JPH0411608B2 - - Google Patents

Info

Publication number
JPH0411608B2
JPH0411608B2 JP59095755A JP9575584A JPH0411608B2 JP H0411608 B2 JPH0411608 B2 JP H0411608B2 JP 59095755 A JP59095755 A JP 59095755A JP 9575584 A JP9575584 A JP 9575584A JP H0411608 B2 JPH0411608 B2 JP H0411608B2
Authority
JP
Japan
Prior art keywords
rolling
cooling
hot
grains
immediately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59095755A
Other languages
Japanese (ja)
Other versions
JPS60243226A (en
Inventor
Koichi Hashiguchi
Akira Yasuda
Atsuto Pponda
Minoru Nishida
Toshio Tagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9575584A priority Critical patent/JPS60243226A/en
Publication of JPS60243226A publication Critical patent/JPS60243226A/en
Publication of JPH0411608B2 publication Critical patent/JPH0411608B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、熱間圧延技術に関するもので、特
に、熱間仕上圧延された鋼材の材質を向上させる
方法および装置に関するものである。 (従来の技術) 従来、鋼板の熱間仕上圧延に際しては、例えば
6〜7段の熱間仕上圧延機の最終スタンドから
1.2〜5mmの厚さに圧延された鋼板が800〜1000℃
の温度で出た後、7〜10mの空冷域を通過し、こ
の空冷域において温度、板厚、板形状が測定され
た後、ゾーン冷却装置に通されて水冷されるのが
普通である。 上述した最終段スタンドから出た熱延鋼板の温
度、板厚、板幅、板形状等は圧延機のフイードバ
ツク制御のため最終スタンドの出側に順次に設け
られた温度計、X線厚み計、板幅計、プロフイル
計、形状検出器等のフイードバツク制御用センサ
ーまたは測定装置によつて測定され、これらの測
定は鋼板表面上の水および水蒸気の存在によつて
測定精度を低下するため、空冷域を設けることが
必要であるとされている。 しかしながら、かかる空冷域を熱延鋼板が通過
する結果として、スケールの発生の問題があるば
かりでなく、熱間圧延によつて生じた内部歪が消
失され、組織が粗大化するという問題があつた。 上述した空冷域を設けることによつて生ずるス
ケールの問題を解決する方法として、特開昭58−
157517号公報には、仕上圧延機とゾーン冷却装置
間の全域にわたつて、その間を移動する鋼板の表
裏全面をスリツト状のラミナーノズルから噴射さ
れたラミナー水流で覆つて大気を遮断する技術が
記載されている。この技術は、鋼板の表裏全面を
水流で完全に覆つて空気との接触を遮断すること
によつてスケールの発生を低減させることを目的
とするものであり、仕上圧延機の出口側において
圧延後の鋼板の表裏全面を仕上圧延機とゾーン冷
却装置間の全域において覆う必要があり、したが
つて仕上圧延後の鋼板の板厚をX線厚み計によつ
て測定する等の板状態の測定を仕上圧延機とゾー
ン冷却装置との間で行なうことができないという
問題があり、また、熱間圧延によつて生じた内部
歪の消失による組織の粗大化に対して何等の考慮
もなされていない。 (発明が解決しようとする課題) 本発明は、熱間圧延直後の鋼板の冷却を制御す
ることによつて、上述した従来の欠点をなくし、
熱延鋼板の材質を向上させようとするものであ
る。 (課題を解決するための手段) 熱延鋼板の材質向上は組織の微細化により達成
される。微細組織を得る手段として制御圧延およ
び制御冷却が知られている。これらの方法はいず
れもγの細粒化、γ−α変態中の急冷、α粒成長
の抑制を基本的考えとしている。 本発明は、熱間圧延直後に強水冷して圧延歪を
残した状態からα変態させることによつてγ−α
変態によるα細粒化による材質の向上が可能であ
るという事実の認識に基づくものである。 これがため、本発明は、熱間圧延に際し圧延直
後の熱延材を0.5秒以内に熱伝達係数が
1000Kcal/m2−hr℃以上の冷却能力で急冷して
圧延歪を蓄積した状態から変態させることにより
熱間圧延材の材質を制御することを特徴とし、か
ように、熱間圧延機出側の直近で圧延直後の熱延
材を急冷する(以下直近急冷と略称する)ことに
より著しい細粒組織を得ることができる。 また、本発明は上述した材質制御を実施するた
めの装置として、熱間仕上タンデム圧延機の最終
段および/またはその前段のロール出側に熱伝達
係数が1000Kcal/m2−hr℃以上の冷却能力を有
する直近急冷装置を設けたことを特徴とする。 (作用) 上述した本発明による直近急冷によつて熱延鋼
板の組織微細化により材質が向上する作用につい
て以下に説明する。 鋼スラブの加熱、粗圧延、仕上圧延、冷却(水
冷)、コイル巻取に至る熱延鋼板の製造プロセス
での冶金的組織変化はスラブ加熱時の粗大オース
テナイトγ粒が粗圧延、仕上圧延中に再結晶を繰
り返し細粒化され、その後の冷却過程で細粒γか
らフエライトαを主体とする組織に変態する。 再結晶γ粒からのγ→α変態はγ粒界へのα核
生成に始まり、α核の成長により進行し、それぞ
れのα粒がぶつかり合つて終了する。したがつ
て、γ粒が小さいほどα核の生成場所が多くなる
ため、ぶつかり合うまでの距離が短くなるため、
α粒は細かくなる。 通常の仕上圧延の後段では圧延温度が低いた
め、またパス間の時間が短いため、熱延直後はγ
粒は再結晶が起こり難く、加工されたままの状態
となる。この様な加工γ粒は再結晶粒より伸びた
粒のため単位体積当りの粒界面積が大きい。さら
に粒内の変形帯と呼ばれる加工組織が形成され、
α核生成場所となる。したがつて、加工γ粒は再
結晶γ粒より格段にα核生成場所が多いため、加
工γ粒から変態したα粒は、再結晶γ粒からのα
粒より細かくなる。 本発明の直近急冷は上記の加工γ粒からの変態
を利用してαり細粒化を図るものである。即ち、
直近急冷を行なわない通常のプロセスでは仕上圧
延出側から水冷設備までの非水冷ゾーンが数秒間
存在するため、その間に加工γ粒は再結晶および
回復(変形帯の消失)が進行してしまい加工状態
のγ粒からの変態は期待できない。仕上圧延直後
の直近急冷により鋼板温度を低下させると再結晶
速度、回復速度とも急に低下するため、加工状態
を保つたままの変態へ至らせることができ、従来
にない細粒化が可能となる。 本発明によれば、熱間圧延直後に、例えば0.4
秒で30℃の温度降下の直近急冷を行なうことによ
り、加工γ状態の凍結(圧延歪を蓄積した状態)
を生ぜしめるもので、直近急冷中にγ→α変態が
生じる必要はなく、実際には、直近急冷後の加工
状態γから冷却ゾーン内でα変態が生じていると
考えられる。熱間圧延直後の加工γ状態を凍結す
ることにより、その結果として、α核生成場所が
多くなり、α変態核が多数生じる。冷却ゾーンの
作用は変態温度域へ鋼板温度を低下させ、変態を
進ませることにある。また、さらに温度低下さ
せ、変態完了後のα粒の粒成長を抑制する作用も
ある。したがつて、冷却ゾーンの冷却にはフエラ
イト粒を細粒化する効果はあまりない。 以上のことから直近急冷を行なわない通常の冷
却ゾーンのみの冷却では、仕上圧延出側から水冷
設備までの非水冷ゾーンの間に加工γ粒は再結晶
および回復が進行してしまい、α核生成場所が減
少し、その後の冷却ゾーンでのα変態核が少なく
なるためα粒が大きくなる。直近急冷を行なう
と、冷却ゾーンの変態時の変態を多くすることが
でき、顕著な細粒化が実現できる。 (実施例) 第1図は本発明による熱間仕上圧延機の出側の
概略線図を示す。 図面において、1および2は熱間仕上圧延機の
最終スタンドおよび前段スタンドを示し、図示の
例では、最終スタンド1の後方直後に直近急冷装
置として強水冷ヘツダー31〜33,41〜43を設
置し、各ヘツダーに水冷ノズル51〜53,61
3をそれぞれ圧延直後の熱延鋼板7を強水冷し
得るようロールバイト8に向け傾斜させて取付け
ている。 直近急冷装置の水冷ノズルは熱伝達係数が
1000Kcal/m2−hr℃以上で、冷却速度で例えば
30℃/秒の冷却能力を有し、この冷却速度で圧延
直後0.5秒以内に熱延鋼板を強水冷することが必
要である。したがつて、直近急冷装置の最先端の
1〜2本の水冷ノズル51,52,61,62は噴射
圧を50〜200Kg/cm2で、可変とするのが良い。直
近急冷装置による直近急冷域Aの長さは1〜5m
あれば十分であり、直近急冷域Aの後にガスジエ
ツトその他の適当な水切り手段を設けて空冷域B
をゾーン冷却装置9の手間に設け、この空冷域B
内に所要の測定装置を設けて温度、板厚、板幅、
板形状等の測定を行なうことができる。 実施例 1 重量でC0.15%、Mn0.5%含む鋼を転炉出鋼後、
1250℃に加熱し、粗圧延で35mm厚さのシートバー
とし、7スタンドの熱間仕上圧延機で3.2mm厚さ
に仕上げた。熱間圧延に際しての圧下条件および
仕上温度を同じとし、本発明によるものは水冷ジ
エツトにより直近急冷し、比較例のものは直近急
冷しないで圧延した。直近急冷条件と圧延後の鋼
板のα粒径、硬度を第1表に示す。
(Industrial Application Field) The present invention relates to hot rolling technology, and particularly to a method and apparatus for improving the quality of hot finish rolled steel. (Prior art) Conventionally, when hot finishing rolling of a steel plate is carried out, for example, from the final stand of a 6 to 7-high hot finishing mill,
A steel plate rolled to a thickness of 1.2 to 5 mm is heated to 800 to 1000℃.
After exiting at a temperature of , it passes through an air-cooling zone of 7 to 10 m, where the temperature, plate thickness, and plate shape are measured, and then it is normally passed through a zone cooling device and water-cooled. The temperature, plate thickness, plate width, plate shape, etc. of the hot-rolled steel plate coming out of the final stand mentioned above are measured by a thermometer, an X-ray thickness gauge, and a Measurements are performed using feedback control sensors or measurement devices such as sheet width gauges, profile meters, and shape detectors. It is considered necessary to provide However, as a result of the hot-rolled steel sheet passing through such an air-cooling region, there is not only the problem of scale formation, but also the problem of the internal strain caused by hot rolling disappearing and the structure becoming coarser. . As a method to solve the scale problem caused by providing the above-mentioned air cooling area,
Publication No. 157517 describes a technology that covers the entire area between the finishing rolling mill and the zone cooling device, covering the entire front and back sides of the steel plate moving between them with a laminar water stream sprayed from a slit-shaped laminar nozzle to block the atmosphere. has been done. This technology aims to reduce the formation of scale by completely covering the front and back surfaces of the steel plate with a stream of water to cut off contact with air. It is necessary to cover the entire front and back surfaces of the steel plate in the entire area between the finish rolling mill and the zone cooling device. Therefore, it is necessary to measure the plate condition by measuring the thickness of the steel plate after finish rolling with an X-ray thickness gauge. There is a problem that the rolling process cannot be carried out between the finishing mill and the zone cooling device, and no consideration is given to the coarsening of the structure due to the disappearance of internal strain caused by hot rolling. (Problems to be Solved by the Invention) The present invention eliminates the above-mentioned conventional drawbacks by controlling cooling of a steel plate immediately after hot rolling,
The aim is to improve the material quality of hot rolled steel sheets. (Means for solving the problem) Improvement in the material quality of hot-rolled steel sheets is achieved by refining the structure. Controlled rolling and controlled cooling are known as means for obtaining a fine structure. All of these methods are based on the basic idea of making γ grains finer, rapidly cooling during γ-α transformation, and suppressing α grain growth. In the present invention, the γ-α
This is based on the recognition of the fact that it is possible to improve the quality of the material by reducing the alpha grain size through transformation. Therefore, in the present invention, the heat transfer coefficient of the hot-rolled material immediately after rolling changes within 0.5 seconds during hot rolling.
It is characterized by controlling the material quality of the hot-rolled material by rapidly cooling it with a cooling capacity of 1000 Kcal/m 2 -hr°C or more and transforming it from the state where rolling strain has been accumulated. A remarkable fine grain structure can be obtained by rapidly cooling the hot-rolled material immediately after rolling (hereinafter abbreviated as "immediate quenching"). Further, the present invention provides a device for implementing the above-mentioned material quality control, and provides cooling with a heat transfer coefficient of 1000 Kcal/m 2 -hr°C or more on the roll exit side of the final stage and/or the previous stage of a hot finishing tandem rolling mill. It is characterized by being equipped with a capable immediate quenching device. (Function) The effect of improving the material quality by refining the structure of the hot-rolled steel sheet by the immediate quenching according to the present invention described above will be described below. The metallurgical structure changes during the manufacturing process of hot-rolled steel sheets, including heating of the steel slab, rough rolling, finish rolling, cooling (water cooling), and coil winding. The grains are refined through repeated recrystallization, and during the subsequent cooling process, the fine grains γ transform into a structure mainly composed of ferrite α. The γ→α transformation from recrystallized γ grains begins with α nucleation at the γ grain boundaries, progresses with the growth of α nuclei, and ends when the respective α grains collide. Therefore, the smaller the γ grains, the more places α nuclei can be generated, and the shorter the distance between them until they collide.
α grains become finer. Because the rolling temperature is low in the latter stages of normal finish rolling and the time between passes is short, γ is
The grains are difficult to recrystallize and remain in the processed state. Since such processed γ grains are elongated grains than recrystallized grains, the grain boundary area per unit volume is large. Furthermore, a processed structure called a deformation zone within the grain is formed,
It becomes the site of α nucleation. Therefore, since processed γ grains have significantly more α nucleation sites than recrystallized γ grains, α grains transformed from processed γ grains are
finer than grains. In the immediate quenching of the present invention, the above-mentioned transformation from the processed γ grains is utilized to refine α grains. That is,
In a normal process that does not perform immediate quenching, there is a non-water cooling zone for several seconds from the finish rolling exit side to the water cooling equipment, and during this time recrystallization and recovery (disappearance of deformation bands) of processed γ grains proceed, resulting in processing failure. Transformation from γ grains in the state cannot be expected. When the steel plate temperature is lowered by immediate rapid cooling immediately after finish rolling, both the recrystallization rate and the recovery rate suddenly decrease, making it possible to achieve transformation while maintaining the processed state, making it possible to achieve unprecedented grain refinement. Become. According to the present invention, immediately after hot rolling, for example, 0.4
By performing immediate rapid cooling with a temperature drop of 30°C in seconds, the processed γ state is frozen (a state in which rolling strain has accumulated).
It is not necessary for the γ→α transformation to occur during the most recent quenching, and in fact, it is considered that the α transformation occurs in the cooling zone from the processed state γ after the most recent quenching. By freezing the processed γ state immediately after hot rolling, the number of α nucleation locations increases and a large number of α transformation nuclei are generated. The function of the cooling zone is to lower the steel plate temperature to the transformation temperature range and promote transformation. It also has the effect of further lowering the temperature and suppressing the grain growth of α grains after completion of transformation. Therefore, cooling in the cooling zone has little effect on refining the ferrite grains. From the above, in the normal cooling only in the cooling zone without immediate quenching, recrystallization and recovery of processed γ grains proceed during the non-water cooling zone from the finish rolling exit side to the water cooling equipment, resulting in α nucleation. The number of α-transformation nuclei in the subsequent cooling zone decreases, and the α-grains become larger. If immediate quenching is performed, the transformation in the cooling zone can be increased, and significant grain refinement can be achieved. (Example) FIG. 1 shows a schematic diagram of the exit side of a hot finishing mill according to the present invention. In the drawings, 1 and 2 indicate the final stand and the front stand of the hot finishing rolling mill, and in the illustrated example, strong water-cooled headers 3 1 to 3 3 , 4 1 to 4 are installed immediately behind the final stand 1 as immediate quenching devices. 3 and water cooling nozzles 5 1 to 5 3 , 6 1 to each header.
6 and 3 are respectively installed so as to be inclined toward the roll bite 8 so that the hot-rolled steel plate 7 immediately after rolling can be strongly water-cooled. The water cooling nozzle of the immediate quenching device has a heat transfer coefficient of
At temperatures above 1000Kcal/m 2 -hr℃, the cooling rate is e.g.
It has a cooling capacity of 30°C/sec, and at this cooling rate it is necessary to strongly water-cool the hot rolled steel sheet within 0.5 seconds immediately after rolling. Therefore, it is preferable that the one or two water cooling nozzles 5 1 , 5 2 , 6 1 , 6 2 at the most advanced of the immediate quenching device have a variable injection pressure of 50 to 200 Kg/cm 2 . The length of the immediate quenching area A by the immediate quenching device is 1 to 5 m.
It is sufficient to install a gas jet or other appropriate water draining means after the immediate quenching area A, and air cooling area B.
is provided in the zone cooling device 9, and this air cooling area B
The necessary measuring equipment is installed inside to measure temperature, plate thickness, plate width,
It is possible to measure the plate shape, etc. Example 1 After steel containing 0.15% C and 0.5% Mn by weight was tapped from a converter,
It was heated to 1250°C, rough rolled into a sheet bar with a thickness of 35 mm, and finished with a 7-stand hot finishing mill to a thickness of 3.2 mm. The rolling conditions and finishing temperature during hot rolling were the same, and those according to the present invention were immediately quenched using a water-cooled jet, while those of the comparative example were rolled without immediately quenching. Table 1 shows the most recent quenching conditions and the α grain size and hardness of the steel plate after rolling.

【表】 第1表から明らかなように、本発明による直近
急冷を行なうことによりα粒径を著しく微細化す
ることができる。なお、この実施例での水冷ジエ
ツトによる直近急冷時間は約0.4秒であり、この
間の温度降下は約30℃であり、この冷却条件から
水冷ノズルの熱伝導係数は約2000Kcal/m2−hr
℃である。 さらに、第1図に示す圧延機出側の直近急冷装
置のヘツダー31〜33,41〜43の使用本数また
は通板速度を変えて圧延後の水冷開始までの時間
を変え、フエライト粒度を調べた。その結果を第
2図のグラフに示す。 第2図から明らかなように、細粒化効果は圧延
直後から0.5秒以内に直近急冷を開始した場合に
現われ、0.5秒より遅れて強水冷を開始しても細
粒化効果は現われない。 上述の細粒化効果は最終仕上スタンド出側での
直近急冷に加えて、前段スタンド2あるいはその
前段のスタンドの各出側に同様の直近急冷装置を
設置して同様に直近急冷することによりさらに著
しい細粒化効果が得られる。 (発明の効果) 本発明によれば、熱間圧延直後0.5秒以内に熱
伝達係数が1000Kcal/m2−hr℃以上の冷却能力
で直近急冷することによつてα細粒化により材質
を向上させることができるという効果が得られ
る。
[Table] As is clear from Table 1, by performing the immediate quenching according to the present invention, the α grain size can be significantly refined. In addition, the most recent quenching time using the water-cooled jet in this example is about 0.4 seconds, and the temperature drop during this time is about 30°C. From this cooling condition, the thermal conductivity coefficient of the water-cooled nozzle is about 2000 Kcal/m 2 -hr.
It is ℃. Furthermore, by changing the number of headers 3 1 - 3 3 , 4 1 - 4 3 used or the threading speed of the headers 3 1 - 3 3 , 4 1 - 4 3 of the immediate quenching device on the exit side of the rolling mill shown in Fig. 1, the time until the start of water cooling after rolling was changed. Particle size was examined. The results are shown in the graph of FIG. As is clear from FIG. 2, the grain refining effect appears when immediate rapid cooling is started within 0.5 seconds immediately after rolling, and no grain refining effect appears even if strong water cooling is started later than 0.5 seconds. In addition to the immediate quenching at the exit side of the final finishing stand, the above-mentioned granulation effect can be further improved by installing a similar immediate quenching device on the exit side of the pre-stage stand 2 or each stand before it and performing the same immediate quenching. A remarkable grain refinement effect can be obtained. (Effects of the Invention) According to the present invention, the material quality is improved by α grain refinement by immediately quenching with a cooling capacity with a heat transfer coefficient of 1000 Kcal/m 2 -hr°C or more within 0.5 seconds immediately after hot rolling. This has the effect of being able to do this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による装置の概略線図、第2図
は圧延後の急冷開始時間とフエライト粒径との関
係を示すグラフである。 1……熱間仕上圧延機最終スタンド、2……前
段スタンド、31〜33,41〜43……直近急冷装
置の水冷ヘツダー、51〜53,61〜63……水冷
ノズル、7……熱延鋼板、8……ロールバイト、
9……ゾーン冷却装置。
FIG. 1 is a schematic diagram of an apparatus according to the present invention, and FIG. 2 is a graph showing the relationship between the quenching start time after rolling and the ferrite grain size. 1... Final stand of hot finishing rolling mill, 2... Pre-stage stand, 3 1 - 3 3 , 4 1 - 4 3 ... Water cooling header of immediate quenching equipment, 5 1 - 5 3 , 6 1 - 6 3 ... Water-cooled nozzle, 7...hot rolled steel plate, 8...roll bite,
9...Zone cooling device.

Claims (1)

【特許請求の範囲】 1 熱間圧延に際し、圧延直後、0.5秒以内に熱
伝達係数が1000Kcal/m2−hr℃以上の冷却能力
で急冷して圧延歪を蓄積した状態から変態させる
ことを特徴とする熱間圧延材の材質制御方法。 2 熱間仕上タンデム圧延機の最終段および/ま
たはその前段のロール出側に熱伝達係数
1000Kcal/m2−hr℃以上の冷却能力を有する直
近急冷装置を設けたことを特徴とする熱間圧延材
の材質制御装置。
[Claims] 1. During hot rolling, immediately after rolling, the product is rapidly cooled within 0.5 seconds using a cooling capacity with a heat transfer coefficient of 1000 Kcal/m 2 -hr°C or more to transform the rolled strain from the accumulated state. A method for controlling the material properties of hot rolled materials. 2 Heat transfer coefficient on the roll exit side of the final stage and/or the previous stage of the hot finishing tandem rolling mill
A material quality control device for hot rolled material, characterized in that it is equipped with an immediate quenching device having a cooling capacity of 1000 Kcal/m 2 -hr°C or more.
JP9575584A 1984-05-15 1984-05-15 Method and device for controlling quality of hot rolled material Granted JPS60243226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9575584A JPS60243226A (en) 1984-05-15 1984-05-15 Method and device for controlling quality of hot rolled material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9575584A JPS60243226A (en) 1984-05-15 1984-05-15 Method and device for controlling quality of hot rolled material

Publications (2)

Publication Number Publication Date
JPS60243226A JPS60243226A (en) 1985-12-03
JPH0411608B2 true JPH0411608B2 (en) 1992-03-02

Family

ID=14146310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9575584A Granted JPS60243226A (en) 1984-05-15 1984-05-15 Method and device for controlling quality of hot rolled material

Country Status (1)

Country Link
JP (1) JPS60243226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278655A (en) * 1994-04-15 1995-10-24 Nippon Steel Corp Production of structural thick steel plate
WO2001064362A1 (en) 2000-03-01 2001-09-07 Nkk Corporation Device and method for cooling hot rolled steel band and method of manufacturing the hot rolled steel band

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143019B1 (en) * 1999-09-29 2014-11-26 JFE Steel Corporation Method for manufacturing a coiled steel sheet
JP4803210B2 (en) * 2008-05-23 2011-10-26 住友金属工業株式会社 Manufacturing method of fine grain hot rolled steel sheet
JP5240407B2 (en) * 2010-04-28 2013-07-17 新日鐵住金株式会社 Double phase hot rolled steel sheet with excellent dynamic strength and method for producing the same
WO2011135700A1 (en) * 2010-04-28 2011-11-03 住友金属工業株式会社 Hot rolled dual phase steel sheet having excellent dynamic strength, and method for producing same
CA2880617C (en) 2012-08-21 2017-04-04 Nippon Steel & Sumitomo Metal Corporation Steel material
DE102013019698A1 (en) 2013-05-03 2014-11-06 Sms Siemag Ag Method for producing a metallic strip
JP6036617B2 (en) * 2013-09-10 2016-11-30 Jfeスチール株式会社 High strength hot rolled steel sheet with excellent toughness and method for producing the same
FR3024058B1 (en) 2014-07-23 2016-07-15 Constellium France METHOD AND EQUIPMENT FOR COOLING

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848633A (en) * 1981-09-18 1983-03-22 Nippon Steel Corp Production of cold rolled steel plate having excellent press formability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848633A (en) * 1981-09-18 1983-03-22 Nippon Steel Corp Production of cold rolled steel plate having excellent press formability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278655A (en) * 1994-04-15 1995-10-24 Nippon Steel Corp Production of structural thick steel plate
WO2001064362A1 (en) 2000-03-01 2001-09-07 Nkk Corporation Device and method for cooling hot rolled steel band and method of manufacturing the hot rolled steel band

Also Published As

Publication number Publication date
JPS60243226A (en) 1985-12-03

Similar Documents

Publication Publication Date Title
EP1436432B1 (en) Method of continuously casting electrical steel strip with controlled spray cooling
EP2546004B1 (en) Hot-rolled steel sheet manufacturing method and manufacturing device
EP1179375B1 (en) Method for producing hot rolled steel sheet and apparatus therefor
KR100796645B1 (en) Production method and installation for producing thin flat products
US3981752A (en) Method for controlling the temperature of steel during hot-rolling on a continuous hot-rolling mill
US4745786A (en) Hot rolling method and apparatus for hot rolling
JPH0411608B2 (en)
KR19990077215A (en) Process suitable for hot rolling of steel bands
JP4923650B2 (en) Method for preventing surface cracks in continuous cast slabs
EP0818545B1 (en) Process for continuously casting sheet metal
JP3373078B2 (en) Method of producing austenitic stainless steel ribbon-shaped slab with excellent cold-rolled surface quality and slab
CA2344423C (en) Method for producing hot-rolled strip and plates
US3874950A (en) Processing of steel bars after hot rolling
JPS60244405A (en) Hot finish rolling mill
KR100368238B1 (en) Temperature controlled rolling method of thick steel plate_
JP3698088B2 (en) Manufacturing method of hot-rolled steel strip
Singh et al. Influence of thermomechanical processing and accelerated cooling on microstructures and mechanical properties of plain carbon and microalloyed steels
JP2001314901A (en) Method for rolling hot rolled steel plate and hot rolling apparatus
JPH04305338A (en) Method for continuously casting billet for steel sheet
JPS60244404A (en) Hot finishing rolling mill
JPH0348250B2 (en)
Muojekwu Hot-direct rolling, runout table cooling and mechanical properties of steel strips produced from thin slabs
JPS60240306A (en) Outlet side device for hot finishing mill
JPS637843B2 (en)
WO1994014549A1 (en) Method of manufacturing hot rolled silicon steel sheets of excellent surface properties

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees