JPS592756B2 - electrolytic cell - Google Patents

electrolytic cell

Info

Publication number
JPS592756B2
JPS592756B2 JP52058605A JP5860577A JPS592756B2 JP S592756 B2 JPS592756 B2 JP S592756B2 JP 52058605 A JP52058605 A JP 52058605A JP 5860577 A JP5860577 A JP 5860577A JP S592756 B2 JPS592756 B2 JP S592756B2
Authority
JP
Japan
Prior art keywords
electrode
electrolytic cell
bed
depth
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52058605A
Other languages
Japanese (ja)
Other versions
JPS5348002A (en
Inventor
ゲルハルト・クライザ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dechema Deutsche Gesellschaft fuer Chemisches Apparatewesen eV
Original Assignee
Dechema Deutsche Gesellschaft fuer Chemisches Apparatewesen eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dechema Deutsche Gesellschaft fuer Chemisches Apparatewesen eV filed Critical Dechema Deutsche Gesellschaft fuer Chemisches Apparatewesen eV
Publication of JPS5348002A publication Critical patent/JPS5348002A/en
Publication of JPS592756B2 publication Critical patent/JPS592756B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/002Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells comprising at least an electrode made of particles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F1/46114Electrodes in particulate form or with conductive and/or non conductive particles between them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • C02F1/4678Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction of metals

Description

【発明の詳細な説明】 本発明は、新規な電解槽に関する。[Detailed description of the invention] The present invention relates to a novel electrolytic cell.

さらに詳しくは、高析出速度が必要とされる際に、希薄
溶液から金属の電解析出に用いることができる電解槽3
0に関する。従来公知のプレートまたはメッシュ電極を
有する電解槽(シー ・エル・マツチル(C、L、Ma
nt一ell)著「電気化学技術(Electroch
emicalEngineering)」マッググロー
ビル インコーポ35 レーテツド( McGrawH
illInc、)、ニューヨーク、1960年参照)で
は析出すべき金属の濃度が5g/l以下のときは、希薄
溶液の電気分解に、門Lフーは工業上用いえない程度の
低い空時収量(Spacetimeyield)(以下
、単にSTYという)しかえられない。
More specifically, the electrolytic cell 3 can be used for electrolytic deposition of metals from dilute solutions when high deposition rates are required.
Regarding 0. Conventionally known electrolytic cells with plate or mesh electrodes (C, L, Ma
Electrochemical Technology (Electroch.
McGraw Bill Inc. 35 Rated (McGrawH)
Ill Inc., New York, 1960), when the concentration of the metal to be precipitated is less than 5 g/l, the gate L Fu is used for electrolysis of dilute solutions, and the space-time yield is so low that it cannot be used industrially. ) (hereinafter simply referred to as STY).

そのばあい、かなり高いSTYをうるには公知の多孔質
電極または充填床もしくは流動床電極を用いればよい(
たとえばデイ・エヌ・ベニオン(D.N.BenniO
n)、ジエイ・ニユーマン(J.Newman);J.
Appl.ElectrOchem.、第2巻(197
2),113頁、エイ・ケイ・ピ一・チユ一(A.K.
P.Chu)、エム・フライシユマン(M.Fleis
chmann)、ジ一・ジエイ・ヒルズ(G.J.Hi
lls):J.Appl.ElectrOchem.、
第4巻(1974),323頁、エム・フライシユマン
、ジエイ・ダブル・オールドフイールド(J.W.Ol
dfield)、エル・テナクーン(L.Tennal
cOOn);J.Appl.ElectrOchem.
、第1巻(1971),103頁、エイチ・アール・バ
ツクハースト(H.R.Backhurst)、エム・
フライシユマン、エフ・グツドリツジ(F.GOOdr
i一Dge)、アール・イ一・プリムレイ(R.E.P
llmley);英国特許1194181号明細書、エ
フ・ジエイ・ウイルキンスン(F.J.Wilki一N
sOn)、ケイ・ハーネス(K.Haines);Tr
ans.Inst.MiningMet.(セクシヨン
C)、第81巻(1972),157頁、デイ・エス・
フレツト(D.S.Flett);Chem.andI
nd.(1971),300頁参照)。以下とくにこと
わらないかぎり、これらの電極を三次元電極という。た
とえば銀の精練に通常用いられる電解槽で銀10ppm
を含有する溶液を電気分解するとSTYは0.0017
f!/Ehであるが、一方同じ溶液を充填床電極を有す
る電解槽で電気分解すればSTYは約1.8g/Ehで
ある。電流の流れ方向と平行である三次元電極の寸法は
有効床深度として知られている長さにより制限される。
In that case, well-known porous electrodes or packed bed or fluidized bed electrodes can be used to obtain considerably high STY (
For example, D.N. BenniO
n), J. Newman;
Appl. ElectrOchem. , Volume 2 (197
2), 113 pages, A.K.P.C.
P. Chu), M. Fleischmann
chmann), G.J.Hi
lls): J. Appl. ElectrOchem. ,
Volume 4 (1974), p. 323, M. Fleischman, J.W.Ol.
dfield), L. Tennal
cOOn);J. Appl. ElectrOchem.
, Volume 1 (1971), p. 103, H.R. Backhurst, M.
Fleischmann, F.GOOdr.
i1Dge), R.I.Primley (R.E.P.
llmley); British Patent No. 1194181, F.J. Wilkinson
sOn), K. Haines; Tr.
ans. Inst. MiningMet. (Section C), Vol. 81 (1972), p. 157, D.S.
D.S. Flett; Chem. andI
nd. (1971), p. 300). Unless otherwise specified, these electrodes will be referred to as three-dimensional electrodes. For example, in an electrolytic tank commonly used for silver refining, 10 ppm of silver
When a solution containing is electrolyzed, the STY is 0.0017
f! /Eh, whereas if the same solution is electrolyzed in an electrolytic cell with a packed bed electrode, the STY is about 1.8 g/Eh. The dimension of the three-dimensional electrode parallel to the direction of current flow is limited by a length known as the effective bed depth.

というのはこの深度以内でのみ電気化学的変化が起るか
らである。ところで設計によつて与えられる供給電極と
隔壁間の距離は以下の記載では幾何学的電極床深度(以
下、幾何学的床深度と略称する)という。従来より有効
床深度は一般にほんの1c!RLの大きさのオーダーで
あるとされていたので(エム・フライシユマン、ジエイ
・ダブル・オールドフイールド;J.ElectrOa
nal.Chem.、第29巻(1971),211頁
参照)、三次元電極の寸法の前述の制限は重要な問題で
あると考えられていた。三次元電極を有する前記公知の
電解槽はすべて一定の幾何学的床深度を有する。
This is because electrochemical changes only occur within this depth. Incidentally, the distance between the supply electrode and the partition given by the design is referred to as the geometric electrode bed depth (hereinafter abbreviated as the geometric bed depth) in the following description. Conventionally, the effective bed depth is generally only 1c! Since it was said to be on the order of the size of RL (M. Fleischmann, G.A. Double Oldfield; J. ElectrOa
nal. Chem. , Vol. 29 (1971), p. 211), the aforementioned limitations on the dimensions of three-dimensional electrodes were considered to be an important problem. All said known electrolytic cells with three-dimensional electrodes have a constant geometrical bed depth.

経費の減少、すなわち使用する電極および膜材の数量の
減少という観点では、三次元電極が可能な最大限の容積
によつて対極面積または隔壁面積に対抗することは好ま
しい。しかしながら、三次元電極の容積はSTYが有効
床深度近くでは低下されるという事実により制限される
。本発明の目的は、そのSTYが通常の電解槽のそれよ
りも大きい新規な電解槽を提供するにある。
From the point of view of reducing costs, ie reducing the quantity of electrodes and membrane materials used, it is preferred that the three-dimensional electrode counter electrode area or septum area by the maximum possible volume. However, the volume of the three-dimensional electrode is limited by the fact that STY is reduced near the effective bed depth. An object of the present invention is to provide a new electrolytic cell whose STY is larger than that of a conventional electrolytic cell.

この目的は特許請求の範囲に記載の事項により達成され
る。つぎに本発明の電解槽を添付の図を参照しながら説
明する。
This object is achieved by what is stated in the claims. Next, the electrolytic cell of the present invention will be explained with reference to the attached drawings.

第1A図は本発明の電解槽の電極の長さ2と幾何学的床
深度hとの理論的関係を示すグラフ、第1B図は本発明
の電解槽の電極の長さ11と電極の幅bとの理論的関係
を示すグラフ、第2図は本発明の電解槽の概略図、第3
図は本発明の電解槽の縦断面図である。
FIG. 1A is a graph showing the theoretical relationship between the electrode length 2 and the geometric bed depth h of the electrolytic cell of the present invention, and FIG. 1B is a graph showing the theoretical relationship between the electrode length 11 and the electrode width of the electrolytic cell of the present invention. Figure 2 is a schematic diagram of the electrolytic cell of the present invention, Figure 3 is a graph showing the theoretical relationship between
The figure is a longitudinal sectional view of the electrolytic cell of the present invention.

図面により説明すれば、電解液は流入口1を通つて流入
チヤンバ7に流入する。
As illustrated by the drawings, the electrolyte enters the inlet chamber 7 through the inlet 1 .

該チヤンバは仕切り壁15により流出チヤンバ12から
分離されている。電解液はまず網目13を通つて流入ゾ
ーン8に流入する。該ゾーンは流量を均質化するように
作用し、たとえば直径111111tのガラス球で充填
されている。ついで電解液は分離網目14を通つて電極
床2に流入する。該電極床は、電極、たとえば直径1.
25H!lのグラフアイト粒子を含有する。電流は、電
解槽の壁に取り付けられている供給電極9、たとえばグ
ラフアイトプレートを通して、カソードとして作用する
前記電極床に供給される。ついで電解液は上部制限網目
10および溢流ダクト3を通つてアノードチヤンバ16
に流入する。該チヤンバ16と前記電極床2との間に隔
壁または膜であるユニツト4、たとえば、カチオン交換
膜が配置されている。該ユニツトは電極床を含有してお
り、フレーム11で補強されている。アノード5、たと
えばグラフアイトプレートは電解槽の壁に取り付けられ
ている。アノード空間で生成するガスは立上り管17を
通つて逃れる。ついで電解液は流出チヤンバ12を通過
し、流出口6を通つて電解槽を出る。本発明においては
、有効床深度に関する研究および計算の結果、有効床深
度は、反応物の濃度がPF範囲であるときは10(17
7!の大きさのオーダーに達しうることがわかつた。
The chamber is separated from the outflow chamber 12 by a partition wall 15. The electrolyte first flows into the inlet zone 8 through the mesh 13 . The zone serves to homogenize the flow rate and is filled with glass bulbs of diameter 111111t, for example. The electrolyte then flows into the electrode bed 2 through the separating mesh 14. The electrode bed comprises electrodes, for example 1.5 mm in diameter.
25H! 1 of graphite particles. Current is supplied to said electrode bed, which acts as a cathode, through a supply electrode 9, for example a graphite plate, which is mounted on the wall of the electrolytic cell. The electrolyte then passes through the upper restriction screen 10 and the overflow duct 3 to the anode chamber 16.
flows into. A partition or membrane unit 4, for example a cation exchange membrane, is arranged between the chamber 16 and the electrode bed 2. The unit contains an electrode bed and is reinforced with a frame 11. An anode 5, for example a graphite plate, is attached to the wall of the electrolytic cell. Gas generated in the anode space escapes through riser 17. The electrolyte then passes through the outlet chamber 12 and exits the electrolytic cell through the outlet 6. In the present invention, as a result of research and calculation regarding the effective bed depth, the effective bed depth is 10 (17
7! We found that it is possible to reach orders of magnitude of .

また電極床の最適稼動条件は、もし電極の長さ方向に沿
つての幾何学的床深度(床の次元を定義している第2図
参照)が電解槽内の濃度の低下に応じて増大すれば達成
されることがわかつた。本発明の電解槽はこの原則を実
際の構成に還元することに基づいて完成された。したが
つて本発明の電解槽を使用すれば、STYは三次元電極
を有する公知の電解槽のそれよりもいちぢるしく高いも
のとなり、同時に使用する原料の量も減少させることが
できる。本発明の電解槽の形状寸法は、幾何学的床深度
が流入口から流出口にかけて電極の長さ方向に沿つて連
続して増大していることを特徴とする。
The optimum operating conditions for the electrode bed are also determined if the geometric bed depth along the length of the electrode (see Figure 2, which defines the bed dimensions) increases as the concentration in the electrolytic cell decreases. I found out that it can be achieved. The electrolytic cell of the present invention was completed based on reducing this principle to a practical configuration. Therefore, if the electrolytic cell of the present invention is used, the STY will be significantly higher than that of the known electrolytic cell having three-dimensional electrodes, and at the same time, the amount of raw materials used can be reduced. The geometry of the electrolytic cell of the invention is characterized in that the geometrical bed depth increases continuously along the length of the electrode from the inlet to the outlet.

またこのような電極床の広がりは電解液が順に通過する
増大している床深度を有する電解槽を連結することによ
つても達成されうる。電極の幅はその長さ方向に沿つて
増大または減少していてもよく、あるいは一定であつて
もよい。好ましくは、電極の幅は電極の流路面積が一定
のままかまたは流入口および流出口で同じ数値を有する
程度にまで減少される。このことにより物質移動係数を
電極の全帯域にわたり実質的に一定にすることができる
。本発明の電解槽は電極床が広がつているので、一定の
幾何学的床深度を有する公知の電解槽と比較してつぎの
ような利点を有する。(1)電極床が同じでかつ隔壁と
対極間が同じ距離であつても、本発明の電解槽は対極用
の空間の体積がより小さいので、より高いSTYがえら
れる。
Such electrode bed broadening can also be achieved by connecting electrolytic cells with increasing bed depths through which the electrolyte passes in turn. The width of the electrode may increase or decrease along its length, or it may be constant. Preferably, the width of the electrode is reduced to the extent that the flow area of the electrode remains constant or has the same value at the inlet and outlet. This allows the mass transfer coefficient to be substantially constant over the entire band of the electrode. Because the electrolytic cell of the invention has a spread electrode bed, it has the following advantages compared to known electrolytic cells with a constant geometric bed depth. (1) Even if the electrode bed is the same and the distance between the partition wall and the counter electrode is the same, the electrolytic cell of the present invention has a smaller volume of space for the counter electrode, so a higher STY can be obtained.

(2)電極床の特定の容積に対して必要とされる隔壁面
積は、本発明の電解槽では公知の電解槽よりもかなり小
さく、その結果必要とする原料量は減少される。
(2) The required bulkhead area for a given volume of electrode bed is considerably smaller in the electrolytic cell of the invention than in known electrolytic cells, so that the amount of raw material required is reduced.

(3)本発明の電解槽においては、電極の長さ方向に沿
つて濃度が低下することにより、局部電流密度が低下す
る。
(3) In the electrolytic cell of the present invention, the local current density decreases because the concentration decreases along the length of the electrode.

一方電解摺電圧は電極の長さ方向に沿つて一定であるの
で、運動過電圧は増加し、したがつて電流効率は徹底的
に低下する。一定の幾何学的床深度を有する公知の電解
槽においては、電流密度は濃度低下に対しフアクタfに
比例して低下するが、本発明の電解槽では同じ濃度低下
に対して電流密度は単にwに比例して低下する。このこ
とは、本発明の電解槽ではかなりすぐれた電流効率がえ
られることを意味する。本発明においては、アノードお
よび(または)カソードは増大する幾何学的床深度を有
する三次元電極であればよい。
On the other hand, since the electrolytic sliding voltage is constant along the length of the electrode, the kinetic overvoltage increases and therefore the current efficiency is drastically reduced. Whereas in known electrolytic cells with a constant geometrical bed depth, the current density decreases proportionally to the factor f for decreasing concentration, in the electrolytic cell of the present invention, for the same decreasing concentration, the current density decreases simply by the factor f. decreases in proportion to This means that a considerably better current efficiency can be obtained in the electrolytic cell of the present invention. In the present invention, the anode and/or cathode may be three-dimensional electrodes with increasing geometric bed depth.

また2個の三次元電極のばあいは、単にそのうちの一つ
の電極が増大する深度を有する電極床を有していればよ
い。三次元電極は公知の多孔質電極または粒子充填床か
ら構成されていればよい。電極材料としては金属、炭素
、グラフアイト、半導体、導体または半導体を被覆した
不導体などがあげられる。前記粒子の形状寸法は重要で
はない。たとえば球状粒子、粒状物、チツプ状物などを
用いることができる。隔壁またはイオン交換膜は、電極
床を支持するためにアノード空間とカソード空間との間
に配置しうる。電解液としては電解されるべき金属の無
機および(または)有機溶液などがあげられる。反応物
の濃度が卿の範囲にあるばあいは、電解液の導電率は、
数センチ(Fewcentimeters)の大きさの
オーダーの有効深度をうるためには、一般的に1〜5m
s/(177!以下には低下させるべきでない。本発明
の電解槽は、同種または異種の電解液を用いてアノード
およびカソード空間で操作され、電解液は並流または向
流の構成で用いうる。本発明の電解構は、とくに、廃水
から溶解金属、たとえば銀、銅、鉛、水銀、金、白金な
どを除去および(または)回収するためにまたは低い金
属含有率の鉱石水から前記金属類を析出するために用い
られる。
Also, in the case of two three-dimensional electrodes, it is only necessary that one of the electrodes has an electrode bed with increasing depth. The three-dimensional electrode may be composed of a known porous electrode or a particle-filled bed. Examples of electrode materials include metals, carbon, graphite, semiconductors, conductors, and nonconductors coated with semiconductors. The geometry of the particles is not critical. For example, spherical particles, granules, chips, etc. can be used. A septum or ion exchange membrane may be placed between the anode space and the cathode space to support the electrode bed. Examples of the electrolyte include inorganic and/or organic solutions of the metal to be electrolyzed. When the concentration of the reactants is in the range of , the conductivity of the electrolyte is
To obtain effective depths on the order of a few centimeters, typically 1 to 5 m.
s/(177!). The electrolytic cells of the present invention are operated in the anode and cathode spaces with homogeneous or dissimilar electrolytes, and the electrolytes may be used in a cocurrent or countercurrent configuration. The electrolytic system of the invention is particularly suitable for removing and/or recovering dissolved metals such as silver, copper, lead, mercury, gold, platinum, etc. from waste water or from ore waters with low metal content. It is used to precipitate .

処理後、電極で濃縮された前記金属は、公知の電解液で
化学的にまたは電気化学的に溶解されて濃縮溶液として
えられる。また析出されるべき金属が電極の材料として
用いられるならば、金属で濃厚化された電極材料は直接
冶金学的にさらに加工処理することができる。その深度
が電極の長さの関数であり、最大床深度を示しておりか
つその範囲内では電気化学的変化が連続して起る濃度に
依存する有効床深度の算出、ならびに電極の長さ方向に
沿つての濃度低下の算出は以下の微分方程式により行な
つた。
After the treatment, the metal concentrated at the electrode is chemically or electrochemically dissolved in a known electrolyte to obtain a concentrated solution. If the metal to be deposited is also used as electrode material, the metal-enriched electrode material can be directly metallurgically further processed. Calculation of the concentration-dependent effective bed depth, whose depth is a function of the length of the electrode, represents the maximum bed depth, and within which electrochemical changes occur continuously, as well as in the direction of the length of the electrode. The concentration decrease along the line was calculated using the following differential equation.

周知の微分手法および反復手法を用いることにより微分
方程式(1)〜(5)は、コンピユータを使用して個々
の微小運動速度式、i(η,c)に対して数字として解
くことができる。つぎに実施例をあげて本発明を説明す
る。
By using well-known differential and iterative techniques, differential equations (1)-(5) can be solved numerically for each microkinetic equation, i(η,c), using a computer. Next, the present invention will be explained with reference to Examples.

実施例 (計算を示す例) 電解槽の寸法を計算するための以下の完全方程式は、一
定の流路面積を有する充填床槽内での拡散制御1次反応
においてしばしば金属の分離が生起する特別のばあいに
ついて微分方程式(1)〜(5)の解答としてえた。
EXAMPLE (EXAMPLE SHOWING CALCULATIONS) The complete equation below for calculating the dimensions of an electrolytic cell is a special case where separation of metals often occurs in diffusion-controlled first-order reactions in a packed bed cell with a constant flow area. We obtained the answers to differential equations (1) to (5) for the case.

電解槽の幾何学的床深度は電極のすべての場所で完全極
限電流密度となるような寸法であるべきである。48b
1;′JIらV〜〜J ]J − \ − ′
1銀を100ppm含有する廃水(X8=0.01
9S/Cfrl)は、充填床槽において502/hで供
給されるとき、電気分解により1ppmに減少せられる
The geometric bed depth of the electrolyzer should be dimensioned to provide full ultimate current density at all locations of the electrodes. 48b
1;'JI et al.
Wastewater containing 100 ppm of silver (X8 = 0.01
9S/Cfrl) is reduced to 1 ppm by electrolysis when fed at 502/h in a packed bed tank.

他の設定値は以下のようであつた。Other setting values were as follows.

A:21.12Cf1/D d:0.125CTrL p゜゜v :0.56 u:0.5CrrL/S k:1.624・10−3cTn/s β:0.60 η:0.4 式(6卜(8)を用いることにより、第2図に概略図と
して示されている充填床槽のばあい、電極床の寸法は以
下のようにえられた。
A: 21.12Cf1/D d: 0.125CTrL p゜゜v: 0.56 u: 0.5CrrL/S k: 1.624・10-3cTn/s β: 0.60 η: 0.4 Formula (6 By using (8), in the case of the packed bed vessel shown schematically in FIG. 2, the dimensions of the electrode bed were obtained as follows.

電極の長さ:67.15(1−JモV1 幾何学的深度 電極の流入口の位置:1.08cm 電極の流出口の位置:10.80CTIL電極の幅 電極の流入口の位置:25.72cfn 電極の流出口の位置:2.57C7rL 電極の長さeに対する幾何学的床深度hおよび電極の幅
bの理論上の依存性ならびにパラメータH,bおよび′
の関係を第1A図および第1B図に示す。
Electrode length: 67.15 (1-J Mo V1 Geometric depth Electrode inlet position: 1.08cm Electrode outlet position: 10.80CTIL Electrode width Electrode inlet position: 25. 72cfn Location of the outlet of the electrode: 2.57C7rL Theoretical dependence of the geometrical bed depth h and the width b of the electrode on the length e of the electrode and the parameters H, b and ′
The relationship is shown in FIG. 1A and FIG. 1B.

も17イオン交換膜とアノードとの間の距離が1礪に選
ばれたならば、本実施例の電解槽は1.789/Eh(
7)STYを有する。
If the distance between the ion exchange membrane and the anode is selected to be 1.789/Eh (
7) Has STY.

一方、同じ容量および一定の幾何学的深度が1Cr1L
である電解槽のSTYはほんの1.39/Ehであり、
本実施例の電解槽と比較して約2倍量のアノードおよび
膜材料を必要とする。また幾何学的床深度が1CTIL
で一定である電解槽のばあい、局部電流密度は電流流入
口から電流流出口の間で1/100に低下するが、本実
施例の電解槽ではその低下はわずかに1/10である。
On the other hand, the same capacity and constant geometric depth is 1Cr1L
The STY of the electrolytic cell is only 1.39/Eh,
Approximately twice the amount of anode and membrane material is required compared to the electrolytic cell of this example. Also, the geometric floor depth is 1 CTIL.
In the case of an electrolytic cell in which the current density is constant, the local current density decreases to 1/100 between the current inlet and the current outlet, but in the electrolytic cell of this embodiment, the decrease is only 1/10.

かかる理由で、本実施例における計算が関与し、かつ増
大する床深度を有するところの本実施例の電解槽はかな
りすぐれた電流効率を提供しうるのである。本発明の電
解槽において、電流収量が60%であるとすると、この
数値は一定の幾何学的深度を有する電解槽では約13%
にまで低下する。(構成を示す例) 実験用電解槽をつくる目的で、第1A図および第1B図
に示される理論上のプロフイルを第3図に示されるよう
な湾曲面を有する供給電極の使用によつてあられした。
For this reason, the calculations in this example involve and the electrolyzer of this example with increasing bed depth can provide significantly better current efficiency. Given a current yield of 60% in the electrolyzer of the invention, this figure is approximately 13% for an electrolyzer with a constant geometric depth.
decreases to . (Example illustrating construction) For the purpose of creating an experimental electrolytic cell, the theoretical profile shown in Figures 1A and 1B was modified by the use of a supply electrode with a curved surface as shown in Figure 3. did.

第2〜3図に示される電解槽は、前記(計算を示す例)
で記載されるように銀濃度を100ppmから1ppm
にまで低下させることができる。
The electrolytic cells shown in Figures 2 and 3 are as described above (example showing calculations).
silver concentration from 100 ppm to 1 ppm as described in
can be reduced to.

このように減少させるためには、電流効率を60(!)
と仮定したときに2.07Aの電流が必要となる。銀イ
オンを100ppm含有している0.2モルのNaNO
3溶液(X5=0.019S/CTn)を用いて第2〜
3図に示される本発明の電解槽に50′/hで供給した
電気分解において、つぎの実験結果がえられた。電解槽
の電流:1.39A 電解槽の電圧:2.5V 最終濃度:0.09ppm 電流効率:0.85 これらの結果は銀の析出用に設計された電解槽の仕事量
と厳密に一致している。
To reduce in this way, the current efficiency must be reduced to 60 (!)
Assuming that, a current of 2.07A is required. 0.2 mol NaNO containing 100 ppm silver ions
3 solution (X5=0.019S/CTn)
The following experimental results were obtained in electrolysis supplied at 50'/h to the electrolytic cell of the present invention shown in Figure 3. Electrolytic cell current: 1.39 A Electrolytic cell voltage: 2.5 V Final concentration: 0.09 ppm Current efficiency: 0.85 These results are in close agreement with the work of an electrolytic cell designed for silver deposition. ing.

さらに鋼イオンを60ppm含有する0.15モルNa
2sO4溶液(X8二0.021S/(7n)を用いて
第2〜3図に示される本発明の電解槽に25e/hで供
給した電気分解において、つぎの実験結果がえられた。
Furthermore, 0.15 mol Na containing 60 ppm of steel ions
The following experimental results were obtained in electrolysis using a 2sO4 solution (X820.021S/(7n) supplied at 25 e/h to the electrolytic cell of the present invention shown in FIGS. 2-3.

電解槽の電流:1.97A 電解槽の電圧:2.8V 最終濃度:0.005ppn1 電流効率:0.64 つぎに、幾何学的床深度が直線状に増大する公知の電解
槽と本発明の電解槽との比較を行なつた。
Electrolytic cell current: 1.97A Electrolytic cell voltage: 2.8V Final concentration: 0.005ppn1 Current efficiency: 0.64 Next, the known electrolytic cell in which the geometrical bed depth increases linearly and the present invention A comparison was made with an electrolytic cell.

次表に示される電解槽Aは幾何学的床深度の理論上のプ
ロフイルにほぼ近似して直線状に形成したものである。
一方、電解槽Bは第3図に示される湾曲した供給電極の
使用によつてその理論上のプロフイルが正確にあられれ
ている。各電解槽AおよびBについて、銅イオンを50
ppm含有する希薄硫酸銅溶液(X8=0.0008S
/CTn)を用い、50′/hで供給して電気分解を行
なつた。
Electrolytic cell A shown in the following table is formed in a straight line approximately approximating the theoretical profile of the geometric bed depth.
Cell B, on the other hand, has its theoretical profile accurately achieved by the use of a curved feed electrode as shown in FIG. For each electrolyzer A and B, add 50 copper ions
Dilute copper sulfate solution containing ppm (X8=0.0008S
/CTn) at a rate of 50'/h for electrolysis.

試験結果を次表に示す。これらの試験結果を理論上の最
終濃度である0.1ppmと比較すれば、本発明に従つ
て正確に設計された電解槽のみが理論上の濃度減少を達
成しうることがわかる。
The test results are shown in the table below. Comparing these test results to the theoretical final concentration of 0.1 ppm shows that only electrolytic cells precisely designed in accordance with the present invention can achieve the theoretical concentration reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図は本発明の電解槽の電極の長さlと幾何学的床
深度hとの理論的関係を示すグラフ、第1B図は本発明
の電解槽の電極の長さlと電極の幅1bとの理論的関係
を示すグラフ、第2図の本発明の電解槽の概略図、第3
図は本発明の電解槽の縦断面図である。 図面の符号、1:流入口、2:電極床、3:溢流ダクト
、4:ユニツト、5:アノード、6:流出口、7:流入
チヤンバ、8:流入ゾーン、9:供給電極、10:上部
制限網目、11:フレーム、12:流出チヤンバ、13
:すえ付網目、14:分離網目、15:仕切り壁、16
:アノードチヤンバ、17:立上り管。
Fig. 1A is a graph showing the theoretical relationship between the electrode length l and the geometric bed depth h of the electrolytic cell of the present invention, and Fig. 1B is a graph showing the theoretical relationship between the electrode length l and the electrode width of the electrolytic cell of the present invention. 1b, a schematic diagram of the electrolytic cell of the present invention in Figure 2, and Figure 3.
The figure is a longitudinal sectional view of the electrolytic cell of the present invention. Reference symbols in the drawings: 1: inlet, 2: electrode bed, 3: overflow duct, 4: unit, 5: anode, 6: outlet, 7: inlet chamber, 8: inlet zone, 9: supply electrode, 10: Upper restriction mesh, 11: Frame, 12: Outflow chamber, 13
: Mesh with seat, 14: Separation mesh, 15: Partition wall, 16
: anode chamber, 17: riser.

Claims (1)

【特許請求の範囲】 1 一面を形成する供給電極、隔壁または膜およびそれ
らの間に閉じ込められる多孔質電極または充填床電極か
らなり、該多孔質電極または充填床電極が三次元電極で
あり、かつ式:▲数式、化学式、表等があります▼ A:特定電極面積(cm^2/cm^3)c_o:初期
濃度(mol/cm^3) d_p:粒子直径(cm) F:ファラデー数(As/val) h(l):lでの幾何学的電極床深度(cm)k:質量
移動係数(cm/s)l:電極の長さ方向座標(cm) u:流速(cm/s) v:間隙 z:反応の電荷数(val/mol) β:電流効率 η:電極床の過電圧(V) X_s:電解液導電率(S/cm) を満足するように電解液流入口から電解液流出口にかけ
て連続的に増大する幾何学的電極床深度を有し、前記式
において電極の長さ方向座標lの各点における供給電極
の前記面と隔壁または膜との間の距離が前記lでの床深
度(h(l))に等しいことを特徴とする。 高希薄溶液から金属を電気分解により析出させる電解槽
。2 前記多孔質電極または充填床電極がアノードおよ
び(または)カソードである特許請求の範囲第1項記載
の電解槽。 3 電極の幅が、電極の長さ方向に沿つて一定のままか
、減少しているかまたは増大していることを特徴とする
特許請求の範囲第1項記載の電解槽。 4 電極の幅が、電極の長さ方向に沿つて減少しており
、かつ該電極の流路面積が一定のままかまたは前記流入
口および流出口で同じ値を有することを特徴とする特許
請求の範囲第3項記載の電解槽。
[Scope of Claims] 1 Consisting of a supply electrode, partition wall or membrane forming one surface and a porous electrode or packed bed electrode confined between them, the porous electrode or packed bed electrode being a three-dimensional electrode, and Formulas: ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ A: Specific electrode area (cm^2/cm^3) c_o: Initial concentration (mol/cm^3) d_p: Particle diameter (cm) F: Faraday number (As /val) h(l): geometrical electrode bed depth at l (cm) k: mass transfer coefficient (cm/s) l: longitudinal coordinate of the electrode (cm) u: flow velocity (cm/s) v : Gap z: Number of charges in reaction (val/mol) β: Current efficiency η: Overvoltage of electrode bed (V) X_s: Electrolyte conductivity (S/cm) Electrolyte flow from the electrolyte inlet to satisfy It has a geometrical electrode bed depth that increases continuously towards the exit, where the distance between said face of the feed electrode and the septum or membrane at each point of the longitudinal coordinate l of the electrode is at said l It is characterized by being equal to the bed depth (h(l)). An electrolytic cell that deposits metals from highly dilute solutions by electrolysis. 2. The electrolytic cell according to claim 1, wherein the porous electrode or packed bed electrode is an anode and/or a cathode. 3. Electrolytic cell according to claim 1, characterized in that the width of the electrode remains constant, decreases or increases along the length of the electrode. 4. Claim characterized in that the width of the electrode decreases along the length of the electrode, and the flow area of the electrode remains constant or has the same value at the inlet and outlet. The electrolytic cell according to item 3.
JP52058605A 1976-05-20 1977-05-19 electrolytic cell Expired JPS592756B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE000P26224975 1976-05-20
DE2622497A DE2622497C2 (en) 1976-05-20 1976-05-20 Electrochemical cell

Publications (2)

Publication Number Publication Date
JPS5348002A JPS5348002A (en) 1978-05-01
JPS592756B2 true JPS592756B2 (en) 1984-01-20

Family

ID=5978507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52058605A Expired JPS592756B2 (en) 1976-05-20 1977-05-19 electrolytic cell

Country Status (6)

Country Link
JP (1) JPS592756B2 (en)
CA (1) CA1132089A (en)
DE (1) DE2622497C2 (en)
FR (1) FR2352075A1 (en)
GB (1) GB1578811A (en)
ZA (1) ZA772929B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2904539C2 (en) * 1979-02-07 1982-08-05 Deutsche Carbone Ag, 6000 Frankfurt Process for electrolytic wastewater purification by means of a fixed-bed electrolysis cell and electrochemical cell for carrying out the process
GB2048306B (en) * 1979-03-07 1983-06-15 Nat Res Dev Moving bed electrolyses
DE3014021C2 (en) * 1980-04-11 1986-08-07 Doduco KG Dr. Eugen Dürrwächter, 7530 Pforzheim Process for the electrolytic recovery of precious metals from precious metal salt solutions and device for carrying out the process
CH649789A5 (en) * 1980-09-29 1985-06-14 Sandoz Ag ELECTROLYTIC CELL.
DE3047022A1 (en) * 1980-12-13 1982-07-22 Deutsche Carbone Ag, 6000 Frankfurt METHOD FOR ELECTROLYTIC WASTE WATER TREATMENT BY MEANS OF A FIXED BED ELECTROLYSIS CELL
SE451855B (en) * 1983-06-17 1987-11-02 Svenska Utvecklings Ab ELECTROCEDOM CELL UNIT INTENDED TO BE USED IN AN ELECTROCHEMICAL CELL WITH PORO'S FLOW ELECTRODE, ELECTROCHEMICAL CELL, PROCEDURE FOR THE PREPARATION OF THE ELECTROCHEMICAL CELL AND USED FOR USING IT
US5292412A (en) * 1990-04-12 1994-03-08 Eltech Systems Corporation Removal of mercury from waste streams
DE10004877A1 (en) * 2000-02-04 2001-08-09 Sgl Technik Gmbh Process and electrolysis cell for reducing corrosive components in liquids

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071578A (en) * 1973-08-03 1975-06-13
US3956086A (en) * 1974-05-17 1976-05-11 Cjb Development Limited Electrolytic cells

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3879225A (en) * 1968-03-06 1975-04-22 Nat Res Dev Electrochemical cells comprising fluidized bed electrodes
FI61209C (en) * 1973-08-03 1982-06-10 Parel Sa ELECTROCHEMICAL CELL
GB1497542A (en) * 1974-05-30 1978-01-12 Parel Sa Electrochemical apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071578A (en) * 1973-08-03 1975-06-13
US3956086A (en) * 1974-05-17 1976-05-11 Cjb Development Limited Electrolytic cells

Also Published As

Publication number Publication date
DE2622497C2 (en) 1986-03-06
GB1578811A (en) 1980-11-12
ZA772929B (en) 1978-05-30
FR2352075B1 (en) 1983-02-11
CA1132089A (en) 1982-09-21
DE2622497A1 (en) 1977-12-01
JPS5348002A (en) 1978-05-01
FR2352075A1 (en) 1977-12-16

Similar Documents

Publication Publication Date Title
US3716459A (en) Electrochemical processes
US4585539A (en) Electrolytic reactor
Van Zee et al. Electrochemical removal of silver ions from photographic fixing solutions using a porous flow‐through electrode
Alkire et al. Two‐Dimensional Current Distribution Within a Packed‐Bed Electrochemical Flow Reactor
Simonsson A flow-by packed-bed electrode for removal of metal ions from waste waters
US4278521A (en) Electrochemical cell
JPS592756B2 (en) electrolytic cell
Ettel et al. Electrowinning copper at high current densities
Ferreira Three-dimensional electrodes for the removal of metals from dilute solutions: a review
Wenger et al. Electrochemical concentrating and purifying from dilute copper solutions
Walker et al. Mass transfer in fluidised bed electrochemical reactors
Scott A consideration of circulating bed electrodes for the recovery of metal from dilute solutions
Brandon et al. The direct electrowinning of gold from dilute cyanide leach liquors
JPS5828354B2 (en) Horizontal mercury cathode electrolyzer for uranium ion reduction
Masterson et al. Fluidized bed electrowinning of copper; experiments using 150 ampere and 1,000 ampere cells and some mathematical modeling
Adams et al. Electrochemical oxidation of ferrous iron in very dilute solutions
Sioda et al. Flow-through Electrode for the Retention of Copper
Kalliomäki et al. Industrial validation of conductivity and viscosity models for copper electrolysis processes
Scott et al. An analysis of metal recovery by electrodeposition from mixed metal ion solutions—Part I. Theoretical behaviour of batch recycle operation
Barr et al. Examination of the chlorate factor in electro-oxidation leaching of molybdenum concentrates using flow-through cells
Dhamo An electrochemical hydrocyclone cell for the treatment of dilute solutions: approximate plug-flow model for electrodeposition kinetics
Jansson Electrochemical reaction engineering
JPS6220891A (en) Method for electrolytically collecting metal from aqueous solution containing minor amount of metal
Naumov et al. Gold electroextraction fundamentals using zinc three-dimensional cathode
Felix-Navarro et al. Cyanide destruction and simultaneous recovery of copper with an electrochemical reactor