JPS5927218A - Method for detecting rotation of flowmeter - Google Patents

Method for detecting rotation of flowmeter

Info

Publication number
JPS5927218A
JPS5927218A JP57138154A JP13815482A JPS5927218A JP S5927218 A JPS5927218 A JP S5927218A JP 57138154 A JP57138154 A JP 57138154A JP 13815482 A JP13815482 A JP 13815482A JP S5927218 A JPS5927218 A JP S5927218A
Authority
JP
Japan
Prior art keywords
rotation
shaft
blades
conductive
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57138154A
Other languages
Japanese (ja)
Inventor
Katsuro Fujimoto
藤本 克郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP57138154A priority Critical patent/JPS5927218A/en
Publication of JPS5927218A publication Critical patent/JPS5927218A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2412Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Linear Or Angular Velocity Measurement And Their Indicating Devices (AREA)
  • Details Of Flowmeters (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To detect the rotation with high resolution without using a magnetic sensitivity element, by providing a rotatable conducting shaft and a conductive fixed shaft, to which wings that are overlapped with blades and made to form capacitors with a gap being provided from the blades are attached. CONSTITUTION:The central part of a magnet 5 is fixed to the lower end part of a conducting shaft 8 through an insulating member 7. Said conducting shaft 8 is rotatably supported by the upper and lower plates of an insulating case 9. A conductive fixed shaft 14 is electrically connected to an external electric circuit. A plurality of conducting wings 15, which can be overlapped with rotary blades 13, are horizontally attached and fixed to the fixed shaft 14, with a gap being provided from the rotary blades 13. Capacitors are formed by the wings 15 and the rotary blades 13. The rotation of the measuring part of a flowmeter is converted into the variation of the electric capacities caused by the overlap of the rotary blades and the conducting wings and the result is detected. Therefore the rotation can be detected with high resolution without using a magnetic sensitivity element.

Description

【発明の詳細な説明】 本発明は流量計の計量値を高分解能でかつ低消費電力で
電気的に変換することができる流量計の回転検出方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flowmeter rotation detection method that can electrically convert measured values of a flowmeter with high resolution and low power consumption.

従来、流量計の回転を電気的に検出する方法としては、
例えば第1図に示すように筐体/に内蔵される流量計々
量部λで計量値に応じて生じる回転をその回転軸3と同
軸に取付けたマグネット≠に伝え、該マグネツ14の回
転により筐体/外に該マグネット≠と近接して対向配置
した他のマグネットjを同期回転させ、これを磁気感動
素子乙が検知して所定の電気信号に変換することにより
行なわれている。しかしながら、この方法では、磁気感
動素子乙の動作上からマグネットjの磁極数をあまり多
くすることができないため、計量値を分解能高く電気的
に変換することができず、またホール素子、磁気抵抗効
果素子等の磁気感動素子乙は消費電流が大きい等経済的
にも不利であった。
Conventionally, the method of electrically detecting the rotation of a flowmeter is as follows:
For example, as shown in FIG. 1, the rotation generated in the flow metering section λ built into the housing according to the measured value is transmitted to a magnet ≠ attached coaxially with the rotating shaft 3, and the rotation of the magnet 14 causes This is done by synchronously rotating another magnet J disposed close to and facing the magnet ≠ outside the housing, which is detected by the magnetic sensing element B and converted into a predetermined electrical signal. However, with this method, it is not possible to increase the number of magnetic poles of the magnet j due to the operation of the magnetic sensing element B, so it is not possible to electrically convert the measured value with high resolution, and the Hall element and magnetoresistive effect Magnetic sensing elements such as elements B were economically disadvantageous due to their large current consumption.

本発明はかような従来の問題点を解決した流量計の回転
検出方法を提供するもので、以下本発明の実施例を図に
より説明する。
The present invention provides a rotation detection method for a flowmeter that solves the problems of the conventional art, and embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明法に使用する装置の一例を示すもので、
筐体/内のマグネット≠の回転を他のマグネットタに伝
達する点は従来と同様であるが、この従動するマグネツ
)1はその中心部を絶縁材7を介して導電軸g下端部に
固着され、該導電軸とは絶縁ケース7の」三下画板に回
転自在に支持されており、絶縁ケースタ上板の内側には
該軸ざと常に接する導板10が設けられ、導電軸ざは該
導板10を介して外部の電子回路(例えば第≠図)と電
気的に接続されている。//は絶縁ケース7を支持固定
するため筐体/上側に取付けた外ケースで、外部と静電
シールドするようにしである。
Figure 2 shows an example of the apparatus used in the method of the present invention.
The point that the rotation of the magnet ≠ inside the housing is transmitted to other magnets is the same as in the conventional case, but the driven magnet 1 is fixed at its center to the lower end of the conductive shaft g via an insulating material 7. The conductive shaft is rotatably supported by the bottom panel of the insulating case 7, and a conductive plate 10 is provided inside the upper plate of the insulating case, which is always in contact with the shaft. It is electrically connected to an external electronic circuit (for example, Fig. 1) via a plate 10. // is an outer case attached to the upper side of the housing to support and fix the insulating case 7, and is designed to provide electrostatic shielding from the outside.

絶縁ケースタ内の導電軸と中間部周側には7枚又は上下
に複数枚の薄い金属板/2が水平に数句けられており、
該金属板/2は第3図に示すように複数(図では弘枚)
の羽根/3が同材料で一体形成されていて、該羽根/3
は導電軸gと共に回転するようになっている。
Seven or more thin metal plates/2 are placed horizontally around the conductive shaft and middle part of the insulating case.
The metal plates/2 are plural as shown in Fig.
The blade/3 is integrally formed of the same material, and the blade/3 is integrally formed with the same material.
is adapted to rotate together with the conductive axis g.

/弘は絶縁ケースタ内の片側へ寄せて固設した導電性の
固定軸で、外部の電子回路と電気的に接続されており、
該固定軸/≠には前記回転羽根/3の回転により若干の
間隙を置いて該羽根/3と重合可能な導電翼/jが7枚
又は上下に複数枚水平に取付は固定され、該翼/jと回
転羽根/3とでコンデンサを形成するようになっている
/Hiro is a conductive fixed shaft fixed to one side inside the insulating case, and is electrically connected to the external electronic circuit.
On the fixed shaft /≠, seven conductive blades /j or a plurality of conductive blades /j which can be superimposed on the rotary blade /3 with a slight gap due to the rotation of the rotary blade /3 are horizontally attached and fixed, and the blades /j and rotating blade /3 form a capacitor.

しかして、計量部λで得られる回転はマグネット≠を介
して従動マグネットtに伝達され、導電軸gと共に羽根
/3を回転させる。この回転羽根/3の回転角度により
導電翼/jとの重合によってコンデンサを形成する面積
が変化するので、キャパシタンスが変化することとなる
。従って、この電気容量の変化を外部の電子回路で電気
的計量値に変換して演算処理を行なえば、流量計の計量
部での回転を正確に読取ることができるのである。
Thus, the rotation obtained by the measuring part λ is transmitted to the driven magnet t via the magnet ≠, and rotates the blade /3 together with the conductive shaft g. Depending on the rotation angle of the rotary blade /3, the area forming the capacitor by overlapping with the conductive blade /j changes, so the capacitance changes. Therefore, by converting this change in capacitance into an electrical measurement value using an external electronic circuit and performing arithmetic processing, it is possible to accurately read the rotation in the metering section of the flowmeter.

第5図はこの外部の電子回路の一例を示したもので、上
記容量変化を周波数の変化に変換して演算する例であり
、/乙は発振回路、/7は基準周波数発信回路、/♂は
位相比較器、/りはフィルター1.20は演算回路であ
る。
Figure 5 shows an example of this external electronic circuit, in which the capacitance change described above is converted into a frequency change for calculation, /B is an oscillation circuit, /7 is a reference frequency oscillation circuit, /♂ is a phase comparator, / is a filter 1, and 20 is an arithmetic circuit.

第弘図は計量部2で得られる回転を前記のような対向す
るマグネツ14.jを用いることなく、直接導電軸♂に
伝達するようにした他の実施例を示したもので、計量部
λの回転軸3中間部はシールコ/により筺体/内の気密
を保つようになっており、該軸3頭部にはアーム22が
枝出され、導電軸/j下端に取付けた水平レバー23と
当接可能に構成してあり、回転軸3の回転は該アームコ
2及びレバー23を介して導電軸/jに伝達される。絶
縁ケースタの上板2≠には前述の外部の電子回路の一部
がプリント配線されており、導電軸gと接触する導板1
0と固定軸/4’とにそれぞれ電気的に接続されて、前
記と同様にコンデンサを形成する回転羽根/3と導電翼
/夕との重合面積の変化による電気容量の変化を検知す
るのである。
Fig. 3 shows the rotation obtained by the measuring section 2 by the opposing magnets 14. This shows another embodiment in which the electric current is transmitted directly to the conductive shaft ♂ without using the conductive shaft ♂. An arm 22 branches out from the head of the shaft 3 and is configured to be able to come into contact with a horizontal lever 23 attached to the lower end of the conductive shaft/j. is transmitted to the conductive axis /j through the conductive axis /j. A part of the above-mentioned external electronic circuit is printed on the upper plate 2≠ of the insulating case, and the conductive plate 1 in contact with the conductive shaft g
0 and the fixed shaft /4', and detect the change in capacitance due to the change in the overlapping area of the rotating blade /3 and the conductive blade /4', which form a capacitor in the same way as described above. .

なお、回転羽根/3を備える金属板/2と導電翼/jは
それぞれ7枚でも差支えないが、コンデンサの電気容量
を増幅するために図のように複数段設けることが好まし
く、また導電翼/夕は回転羽根/3の回転により該羽根
/3と重合したり相離れたりするよう構成する必要から
、その面積は回転羽根/3の枚数(従って広さ)に応じ
て決定されるのは勿論である。
Note that seven metal plates /2 with rotating blades /3 and seven conductive blades /j each may be used, but in order to amplify the capacitance of the capacitor, it is preferable to provide multiple stages as shown in the figure. Since it is necessary to configure the blade so that it overlaps or separates from the rotating blade/3 as the rotating blade/3 rotates, its area is of course determined according to the number (and therefore the width) of the rotating blade/3. It is.

本発明は以上のように流量計の計量部の回転を回転羽根
と導電翼の重合による電気容量変化に変換して検出する
ので、高分解能で検出することが可能となり、従来のよ
うな磁気感動素子を使用しないので消費電流も少なくて
済む等、種々の利点を有する。
As described above, the present invention converts the rotation of the metering part of the flowmeter into a change in capacitance caused by the superposition of the rotating blade and the conductive blade, and therefore detects it with high resolution. It has various advantages, such as less current consumption because no elements are used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の流量計の回転を電気的に検出する方法の
一例を示す説明図、第2図は本発明法に使用する装置の
一例を示す説明図、第3図はその要部の平面説明図、第
11−図は本発明法に使用する他の装置の説明図、第5
図は本発明法による回転検出のための応用回路の一例を
示す説明図である。 符号説明 /・・筐体       !・・計量部3・・回転軸 
   ≠、5・・マグネット乙・・磁気感動素子   
7・・絶縁材と・・導電軸      タ・・絶縁ケー
ス10・・導板      //・・外ケース/2・・
金属板     /3・・羽根/4’・・固定軸   
  /j・・導電翼/乙・・発振回路 /7・・基準周波数発振回路 /と・・位相比較器   /9・・フィルター20・・
演算回路    2/・・シール22・・アーム   
  23・・水平レバー2≠・・上板。
Fig. 1 is an explanatory diagram showing an example of a conventional method of electrically detecting the rotation of a flowmeter, Fig. 2 is an explanatory diagram showing an example of a device used in the method of the present invention, and Fig. 3 is an explanatory diagram of the main parts thereof. An explanatory plan view, Figure 11 is an explanatory diagram of another device used in the method of the present invention, Figure 5
The figure is an explanatory diagram showing an example of an applied circuit for detecting rotation according to the method of the present invention. Code explanation/...Case!・・Measuring part 3・・Rotating axis
≠, 5... Magnet B... Magnetic sensing element
7.Insulating material and conductive shaft Ta..Insulating case 10..Conducting plate //..Outer case/2..
Metal plate /3...Blade/4'...Fixed shaft
/j... Conductive blade / B... Oscillation circuit /7... Reference frequency oscillation circuit/ and... Phase comparator /9... Filter 20...
Arithmetic circuit 2/...Seal 22...Arm
23...Horizontal lever 2≠...Top plate.

Claims (4)

【特許請求の範囲】[Claims] (1)絶縁ケース内に複数の羽根を備えた回転自在の導
電軸と該羽根と若干の間隙を置いて重合することにより
コンデンサを形成する翼を取付けた電導性の固定軸とを
備え、流量計の計量部の回転を上記導電軸に伝達して上
記回転羽根と固定翼との重合による電気容量の変化を電
気的計量値に変換して演算処理することを特徴とする流
量計の回転検出方法。
(1) Equipped with a rotatable conductive shaft equipped with a plurality of blades in an insulating case and a conductive fixed shaft equipped with blades that overlap with the blades with a slight gap to form a capacitor. Rotation detection of a flow meter, characterized in that the rotation of the measuring part of the meter is transmitted to the conductive shaft, and the change in electric capacity due to the overlap between the rotary blade and the fixed blade is converted into an electrical measurement value and arithmetic processing is performed. Method.
(2)  前記コンデンサを形成する回転羽根と固定翼
は上下に複数設けて重合可能に構成してなる特許請求の
範囲第1項記載の流量計の回転検出方法。
(2) The method for detecting rotation of a flowmeter according to claim 1, wherein a plurality of rotating blades and fixed blades forming the capacitor are provided above and below and configured to be superimposed.
(3)  前記流量計々量部の回転は、その回転軸上端
にマグネットを取付け、導電軸下端に他のマグネットを
対向して設けることにより該導電軸に伝達する特許請求
の範囲第1項又は第2項記載の流量計の回転検出方法。
(3) The rotation of the flow rate metering section is transmitted to the conductive shaft by attaching a magnet to the upper end of the rotating shaft and disposing another magnet oppositely to the lower end of the conductive shaft. 2. The method for detecting rotation of a flowmeter according to item 2.
(4)前記流量計々量部の導電軸への回転伝達は、該計
量部回転軸頭部にアームを枝出し、導電軸ニレバーを取
付けて該アームとレバーの当接により行なう特許請求の
範囲第1項又は第2項記載の流量計の回転検出方法。
(4) Transmission of rotation of the flow rate metering section to the conductive shaft is accomplished by extending an arm from the head of the rotating shaft of the metering section, attaching a conductive shaft Nlever, and making contact between the arm and the lever. 2. The method for detecting rotation of a flowmeter according to item 1 or 2.
JP57138154A 1982-08-09 1982-08-09 Method for detecting rotation of flowmeter Pending JPS5927218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57138154A JPS5927218A (en) 1982-08-09 1982-08-09 Method for detecting rotation of flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57138154A JPS5927218A (en) 1982-08-09 1982-08-09 Method for detecting rotation of flowmeter

Publications (1)

Publication Number Publication Date
JPS5927218A true JPS5927218A (en) 1984-02-13

Family

ID=15215278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57138154A Pending JPS5927218A (en) 1982-08-09 1982-08-09 Method for detecting rotation of flowmeter

Country Status (1)

Country Link
JP (1) JPS5927218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613932U (en) * 1979-07-10 1981-02-05

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613932U (en) * 1979-07-10 1981-02-05
JPS5649474Y2 (en) * 1979-07-10 1981-11-18

Similar Documents

Publication Publication Date Title
US7965076B2 (en) Magnetic field orientation sensor
US6774642B2 (en) Capacitive angular position sensor
US5598153A (en) Capacitive angular displacement transducer
US4007454A (en) Apparatus for remotely determining the angular orientation, speed, and/or direction of rotation of objects
JP2001524206A (en) Clock with capacitance detection device
US2716893A (en) Means and apparatus for utilizing gyrodynamic energy
WO2006074560A2 (en) Eddy-current sensor and magnetic bearing device
Brasseur A robust capacitive angular position sensor
US3109139A (en) Electromagnetic apparatus for sensing discontinuities in structural members
JP3905707B2 (en) Liquid level sensor
JPH0743266B2 (en) Capacitive position transducer
JPH0769186B2 (en) Reflected electrostatic field angle resolver
US4433332A (en) Apparatus for remotely determining the position of rotating objects
JPS5927218A (en) Method for detecting rotation of flowmeter
US4165505A (en) Apparatus for remotely determining the angular orientation, speed, and/or direction of rotation of objects
JP4028294B2 (en) Rotation sensor
JP4054693B2 (en) Capacitive displacement measuring instrument
JPH0260121B2 (en)
JP2797021B2 (en) Torque measuring device
CA1100596A (en) Apparatus for remotely determining the angular orientation, speed and/or direction of rotation of objects
US3222660A (en) Magnetic position encoder
JPS6032997B2 (en) polyphase potentiometer
JP3251852B2 (en) Flowmeter
JPS5995421A (en) Detector of rotary displacement
JPH08114406A (en) Capacitive displacement sensor