JPS5927188B2 - silent discharge device - Google Patents

silent discharge device

Info

Publication number
JPS5927188B2
JPS5927188B2 JP57207221A JP20722182A JPS5927188B2 JP S5927188 B2 JPS5927188 B2 JP S5927188B2 JP 57207221 A JP57207221 A JP 57207221A JP 20722182 A JP20722182 A JP 20722182A JP S5927188 B2 JPS5927188 B2 JP S5927188B2
Authority
JP
Japan
Prior art keywords
voltage
silent discharge
current
inverter
thyristor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57207221A
Other languages
Japanese (ja)
Other versions
JPS5899271A (en
Inventor
則一 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57207221A priority Critical patent/JPS5927188B2/en
Publication of JPS5899271A publication Critical patent/JPS5899271A/en
Publication of JPS5927188B2 publication Critical patent/JPS5927188B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only

Description

【発明の詳細な説明】 この発明は無声放電装置の電源として使用する電流形サ
イリスタインバータの運転可能周波数を高める方式に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for increasing the operable frequency of a current source thyristor inverter used as a power source for a silent discharge device.

第1図は電流形インバータ駆動による無声放電装置の一
例としてのオゾナイザの構成図である。
FIG. 1 is a configuration diagram of an ozonizer as an example of a silent discharge device driven by a current source inverter.

図において、1は無声放電電極、1’は非放電時の無声
放電電極の等価回路、1″は放電時の無声放電電極の等
価回路、2は昇圧トランス、3はサイリスタブリッジ等
からなる順変換装置、4は直流リアクトル、5はサイリ
スタブリッジからなる逆変換装置である。逆変換装置5
の主要部は51〜54のサイリスタブリッジからできて
いる。順変換装置3により交流電源より直流に変換され
た電流は直流リアクトル4を通して逆変換装置5に送ら
れる。この直流リアクトル4は逆変換装置5以降の回路
のインピーダンスが時間的に変化しても常に一定値の直
流電流10を流すに充分なだけの大きなインダクタンス
をもつている。即ち順変換装置3と直流リアクトル4で
定電流源(負荷のインピーダンスが変化しても常に一定
の電流を供給する)を構成している。逆変換装置5では
サイリスタ51と52が導通で53と54が遮断の状態
と、サイリスタ53と54が導通で51と52が遮断の
状態をくり返して無声放電電極1に交播電流を供給する
。昇圧トランス2は電圧比と電流比をかえるが波形には
影響しない。従つて第1図にV、Iで示す電圧と電流の
波形は無声放電電極1にかかる電圧と電流の波形に等し
い。第2図は逆変換装置出力の電流、電圧波形及びサイ
リスタ51〜54の端子電圧を示す。電流Iは定電流源
よりの直流電流10を逆変換装置で一定周期で方向を逆
転したものであるから短形波となる。電圧Vは負荷であ
る無声放電電極に電流工が流れた時に誘起する電圧であ
るから次のようになる。無声放電電極間には空隙と誘電
体板があり、空隙の単位面積当りの静電容量をCa)誘
電体の単位面積当りの静電容量をCg)放電面積をsと
すると、空隙に放電が起つていない時の電極間の静電容
量ClはCaSとCgSの直列接続、空隙が放電した時
の電極間の静電容量C2はCgSのみとなる。
In the figure, 1 is a silent discharge electrode, 1' is an equivalent circuit of a silent discharge electrode when not discharging, 1'' is an equivalent circuit of a silent discharge electrode when discharging, 2 is a step-up transformer, and 3 is a forward conversion consisting of a thyristor bridge, etc. 4 is a DC reactor, and 5 is an inverse conversion device consisting of a thyristor bridge. Inverse conversion device 5
The main part is made up of 51 to 54 thyristor bridges. The current converted from the AC power supply to DC by the forward converter 3 is sent to the reverse converter 5 through the DC reactor 4. This DC reactor 4 has an inductance large enough to always flow a constant value of DC current 10 even if the impedance of the circuit after the inverter 5 changes over time. That is, the forward converter 3 and the DC reactor 4 constitute a constant current source (which always supplies a constant current even if the impedance of the load changes). In the inverter 5, alternating current is supplied to the silent discharge electrode 1 by repeating a state in which thyristors 51 and 52 are conductive and thyristors 53 and 54 are disconnected, and a state in which thyristors 53 and 54 are conductive and thyristors 51 and 52 are disconnected. The step-up transformer 2 changes the voltage ratio and current ratio, but does not affect the waveform. Therefore, the voltage and current waveforms indicated by V and I in FIG. 1 are equal to the voltage and current waveforms applied to the silent discharge electrode 1. FIG. 2 shows the current and voltage waveforms of the inverter output and the terminal voltages of the thyristors 51-54. The current I is obtained by reversing the direction of the direct current 10 from a constant current source at regular intervals using an inverter, so it becomes a rectangular wave. Since the voltage V is the voltage induced when a current flows through the silent discharge electrode which is the load, it is as follows. There is a gap and a dielectric plate between the silent discharge electrodes, and if the capacitance per unit area of the gap is Ca) the capacitance per unit area of the dielectric is Cg) the discharge area is s, the discharge in the gap is The capacitance Cl between the electrodes when no discharge is occurring is the series connection of CaS and CgS, and the capacitance C2 between the electrodes when the gap is discharged is only CgS.

C1=−C2=Cg5 オゾナイザでは通常Cg>CaであるからC2>C1と
なる。
C1=-C2=Cg5 In an ozonizer, normally Cg>Ca, so C2>C1.

放電が始まるのは電流が反転して前の半サイクルで起つ
ていた放電が停止し、前の半サイクルとは逆の向きに電
界が強くなつていき、空隙の電圧が放電電圧Vbに達し
た時より起る。この時電極間よりみたみかけの放電電圧
b′は次式となる。VC》 b′をトランスの低圧側に変換した電圧をbとする。
Discharge begins when the current reverses, the discharge that occurred in the previous half cycle stops, and the electric field becomes stronger in the opposite direction to the previous half cycle, and the voltage in the air gap reaches the discharge voltage Vb. It happens when you do it. At this time, the apparent discharge voltage b' seen from between the electrodes is expressed by the following equation. VC》 Let b be the voltage obtained by converting b' to the low voltage side of the transformer.

従つて電圧波形は電流反転後電圧がbに達するまでは非
放電期間で負荷C1を一定電流で充電するので一定の傾
斜で変化し、電圧がVbに達すると負荷がC2に変化す
るが電流は定電流源であるから変化せず、またC2で決
まる一定の傾斜で変化する。C1はC2より小さいので
非放電部の方が傾斜が急で第2図に示す波形となる。第
2図でpは電圧波形のビーク値である。第2図には逆変
換装置のサイリスタCRl〜CR4にかかる電圧も示し
ている。
Therefore, the voltage waveform changes with a constant slope because load C1 is charged with a constant current during the non-discharge period until the voltage reaches b after current reversal, and when the voltage reaches Vb, the load changes to C2, but the current is Since it is a constant current source, it does not change, and changes with a constant slope determined by C2. Since C1 is smaller than C2, the non-discharge portion has a steeper slope, resulting in the waveform shown in FIG. In FIG. 2, p is the peak value of the voltage waveform. FIG. 2 also shows the voltages applied to the thyristors CR1 to CR4 of the inverter.

ところでサイリスタのようなスイツチング素子では遮断
より導通へ移行するのはゲートで制御できるが、導通よ
り遮断へ移行するには素子に逆電圧を印加し、その逆電
圧時間Trを素子自身の有する順電圧阻止能力回復時間
TOff以上に保たなければならない。即ち第2図にT
rで示す逆電圧時間をTOffより小さくならないよう
な周波数でしか逆変換装置は働かない。TrがTOff
より小さくなるとサイリスタが全部導通状態となり、い
わゆる転流失敗を起す。サイリスタのTOffは通常1
0〜100ttsecである。第2図の場合にTr=T
Offを30μSecとするとT。は500Itsec
位となり、周波数は1KHz位となるので、1KHz以
下でしか運転できない。この発明は無声放電電極の放電
条件とインバータの運転条件の整合によりインバータを
より高周波で使用できる無声放電装置を提供することを
目的とする。
By the way, in a switching element such as a thyristor, the transition from cutoff to conduction can be controlled by the gate, but in order to shift from conduction to cutoff, a reverse voltage is applied to the element, and the reverse voltage time Tr is controlled by the forward voltage of the element itself. The stopping ability recovery time must be kept longer than Toff. That is, T in Figure 2
The inverter works only at frequencies such that the reverse voltage time, denoted r, does not become less than Toff. Tr is Toff
If it becomes smaller, all the thyristors become conductive, causing so-called commutation failure. Thyristor Toff is usually 1
It is 0 to 100ttsec. In the case of Fig. 2, Tr=T
If Off is 30μSec, then T. is 500Itsec
The frequency is about 1 KHz, so it can only be operated at 1 KHz or less. An object of the present invention is to provide a silent discharge device that allows the inverter to be used at a higher frequency by matching the discharge conditions of the silent discharge electrodes and the operating conditions of the inverter.

第3図は第2図と同様に逆変換装置の出力電流、電圧サ
イリスタの端子電圧を示したものであり、a)は第2図
と同じくみかけの放電電圧bが電圧のビーク値9より大
きい場合であり、b)はその反対の時である。
Figure 3 shows the output current of the inverter and the terminal voltage of the voltage thyristor, similar to Figure 2, and in a), the apparent discharge voltage b is greater than the voltage peak value 9, as in Figure 2. b) is the opposite case.

第3図より明らかなようにb〈pとなる条件ではサイリ
スタにかかる逆電圧時間Trは大きくとれるので高周波
運転が可能になる。ところで、pは無声放電電極の絶縁
耐圧で決まる限界値があり、それ以上は大きくはとれな
い。放電電圧Vbは無声放電電極の空隙長と空隙内ガス
圧力で決まるので、pをbより小さく選ぶことは可能で
ある。ここでインバータを高周波運転する目的を考える
と、これは無声放電電極に放電電力をできるだけ大きく
投入することである。
As is clear from FIG. 3, under the condition of b<p, the reverse voltage time Tr applied to the thyristor can be increased, making high frequency operation possible. By the way, p has a limit value determined by the dielectric strength of the silent discharge electrode, and cannot be set larger than that. Since the discharge voltage Vb is determined by the gap length of the silent discharge electrode and the gas pressure in the gap, it is possible to select p to be smaller than b. Considering the purpose of operating the inverter at high frequency, this is to input as much discharge power as possible to the silent discharge electrodes.

無声放電電力Wは次式で与えられる。状態として周波数
F。
Silent discharge power W is given by the following equation. Frequency F as a state.

、電圧POと設定すると第5図に示すようにF。より低
い周波数で周波数一定として電流値を増加し、Vp=b
の時にもTr,tr!がTOffより大きくなるように
してVpOまで電圧を増加し、その後POを一定に保つ
て周波数fをFOまで増加させると定常運転状態に達す
ることができる。bを変化させることは通常のオゾナイ
ザでは面倒であるが、空隙の圧力調整によりVbを変化
させることも不可能ではない。
, voltage PO, F as shown in FIG. At a lower frequency, the current value is increased with the frequency constant, and Vp=b
Tr, tr! By increasing the voltage to VpO so that Toff is greater than Toff, and then increasing the frequency f to FO while keeping PO constant, a steady state of operation can be reached. Although it is troublesome to change b in a normal ozonizer, it is not impossible to change Vb by adjusting the pressure in the gap.

この時には周波数を最初より設定値とし空隙圧力が小さ
くbも小さい状態でVpを設定値まで増加し、その後空
隙圧力をあげてbを設定値までもつていく方式でもよい
。以上無声放電式オゾナイザについて述べたが無声放電
電極をもつレーザ励起装置等にも適用できることはいう
までもない。
In this case, a method may be adopted in which the frequency is set to the set value from the beginning, Vp is increased to the set value while the pore pressure is small and b is also small, and then the pore pressure is increased to bring b to the set value. Although the silent discharge ozonizer has been described above, it goes without saying that the present invention can also be applied to a laser excitation device having a silent discharge electrode.

この発明による運転方式によりTOffが約30μSe
cのサイリスタを使つて従来1KHz以下でしか運転で
きなかつたインバータが3KHzまで使用可能となつた
The operation method according to this invention allows Toff to be approximately 30 μSe.
By using a thyristor, an inverter that could previously only be operated at a frequency of 1 KHz or less can now be used up to 3 KHz.

この実用的な価値は非常に大きい。This practical value is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電流形インバータ駆動による無声放電式オゾナ
イザの構成図、第2図は逆変換装置出力の電流電圧波形
及びサイリスタの端子電圧波形を示す図、第3図は第2
図と同様でVbとpの関係による波形変化を示す図、第
4図は逆変換装置の出力電流電圧波形の電流増加による
電圧波形変化を示す図、第5図は運転方式の説明図であ
る。
Fig. 1 is a configuration diagram of a silent discharge ozonizer driven by a current source inverter, Fig. 2 is a diagram showing the current voltage waveform of the inverter output and the terminal voltage waveform of the thyristor, and Fig. 3 is a diagram showing the thyristor terminal voltage waveform.
Similar to the figure, it is a diagram showing waveform changes due to the relationship between Vb and p, Fig. 4 is a diagram showing voltage waveform changes due to increase in current of the output current and voltage waveform of the inverter, and Fig. 5 is an explanatory diagram of the operation method. .

Claims (1)

【特許請求の範囲】[Claims] 1 逆変換装置にサイリスタを使つた電流形インバータ
で駆動する無声放電装置において、最終目標周波数より
低い周波数において電極間電圧のピーク値を目標値まで
上昇させ、その後ピーク値を一定として周波数を目標値
まで高める始動方式を採用するとともに、各半サイクル
の放電開始時における電極間電圧を電極間電圧のピーク
値よりも小さくして逆変換装置のサイリスタに印加され
る逆電圧時間を長くとる事を特徴とした無声放電装置。
1 In a silent discharge device driven by a current-source inverter using a thyristor as an inverse conversion device, the peak value of the inter-electrode voltage is increased to the target value at a frequency lower than the final target frequency, and then the frequency is set to the target value while keeping the peak value constant. In addition to adopting a starting method that increases the voltage up to 100%, the interelectrode voltage at the start of each half cycle is made smaller than the peak value of the interelectrode voltage, thereby increasing the time during which the reverse voltage is applied to the thyristor of the inverter. A silent discharge device.
JP57207221A 1982-11-26 1982-11-26 silent discharge device Expired JPS5927188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57207221A JPS5927188B2 (en) 1982-11-26 1982-11-26 silent discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207221A JPS5927188B2 (en) 1982-11-26 1982-11-26 silent discharge device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51035310A Division JPS5826271B2 (en) 1976-03-31 1976-03-31 silent discharge device

Publications (2)

Publication Number Publication Date
JPS5899271A JPS5899271A (en) 1983-06-13
JPS5927188B2 true JPS5927188B2 (en) 1984-07-04

Family

ID=16536244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207221A Expired JPS5927188B2 (en) 1982-11-26 1982-11-26 silent discharge device

Country Status (1)

Country Link
JP (1) JPS5927188B2 (en)

Also Published As

Publication number Publication date
JPS5899271A (en) 1983-06-13

Similar Documents

Publication Publication Date Title
US4128768A (en) Ozone generating apparatus
US4051045A (en) Ozone generating apparatus
US6433458B2 (en) Method and unit for driving piezoelectric transformer used for controlling luminance of cold-cathode tube
US4123664A (en) Ozone generating apparatus
JP2817670B2 (en) Wide input piezoelectric transformer inverter
JP2002017090A (en) Method and apparatus for driving piezoelectric transformer
JP2775254B2 (en) ▲ High ▼ frequency ▲ high ▼ voltage power supply for driving non-linear capacitive load
JPS5927188B2 (en) silent discharge device
EP0477587A1 (en) Power apparatus
JP2003299356A (en) Dc-dc converter control method
JP2518527B2 (en) Piezoelectric transformer converter
JPS5826271B2 (en) silent discharge device
JPH06292361A (en) Resonance-type dc-dc converter
JP3037903B2 (en) Piezoelectric transformer type power converter and driving method thereof
JPH05266984A (en) Discharge lamp lighting device
JP4151107B2 (en) High pressure discharge lamp lighting device
JPH04212294A (en) Power supply device
JPH10201241A (en) Power converter
JPH06101389B2 (en) Discharge lamp lighting device
JP3961201B2 (en) Laser power supply
JP3706161B2 (en) High frequency power supply for gas laser oscillator
JP3035041B2 (en) Lighting device for high pressure discharge lamp
JPH0689789A (en) Discharge lamp lighting device
JP2738354B2 (en) Wide input piezoelectric transformer converter
JPS62203559A (en) Power unit