. 3 The figure is a diagram showing an example of a method for setting a rolling method. Fig. 1, 1: heating furnace, 2: rough rolling mill, 3: intermediate rolling mill,
4: Finish rolling mill, 5: Cooling trough, 6: Adjustment cooling device, 7: Winding machine, Fig. 3, QIW: Plastic working calorific value, Qlp: Plastic working frictional calorific value, Q2 R: Cooling device by radiation, Q2CV1 : Cooling heat amount due to air convection,
Q2CV2: Cooling heat amount due to water convection, Q2 Cooling water amount due to heat conduction caused by contact with CD' roll, C: Specific heat,
γ: specific weight, a: thermal conductivity, 12 hours, temperature with two T lines,
d: Wire size.

Claims (1)

【特許請求の範囲】 1 鋼片を、粗圧延、中間圧延および仕上圧延する第一
次圧延によって所定線径の線材を得、これを二次スケー
ルの生成が抑止される温度に冷却した後、副列的に配置
した保熱或は加熱炉へ装入して、保熱或は加熱し、第二
次圧延を行なって昇温せしめた後、加熱することなく熱
処理を開始することを特徴とする細径線材の製造方法。 2 粗圧延機、中間圧延機、仕上圧延機から構成される
第−次圧延機動に副列的に、線材コイルを保熱或は加熱
する保熱炉、第二次圧延機およびオンライン熱処理装置
を置けたことを特徴とする細径線材の製造装置列。
[Scope of Claims] 1 A steel billet is subjected to primary rolling including rough rolling, intermediate rolling, and finish rolling to obtain a wire rod of a predetermined wire diameter, and after cooling the wire rod to a temperature at which generation of secondary scale is suppressed, The material is charged into heat retention or heating furnaces arranged in sub-rows, heat-retained or heated, and then subjected to second rolling to raise the temperature, and then heat treatment is started without heating. A method for manufacturing small diameter wire rods. 2. A heat retention furnace for retaining or heating the wire rod coil, a secondary rolling mill, and an online heat treatment device are installed as sub-columns to the primary rolling machine consisting of a rough rolling mill, an intermediate rolling mill, and a finishing rolling mill. A line of manufacturing equipment for small diameter wire rods.
JP2821979A 1979-03-13 1979-03-13 Manufacturing method and equipment for small diameter wire Expired JPS5927641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2821979A JPS5927641B2 (en) 1979-03-13 1979-03-13 Manufacturing method and equipment for small diameter wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2821979A JPS5927641B2 (en) 1979-03-13 1979-03-13 Manufacturing method and equipment for small diameter wire

Publications (2)

Publication Number Publication Date
JPS55120402A JPS55120402A (en) 1980-09-16
JPS5927641B2 true JPS5927641B2 (en) 1984-07-07

Family

ID=12242506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2821979A Expired JPS5927641B2 (en) 1979-03-13 1979-03-13 Manufacturing method and equipment for small diameter wire

Country Status (1)

Country Link
JP (1) JPS5927641B2 (en)

Also Published As

Publication number Publication date
JPS55120402A (en) 1980-09-16

Similar Documents

Publication Publication Date Title
RU2268098C2 (en) Method for making thin flat articles and plant for performing the same
RU2381847C1 (en) Method and relates to it installation for manufacturing of steel strips with discontinuity
JP2015511533A (en) Method for producing hot rolled silicon steel
US1931912A (en) Method of forming aluminum
US4060428A (en) Process for forming ferrous billets into finished product
JPS59143028A (en) Cooler for metallic strip in continuous heat treating furnace
JPH0411608B2 (en)
JPH01215925A (en) Method for cold rolling grain-oriented magnetic steel sheet
KR101018178B1 (en) Wire-rod Manufacturing Method
JPS5927641B2 (en) Manufacturing method and equipment for small diameter wire
KR101490600B1 (en) Method for manufacturing wire rod
JPH091209A (en) Equipment for continuously casting and hot-rolling stainless steel strip and manufacture of stainless steel strip excellent in surface quality
JPS6115129B2 (en)
JP3698088B2 (en) Manufacturing method of hot-rolled steel strip
JP2006341274A (en) Method for producing steel sheet
JP2002167619A (en) Ferritic stainless steel wire rod and its manufacturing method
JPS6343445B2 (en)
JP2844924B6 (en) Manufacturing method of seamless steel pipe and its manufacturing equipment
JP2844924B2 (en) Manufacturing method of seamless steel pipe and manufacturing equipment thereof
US1907019A (en) Process of producing sheet metal
JPH09300004A (en) Method for rolling hot rolled steel strip
JPH01306004A (en) Method for rolling continuously cast thin slab
JPS6027727B2 (en) Control method for rolling material properties in continuous hot rolling mills
JPH01143704A (en) Controlled rolling method for bar steel
JP2002126804A (en) Method for hot-rolling steel bar