JPS5927580A - Photosemiconductor device - Google Patents

Photosemiconductor device

Info

Publication number
JPS5927580A
JPS5927580A JP57135201A JP13520182A JPS5927580A JP S5927580 A JPS5927580 A JP S5927580A JP 57135201 A JP57135201 A JP 57135201A JP 13520182 A JP13520182 A JP 13520182A JP S5927580 A JPS5927580 A JP S5927580A
Authority
JP
Japan
Prior art keywords
semiconductor layer
type
photodetector
mum
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57135201A
Other languages
Japanese (ja)
Inventor
Osamu Wada
修 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57135201A priority Critical patent/JPS5927580A/en
Publication of JPS5927580A publication Critical patent/JPS5927580A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enable to reduce leakage current by interposing an n<-> type A GaAs semiconductor layer between an n<-> type GaAs semiconductor layer and a Schottky electrode. CONSTITUTION:An n<-> type A GaAs semiconductor layer 7 which has, for exmple, a thickness of 1.9(mum) is inserted between an n<-> type GaAs semiconductor layer (light absorption layer) 2 and a Schottky electrode 4. The layer 2 may be converted into n<-> type A GaAs semiconductor layer. The photoreceiving diameter of a photodetector PD is 200(mum), the width of the channel of an FET is 50(mum), the length of a gate is 2(mum), the distances between source, drain an gate, drain are 3(mum), and the insulation between the photodetector PD and an amplifier AMP is performed by semi-insulating GaAs substrate 11 and a groove 18.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、例えば光信号の伝送を行なう際に使用して好
適なショットキ・バリア型光検知器と呼ばれる光半導体
装置に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to an optical semiconductor device called a Schottky barrier photodetector suitable for use, for example, in transmitting optical signals.

従来技術と問題点 従来、例えば、0.8〔μm〕帯の波長を持つ光を伝送
する際、光を検知する為に使用される光検知器として第
1図にこ見られる構造のものが知4れζいる。
Conventional technology and problems Conventionally, for example, when transmitting light with a wavelength in the 0.8 [μm] band, a photodetector with the structure shown in Figure 1 is used to detect light. I know ζ.

図に於いて、lはn″″型GaΔS半導体基板、2は厚
さ例えば5〔μm)程度のn−型GaΔS半導体層、3
は二酸化シリコン(Si02)絶縁膜、4は厚さ例えば
200 〔入〕の白金(PL)からなるショットキ電極
、5は厚さ例えば3000〔人〕の金(ΔU)からなる
電極、6は金・ゲルマニウム(Ge)からなるf[i 
4Igiをそれぞれ示す。
In the figure, l is an n'' type GaΔS semiconductor substrate, 2 is an n-type GaΔS semiconductor layer with a thickness of, for example, about 5 μm, and 3
is a silicon dioxide (Si02) insulating film, 4 is a Schottky electrode made of platinum (PL) with a thickness of, for example, 200 μm, 5 is an electrode made of gold (ΔU) with a thickness of, for example, 3000 μm, and 6 is an electrode made of gold. f[i
4Igi are shown respectively.

この光検知器では、図に矢印でlFt示しであるよ・)
に光はショットキ電極4を介して入射し、n−型Ga八
へ半導体1’tiZ中でキャリヤが生成され、該キャリ
ヤが電極5から取り出され゛ζ外部電流となる。
In this photodetector, the arrow in the figure indicates lFt.)
Light enters through the Schottky electrode 4, and carriers are generated in the semiconductor 1'tiZ to the n-type Ga8, and the carriers are taken out from the electrode 5 and become an external current.

第2図は、第1図の光検知器を使用する際の回路構成例
を説明する為の回路図である。
FIG. 2 is a circuit diagram for explaining an example of a circuit configuration when using the photodetector of FIG. 1.

図に於いて、l) Dは光検知器、PSはバイアス電源
、Rpdは負荷抵抗、0′1′は出力醋1子、hνは入
射光をそれぞれ示す。
In the figure, l) D is a photodetector, PS is a bias power supply, Rpd is a load resistance, 0'1' is an output voltage, and hv is an incident light.

ところで、この従来例では、ショットキ・バリアのリー
ク電流が大きい欠点があり、リーク電流が大であるとl
1fi電流が増加し、入射光の光力が大きくないと実用
にならない。そして、この傾向はバイアス電圧■が大で
あると顕著に現われる。
By the way, this conventional example has a drawback that the leakage current of the Schottky barrier is large, and if the leakage current is large,
It is not practical unless the 1fi current increases and the optical power of the incident light is large. This tendency becomes noticeable when the bias voltage (2) is large.

発明の目的 本発明は、リーク電流が低減されたショットキ・バリア
型光検知器を提供する。
OBJECTS OF THE INVENTION The present invention provides a Schottky barrier photodetector with reduced leakage current.

発明の構成 本発明では、AlGaAsと金属とのショットキ・バリ
アはバリア高さがGaAsと金属に於けるそれと比較す
ると高いことに若目し、n−型GaΔS半導体Jiii
(或いはn−型AlGaAs半導体屓)とシジントキ電
極との間にロー型ΔIGaΔS半導体屓を介在さ・U、
これに依りリーク電流を低減した光検知器を得るように
している6 発明の実施例 第3図は、本発明一実施例の要部切断側面図であり、第
1図に関し゛ζ説明した部分と同部分は同記号で指示し
である。
Structure of the Invention In the present invention, we take advantage of the fact that the Schottky barrier between AlGaAs and metal has a high barrier height compared to that between GaAs and metal.
A low-type ΔIGaΔS semiconductor layer is interposed between the n-type AlGaAs semiconductor layer (or n-type AlGaAs semiconductor layer) and the cylindrical electrode.
As a result, a photodetector with reduced leakage current can be obtained.6 Embodiment of the Invention FIG. 3 is a cutaway side view of a main part of an embodiment of the present invention, and the explanation with respect to FIG. Parts and parts that are the same are indicated by the same symbol.

本実施例が第1図の従来例と相違する点は、n−型Ga
AS半導体眉(光吸収層)2とショットキ電極4との間
に厚さ例えば1.9 〔μm)のn−型へIGaへS半
導体屓7が挿設され°ζいることである。尚、I】″型
GaΔS半導体1i1’t2は!1−型AlGa八Sへ
導体層に変え′ζも良い。
The difference between this embodiment and the conventional example shown in FIG. 1 is that the n-type Ga
An n-type to IGa S semiconductor layer 7 having a thickness of, for example, 1.9 μm is inserted between the AS semiconductor layer (light absorption layer) 2 and the Schottky electrode 4. Incidentally, the I]'' type GaΔS semiconductor 1i1't2 may be replaced with a !1-type AlGa8S as a conductive layer and 'ζ' may also be used.

本実施例では、この構成に依り、リーク電流を殆ど零に
することができる。
In this embodiment, with this configuration, leakage current can be reduced to almost zero.

第3図に関して説明した光検知器はFETと8.■合−
已るごとがてきる。第4図はそれを例示するものである
The photodetector described in connection with FIG. 3 is a FET and 8. ■Go-
Something will happen. FIG. 4 illustrates this.

第4図に13ケいて、11は主面の面指数か(100)
である?1」色縁性GaAsJIl&、12は1vさが
1.9 Cμm)であるnl’型Ga八Sへ導体層、1
3は厚さが3.8〔μrn)で不純物濃度が4×101
4  (cm−gであるn−型Ga八へ半導体層(光吸
収1m)、14は厚さが1.9〔μm〕であるアン1−
−プ高抵抗AI O,3G a O,7Δ5−31シ導
体層、15はアンドープGa八sgF、h%J体IFi
、16は厚さが()。
There are 13 numbers in Figure 4, and 11 is the surface index of the main surface (100)
Is it? 1'' color-rimmed GaAsJIl&, 12 is a conductor layer to nl' type Ga8S with 1V of 1.9 Cμm), 1
3 has a thickness of 3.8 [μrn] and an impurity concentration of 4×101
4 (cm-g) is an n-type Ga8 semiconductor layer (light absorption 1m), 14 is an ann-type semiconductor layer (light absorption 1m) with a thickness of 1.9 [μm].
- doped high resistance AI O, 3G a O, 7Δ5-31 conductor layer, 15 is undoped Ga 8sgF, h% J body IFi
, 16 has a thickness of ().

2〔μm〕で不純物濃′度がI X l O”  (c
+n−3)であってF ETのヂャネル層であるn型G
aAs半導体層、17は二酸化シリコン絶縁膜、18は
光検知器と増幅器とを絶縁膜1tlll 1−る為の溝
、19及び20はΔU/八uへGeからなるソース電極
及びドレイン電極、21ばアルミニウム(A1)・ゲー
ト電極、22は厚さ200〔人〕のAuからなるショッ
トキ電極、23は厚さ2000 (人〕の八lからなる
電極、24は厚さ3000 (人〕のA u G e 
/ N iからなる電極、PDは光検知器、AMPは増
幅器(FET)をそれぞれ示す。
2 [μm] and the impurity concentration is I
+n-3) and is the channel layer of the FET.
aAs semiconductor layer, 17 is a silicon dioxide insulating film, 18 is a groove for connecting the photodetector and amplifier to the insulating film, 19 and 20 are source and drain electrodes made of Ge to ΔU/8u; Aluminum (A1) gate electrode, 22 is a Schottky electrode made of Au with a thickness of 200 mm, 23 is an electrode made of 8 liters with a thickness of 2000 mm, and 24 is an A u G electrode with a thickness of 3000 mm. e
/Ni electrode, PD is a photodetector, and AMP is an amplifier (FET).

本装置に於ける光検知器PDの受光径は200(717
m)、’FETのチャネル幅は50(μm)、ゲート長
は2〔μm〕、ソース・ゲート間及びゲート・ドレイン
間の各距離は各3 [μm〕であり、そして、光検知器
PDと増幅器へMPとの絶縁を半絶縁性GaAs晶板1
1及び溝18で行なっているところも大きな特徴である
The light receiving diameter of the photodetector PD in this device is 200 (717
m), 'The channel width of the FET is 50 (μm), the gate length is 2 [μm], the distances between the source and gate and between the gate and drain are each 3 [μm], and the photodetector PD and A semi-insulating GaAs crystal plate 1 is used to insulate the amplifier from the MP.
1 and groove 18 is also a major feature.

第5図は第4し1の装置を使用状態においた場合の回路
図を示し、第4図に関して説明した部分と同部分は同記
号で指示しである。
FIG. 5 shows a circuit diagram of the fourth and first apparatus in use, and the same parts as those explained in connection with FIG. 4 are indicated by the same symbols.

図に於いて、Rpdは光検知器PDの負荷抵抗、Rfe
Lは増幅器へMPの負荷抵抗、Vpdは光検知器P l
−1に印加される電L[−1V d sは増幅器ΔM 
+)に印加される電圧、O′I”は出力醋1子をそれぞ
れ示す。
In the figure, Rpd is the load resistance of photodetector PD, Rfe
L is the load resistance of MP to the amplifier, Vpd is the photodetector P l
The voltage L applied to -1 [-1V d s is the amplifier ΔM
+) and O'I'' respectively indicate the output voltage.

この回路では、通′、〒;では不導通になっている光検
知器PDに光が入射されると導通となり電流が流れる。
In this circuit, when light is incident on the photodetector PD, which is non-conducting at points 1 and 2, the photodetector PD becomes conductive and a current flows.

その電流が抵抗Rp dに流れることに依り発生ずる電
圧降下が増幅器へM+>のゲートに一印加され増幅器へ
MPが導通して出力&iAl子0′Fから出力を得るこ
とができるものである。
A voltage drop caused by the current flowing through the resistor Rpd is applied to the gate of M+> to the amplifier, and MP is made conductive to the amplifier, so that an output can be obtained from the output &iAl terminal 0'F.

本装置に於いて、光検知器1)1)の電流−電圧特性を
測定したところ、パンチ・スルー状態の暗電流とし°ζ
llXl0−10(八〕がi仔られた。また、増幅器A
MPの静特性を測定したとごろ、ピンチ・オフ電圧2.
0 (V) 、9.、、= 1.7.(ms)が得ら 
れノこ。
In this device, when we measured the current-voltage characteristics of the photodetector 1) 1), we found that it was a punch-through dark current.
llXl0-10 (8) was added. Also, the amplifier A
When we measured the static characteristics of MP, we found that the pinch-off voltage was 2.
0 (V), 9. ,,=1.7. (ms) is obtained
Renoko.

第6図は第4図に関して説明しノこ装置の入出力特性を
測定したデータを線図としたものである。
FIG. 6 is a diagram showing the data obtained by measuring the input/output characteristics of the saw device explained in connection with FIG. 4.

これは、ファイパイ+1きの発光ダイオード(、LED
)を用い、RPd=10(KΩ) + Rf e t 
=10 〔KΩ)、vpa=o  (V)とじ7 f尋
ラレls特性を示し、光電流の増し分をLED電流の関
数としてブuノトシたものである。
This is a light emitting diode (, LED
), RPd=10(KΩ) + Rf e t
= 10 [KΩ], vpa = o (V), and shows the characteristics of 7 f thick, and the increment of photocurrent is plotted as a function of LED current.

この実験に於い゛C使用した光の強度範囲(<50〔μ
W))で、光検知器PDに流れる電流△■pd及び増幅
器AMPに流れる電流へI’ d sは入力光強度に比
例しており、これ等の比から電流増倍率19が得られる
。この(昨は、91,1・Rpd・△lpdからrlH
¥した値(破線)と一致しているので、木装置に依り晶
本的な電流増倍特性が得られたごとが判る。
The intensity range of the light used in this experiment (<50 [μ
W)), the current △■pd flowing to the photodetector PD and the current I' ds flowing to the amplifier AMP are proportional to the input light intensity, and a current multiplication factor of 19 can be obtained from the ratio of these. This (yesterday, from 91,1・Rpd・△lpd to rlH
Since it matches the value (dashed line), it can be seen that a crystalline current multiplication characteristic was obtained using the wooden device.

i;I記いずれの説明でも、光吸収層である半導体層と
してロー型G’aΔSを用いたが、これをn−mΔIG
aΔSを使用することもできる。但し、その場合は、検
知できる光の波長は短くなる。また、n−型ΔIGa八
S半へ体層のシコン1−キ・バリア側の頂は、八1の組
成を最大にすることに依り、この屓での光吸収を回避す
ることができ(ウィンド層とする)、更にまた、シリ・
ノトキ・バリア高も高くなるのでリーク電流の低減にも
有効であり、光の透過性に関しCば何等の不安もない。
i; In both of the explanations in Section I, low type G'aΔS was used as the semiconductor layer which is the light absorption layer, but this was replaced by nmΔIG
aΔS can also be used. However, in that case, the wavelength of light that can be detected becomes shorter. In addition, by maximizing the composition of 81 at the top of the n-type ΔIGa 8S hemisphere layer on the barrier side, light absorption at this bottom can be avoided (wind layer), and furthermore,
Since the height of the barrier becomes high, it is also effective in reducing leakage current, and there is no concern regarding light transmittance.

発明の効果 本発明に依れば、光吸収層である低キャリート濃度のG
a八へ (或いはAlGa八S)へ導体層上にこれより
A1組成比が大である低キ中すヤlr4度Δl G a
へs44導体層を形成し、その上に光が入射されるシジ
ソトキ電極を形成した構造の光検知器が得られ、該光検
知器は前記低キャリヤ濃度のAlGaΔS半導体晴を設
りたことに依り、リーク電流は極めζ少なくなる。
Effects of the Invention According to the present invention, G with a low carry concentration as a light absorption layer
To a8 (or AlGa8S) A low-temperature layer with a higher A1 composition ratio than this is placed on the conductor layer lr4 degrees Δl Ga
A photodetector having a structure in which an S44 conductor layer is formed and a silicate electrode through which light is incident is formed on the photodetector is obtained, and this photodetector is obtained by providing the AlGaΔS semiconductor layer with a low carrier concentration. , the leakage current is extremely reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の要部切111i側面図、第2図は第1
121に見られる従来例の使用状態に於りる回]I′8
図、第3図は本発明一実施例の要部りJ断側面図、第4
図は第3図に関して説明した本発明一実施例とFE T
を組合・Uた装置の要部リノ断側面図、第5図は第4図
に見られる装置の使用状態に於りる回1/8図、第6図
は第4図及び第5図に関し説明した装置に於りる入出力
特性を表わす線1ツ1である。 図に於い°C,lはn“型GaΔS半導体基板、2は+
】−型Ga八へ半導体ジン3は二酸化シリコン(Si0
2)絶縁膜、4はシリ・ノI・生電極、5及び6は電極
、7は11−型入1GaΔS半導体層、11は半絶縁性
G、aΔS栽板、12はn1型QaΔS半導体層、13
はn−型Ga八へ半導体層、14はアンドープ高抵抗へ
l O,3G a O,TへS半導体1賛、15はアン
ドープ(、aへS半導体層、16はn型GaA’s半導
体層、17は二酸化シリ」ン絶縁膜、18は溝、19及
び20はソース電極及びドレイン電極、−21はゲート
電極、22はシリ・ノトキ電極23及び24は電極、P
Dは光検知器、ΔMPは増幅器である。 特許出願人   工業技術院長  ル曵威第 3 図 第4図 第5図 第6図 11*d (mA)
Figure 1 is a side view of the main part of the conventional example, and Figure 2 is the 111i side view of the conventional example.
121 in the state of use of the conventional example] I'8
Figure 3 is a cross-sectional side view of the main part of one embodiment of the present invention, and Figure 4 is
The figure shows one embodiment of the present invention explained with reference to FIG.
Figure 5 is a 1/8th view of the device in use as shown in Figure 4. Line 1 represents the input/output characteristics of the device described. In the figure, °C, l is n" type GaΔS semiconductor substrate, 2 is +
]-type Ga 8 to semiconductor gin 3 is silicon dioxide (Si0
2) Insulating film, 4 is silicon/I raw electrode, 5 and 6 are electrodes, 7 is 11-type 1GaΔS semiconductor layer, 11 is semi-insulating G, aΔS substrate, 12 is n1 type QaΔS semiconductor layer, 13
is an n-type Ga8 semiconductor layer, 14 is an undoped high-resistance layer, 15 is an undoped S semiconductor layer, and 16 is an n-type GaA's semiconductor layer. , 17 is a silicon dioxide insulating film, 18 is a groove, 19 and 20 are source and drain electrodes, -21 is a gate electrode, 22 is a silicon dioxide insulating film 23 and 24 are electrodes, P
D is a photodetector and ΔMP is an amplifier. Patent Applicant: Director of National Institute of Industrial Science and Technology Lu Hanwei No. 3 Figure 4 Figure 5 Figure 6 Figure 6 11*d (mA)

Claims (1)

【特許請求の範囲】[Claims] 光吸収を行なう低キャリート濃度のGaAs  (或い
LiAIGaAs)半導体層、該GaAs’(或いはA
lGaAs>半導体層上に形成されそれよりA1組成比
が大である低キャリ十濃度AlGaAs半導体眉、該低
キャリヤ濃度Δ1GaAs半導体層上に形成され光が入
射されるショットキ電極を備えてなることを特徴とする
光半導体装置。
A GaAs (or LiAIGaAs) semiconductor layer with a low carry concentration that absorbs light;
lGaAs> A low carrier concentration AlGaAs semiconductor layer having a higher A1 composition ratio than that formed on the semiconductor layer, and a Schottky electrode formed on the low carrier concentration Δ1GaAs semiconductor layer and into which light is incident. Optical semiconductor device.
JP57135201A 1982-08-04 1982-08-04 Photosemiconductor device Pending JPS5927580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57135201A JPS5927580A (en) 1982-08-04 1982-08-04 Photosemiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57135201A JPS5927580A (en) 1982-08-04 1982-08-04 Photosemiconductor device

Publications (1)

Publication Number Publication Date
JPS5927580A true JPS5927580A (en) 1984-02-14

Family

ID=15146209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57135201A Pending JPS5927580A (en) 1982-08-04 1982-08-04 Photosemiconductor device

Country Status (1)

Country Link
JP (1) JPS5927580A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161083A (en) * 1983-02-28 1984-09-11 Yokogawa Hewlett Packard Ltd Photo-diode
US5032885A (en) * 1988-12-17 1991-07-16 Sumitomo Electric Industries, Ltd. Semiconductor device including a light receiving element, an amplifier, and an equalizer having a capacitor with the same laminate structure as the light receiving element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053918A (en) * 1974-08-05 1977-10-11 Nasa High voltage, high current Schottky barrier solar cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053918A (en) * 1974-08-05 1977-10-11 Nasa High voltage, high current Schottky barrier solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161083A (en) * 1983-02-28 1984-09-11 Yokogawa Hewlett Packard Ltd Photo-diode
US5032885A (en) * 1988-12-17 1991-07-16 Sumitomo Electric Industries, Ltd. Semiconductor device including a light receiving element, an amplifier, and an equalizer having a capacitor with the same laminate structure as the light receiving element

Similar Documents

Publication Publication Date Title
US8604462B2 (en) Photodetector
Averine et al. Geometry optimization of interdigitated Schottky-barrier metal–semiconductor–metal photodiode structures
JP2002324911A (en) Avalanche photodiode and method of manufacturing the same
WO2020146093A1 (en) Semiconductor photodetector assembly
JPS6191977A (en) Solid ultraviolet ray detector and manufacture thereof
JPWO2005008787A1 (en) Photodetector
EP0168964A1 (en) A semiconductor light receiving device
US4700209A (en) Avalanche photodiode and a method of making same
JPS5927580A (en) Photosemiconductor device
Sommers Jr et al. Photoelectromagnetic effect in insulating CdS
US7745853B2 (en) Multi-layer structure with a transparent gate
Razeghi et al. Planar monolithic integrated photoreceiver for 1.3–1.55 μm wavelength applications using GaInAs‐GaAs heteroepitaxies
Yeats et al. Long‐wavelength InGaAsP avalanche photodiodes
CN219106174U (en) APD photoelectric detector
KR20040049123A (en) Pin photo diode
US4328508A (en) III-V Quaternary alloy photodiode
US3493767A (en) Tunnel emission photodetector having a thin insulation layer and a p-type semiconductor layer
US5478757A (en) Method for manufacturing photodetector using a porous layer
Joshi et al. Low-noise UV-to-SWIR broadband photodiodes for large-format focal plane array sensors
JPS6284522A (en) Surface protective film structure of iii-v compound semiconductor
JPH0738141A (en) Avalanche photodiode
JP7171182B2 (en) Optical Densitometer
Averin et al. ZnSe and ZnCdSe/ZnSe photodetectors for visible spectral range: comparative parameters
JPS62190779A (en) Integrated type light receiving device
RU2739863C1 (en) Method of producing diode optoelectronic pairs resistant to gamma-neutron radiation