JPS5927022A - Continuous cut-off wall work of cement mortar - Google Patents

Continuous cut-off wall work of cement mortar

Info

Publication number
JPS5927022A
JPS5927022A JP13508782A JP13508782A JPS5927022A JP S5927022 A JPS5927022 A JP S5927022A JP 13508782 A JP13508782 A JP 13508782A JP 13508782 A JP13508782 A JP 13508782A JP S5927022 A JPS5927022 A JP S5927022A
Authority
JP
Japan
Prior art keywords
wall
soil
underground
mixed
excavated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13508782A
Other languages
Japanese (ja)
Inventor
Seiji Hamazuka
浜塚 政治
Mamoru Makino
牧野 守
Yasuo Suzuki
康夫 鈴木
Yoshio Sawada
沢田 凱夫
Koichi Mori
森 紘一
Takemi Ishii
武美 石井
Yuugo Tanagi
棚木 勇悟
Shinichi Sako
信一 酒向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Fujita Kogyo KK
Original Assignee
Fujita Corp
Fujita Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp, Fujita Kogyo KK filed Critical Fujita Corp
Priority to JP13508782A priority Critical patent/JPS5927022A/en
Publication of JPS5927022A publication Critical patent/JPS5927022A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/18Bulkheads or similar walls made solely of concrete in situ

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

PURPOSE:To construct an underground continuous wall without the need to discard soil and sand by a method in which excavated soil and sand mixed with a stabilizing liquid for excavation are mixed with a solidifying agent on the ground surface to produce a soil cement, and the soil cement is placed into a vertical shaft. CONSTITUTION:In a sheathing or a water cut-off work, a vertical shaft for an underground continuous wall is excavated. The excavated soil and sand mixed with a stabilizing liquid is mixed with a solidifying agent composed of a mixture of cement, bentonite, a coagulation retarder, etc., in a plant on the ground surface to produce a soil cement. The soil cement is placed into the shaft where an iron bar cage is set to construct a continuous underground wall.

Description

【発明の詳細な説明】 従来、山留や止水のために地下連続壁を施工する場合、
地下連続壁構築用竪溝孔を掘削し、掘削土砂を廃棄して
溝孔内に鉄筋篭を設置したのち、コンクリートを打設し
、溝孔内の掘削安定液と置換して鉄筋コンクリート壁体
を構築していた。
[Detailed Description of the Invention] Conventionally, when constructing an underground continuous wall for mountain retaining or water stoppage,
After excavating a trench hole for constructing an underground continuous wall, disposing of the excavated soil and installing a reinforcing bar cage in the trench, concrete is poured and the excavation stabilizing fluid in the trench is replaced to form a reinforced concrete wall. was building.

従って不透水層の位置が浅(、地下連続壁が構造物躯体
の一部として用いられないとコスト面で不利となる。更
[42[i削土の廃棄及びコンクリート打設作業によっ
て交通敞か多(なり、市街地での騒音等の公害問題が生
じろ。またベントナイト泥水に代表される安定液の同化
強度は低強度で含水比が高いため、設計強度の選定範囲
が小さく、強度的バラツキが多く、信頼性の点でカ11
があった。
Therefore, if the impermeable layer is located at a shallow location, it will be disadvantageous in terms of cost if the underground continuous wall is not used as part of the structure. This can lead to noise and other pollution problems in urban areas.Also, the assimilated strength of stabilized liquids, such as bentonite mud, is low and has a high water content, so the selection range for design strength is small, and strength variations may occur. 11 points in terms of reliability.
was there.

本発明は斜上の欠点を除去するために提案されたもので
、地下連続壁構築用竪溝孔のtll削に伴って生じた掘
削安定液の混入した掘削土砂を地表部において固化材と
混練してフィルモルタルを製造し、次いで同フィルモル
タルを前記竪溝孔に打設して地下連続壁を構築′1−ろ
ことを特徴とする連続モルタル止氷壁工法に係るもので
ある。
The present invention was proposed in order to eliminate the drawbacks of slope, and the excavated soil mixed with excavation stabilizing liquid generated due to the tll excavation of a vertical trench for constructing an underground continuous wall is mixed with a solidification material at the surface of the ground. This invention relates to a continuous mortar ice-stopping wall construction method characterized in that a fill mortar is produced, and then the fill mortar is poured into the vertical groove to construct an underground continuous wall.

本発明においては前記したように、山留や止水工事にお
いて、地下連続壁構築用竪溝孔の掘削に伴う掘削安定液
混入の掘削土砂を廃棄−ダろこと′/′、Cく、地表部
のプラントで同化材と混練してそれ自体安定した強度を
有するフィルモルタルを製造し、同フィルモルタルを前
記溝孔に打設することによって地下連続壁を構成するよ
うにしたので、従来T法に比して工費が大幅に節減され
、地下水汲上げが規制される場所でしかも不透水層が深
い場合に有利であり、また廃棄掘削土砂の廃棄に伴5m
境汚染が防止される等、本発明は多くの利点を有するも
のである。
In the present invention, as described above, in mountain retaining and water stop construction, excavated soil mixed with excavation stabilizing liquid during excavation of vertical trenches for constructing underground continuous walls is disposed of. By mixing it with assimilated material in a plant to produce a fill mortar that itself has stable strength, we constructed an underground continuous wall by pouring the fill mortar into the groove, which is different from the conventional T method. It is advantageous in places where underground water pumping is regulated and where the impermeable layer is deep, and it is advantageous in areas where underground water pumping is regulated and where the impermeable layer is deep.
The present invention has many advantages, such as preventing environmental contamination.

なお前記掘削土砂と混練される同化材としてはセメント
とベントナイト、凝結遅延剤、高炉水砕スラグ等の添加
剤との混合物が使用されろ。フィルモルタルの配合は予
め試し練りによって確認するが、基本配合は室内配合試
験により求めてお(。
As the assimilation material to be mixed with the excavated soil, a mixture of cement and additives such as bentonite, a setting retarder, and granulated blast furnace slag may be used. The formulation of fill mortar is confirmed in advance by trial kneading, but the basic formulation is determined by indoor formulation tests (.

フィルモルタルの強度は、同化材の種類と投入量とによ
り可成りの幅を持たせろことができるが、一般には一軸
圧縮強さ10〜20’9/cm’(20’C水中で28
日間養生後)程度の低強度とする。
The strength of fill mortar can vary considerably depending on the type and amount of assimilated material, but in general it has an unconfined compressive strength of 10 to 20'9/cm' (28 cm in 20'C water).
After curing for one day), the strength should be low.

フィルモルタルの品質管理は、ワーカビリティと強度に
ついて行なわれろものであって、ワーカビリティは71
?ンプによろ圧送性、トレミ管による打設の容易さ、打
上り後におけろインタロッキング/ξイブの引抜きの容
易さ、及びフィルモルタルによる地下連続壁体の品質に
影響を及ぼ1−が、本発明においてはチーメルフロー値
200〜240順が適当である。
Quality control of fill mortar should be performed on workability and strength, and workability is 71.
? The following factors affect the quality of continuous underground wall using fill mortar: In the invention, a Thiemel flow value of 200 to 240 is appropriate.

本発明の工法においては、掘削土砂の性状変化に伴なう
品質の変動を如何に小さくするかが肝要であって、その
ためポーリングによる地質調査と、その試料を用いた室
内配合実験結果の精度が111要である。
In the construction method of the present invention, it is important to minimize fluctuations in quality due to changes in the properties of excavated soil, and for this reason, the accuracy of geological surveys by poling and the results of indoor mixing experiments using the samples is 111 points are required.

なお本発明の工法によって施工された地下連続壁を山留
壁として用いる場合には、山留の耐力月としてH型欽、
■型鋼を適当な寸法と間隔で打設フィルモルタル中に設
置する。このとき根切深さが大きい場合には、本施工構
造物を逆打工法で構築するものである。
In addition, when using the underground continuous wall constructed by the construction method of the present invention as a retaining wall, an H-type wall,
■Install the shaped steel into the cast fill mortar with appropriate dimensions and spacing. At this time, if the root cutting depth is large, this construction structure will be constructed using the reverse hammering method.

次に本発明火建築基礎工事の山留め止水壁の施工に適用
した実施例について説明する。
Next, a description will be given of an embodiment in which the present invention is applied to the construction of a mountain retaining water-stop wall for fire construction foundation work.

施工地盤は第1図に示すように、ロームの凝灰質粘土が
地表面(1)より6mの深さまで堆積し、26mの深さ
まで細〜中砂主体で、それ以下は硬質シルトである。
As shown in Figure 1, the construction ground consists of loamy tuff clay deposited to a depth of 6 m from the ground surface (1), with fine to medium sand mainly up to a depth of 26 m, and hard silt below that.

ここで山留め止水壁構築用竪溝孔の掘削土を、地表部の
プラントで固化利と混練してフィルモルタルを製造し、
前記竪溝孔に鉄筋篭を設置したのち、前記フィルモルタ
ルを打設して、山留止水壁(2)を構築したC図中(3
)は構造物躯体である。
Here, the soil excavated from the trench for constructing the water-retaining wall is mixed with solidified soil at a surface plant to produce fill mortar.
After installing a reinforcing bar cage in the trench, the fill mortar was placed to construct a retaining water stop wall (2), as shown in Figure C (3).
) is the frame of the structure.

前記山留止水壁(2)は、深度28m、壁厚0.6mで
地下掘削予定値の全周404mを施工した。また土庄と
水FEはH型鋼(ろ9QXろCl0x10x16、高さ
18.Orn、間隔1.25 m )で主として負担さ
せろ設計とした。
The mountain retaining water stop wall (2) was constructed with a depth of 28 m, a wall thickness of 0.6 m, and a total circumference of 404 m, which is the planned underground excavation value. In addition, Tonosho and Mizu FE were designed to be mainly borne by H-type steel (RO9QXROCl0x10x16, height 18.Or, spacing 1.25 m).

施工VcI型しては、所定断面の竪溝孔を所定深度まで
掘削し、スライム処理をしたσ)ちH型鋼を5本1絹と
して2〜6セツト溝孔内に設iKしブこ。−力掘削士を
骨相として、予め試験線iつで6(f認しt二表−1V
C示寸川定の配合で、ノミツチャプラントυCよってソ
イルモルタル 溝孔に打設した。
For the construction VcI type, a vertical groove with a predetermined cross section is excavated to a predetermined depth, and 2 to 6 sets of 5 H-shaped steels are installed in the groove using 5 pieces of H-shaped steel. - With a force excavator as a phrenologist, test line i is 6 (f confirmed in advance)
It was poured into soil mortar grooves using the Nomitscha Plant υC with the mixture specified by C Isugawa Sada.

表−1 フィルモルタル標準調合 但し、砂は絶乾重量.砂の含水fkは60%以下とする
Table-1 Fill mortar standard formulation However, sand is absolute dry weight. The water content fk of sand shall be 60% or less.

混和剤は25係溶液で、調合1は(G+B)xl.25
%調合2は(G+B)X2.5係 前記のようにして施工された地下連続壁よりポーリング
によってコアを採取して、− iIqi圧縮試験を行な
った結果を第2図に示す。
The admixture is a 25% solution, and Formulation 1 is (G+B)xl. 25
% Mixture 2 is (G + B)

以上本発明を実施例について説明したが、本発明は勿論
このような実施例にだけ局限されろものではなく、本発
明の精神を逸脱し1、【い範囲内で神々の設計の改変を
施しうろものである。
Although the present invention has been described above with reference to embodiments, the present invention is of course not limited to such embodiments, and may deviate from the spirit of the present invention and modify God's design within the scope. It is scaly.

4〔図(イ11の簡卯′/ぶ説明〕 第1図は本発明の方法の実施される地盤の土質b3?、
四国及び地下借造物の紹断面図、第2図は地下連続壁の
深度と圧縮強度との関係を示す図1表である。
4 [Figure (Simplified explanation of A11)] Figure 1 shows the soil quality b3?
Introducing cross-sectional views of Shikoku and underground rental structures, Figure 2 is a table in Figure 1 showing the relationship between depth and compressive strength of underground continuous walls.

(2)・・・山留止水壁 代理人 弁理士 岡 本 車 文 外2名馬1図 1O1− 馬2図 湿潤密度ρl (g/c117) 第1頁の続き 0発 明 者 酒向信− 川崎市多摩区登戸1282登戸荘B −3号(2)... Mountain water stop wall Agent: Patent attorney, Okamoto, Kuruma, 2 other people, 1 illustration 1O1- Horse 2 Wet density ρl (g/c117) Continuation of page 1 0 shots Akinobu Sakako Noboritoso B, 1282 Noborito, Tama-ku, Kawasaki City -No.3

Claims (1)

【特許請求の範囲】[Claims] 地下連続壁構築用竪溝孔の掘削に伴って生じた掘削安定
液の混入した掘削土砂を地表部において固化利と混練し
てフィルモルタルを製造し、次いで同フィルモルタルを
前記竪溝孔に打設して地下連続壁を構築することを特徴
とする連続モルタル止氷壁工法。
Fill mortar is produced by mixing the excavated soil mixed with excavation stabilizing liquid produced during the excavation of a vertical trench hole for constructing an underground continuous wall with solidified soil on the ground surface, and then pouring the same fill mortar into the vertical trench hole. A continuous mortar ice wall construction method characterized by the construction of a continuous underground wall.
JP13508782A 1982-08-04 1982-08-04 Continuous cut-off wall work of cement mortar Pending JPS5927022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13508782A JPS5927022A (en) 1982-08-04 1982-08-04 Continuous cut-off wall work of cement mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13508782A JPS5927022A (en) 1982-08-04 1982-08-04 Continuous cut-off wall work of cement mortar

Publications (1)

Publication Number Publication Date
JPS5927022A true JPS5927022A (en) 1984-02-13

Family

ID=15143521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13508782A Pending JPS5927022A (en) 1982-08-04 1982-08-04 Continuous cut-off wall work of cement mortar

Country Status (1)

Country Link
JP (1) JPS5927022A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219212A (en) * 1988-02-26 1989-09-01 Mitani Sekisan Co Ltd Pile or continuous wall and its constructing method
US5133678A (en) * 1988-12-08 1992-07-28 Yazaki Corporation Connector with built-in through capacitors
JP2003041576A (en) * 2001-07-31 2003-02-13 Ohbayashi Corp Composite underground continuous wall and construction method of the wall

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543322A (en) * 1977-06-09 1979-01-11 Mitsui Constr Method of constructing underground structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543322A (en) * 1977-06-09 1979-01-11 Mitsui Constr Method of constructing underground structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219212A (en) * 1988-02-26 1989-09-01 Mitani Sekisan Co Ltd Pile or continuous wall and its constructing method
US5133678A (en) * 1988-12-08 1992-07-28 Yazaki Corporation Connector with built-in through capacitors
JP2003041576A (en) * 2001-07-31 2003-02-13 Ohbayashi Corp Composite underground continuous wall and construction method of the wall
JP4576768B2 (en) * 2001-07-31 2010-11-10 株式会社大林組 Composite type underground continuous wall and construction method of the same wall

Similar Documents

Publication Publication Date Title
WO2017185817A1 (en) Construction method for on-site mixing cement-soil pile overground
JP2017020327A (en) Cast-in-place pile method
JPS5927022A (en) Continuous cut-off wall work of cement mortar
JP2831441B2 (en) Stabilized soil and construction method using stabilized soil
JP3676441B2 (en) Pit and construction method of basement using it
KR100272950B1 (en) Method of forming water-resist wall of rubbish buried place
JP2882259B2 (en) Hydraulic material and self-hardening stabilizer
JP4148554B2 (en) Caisson installation method
KR810001855B1 (en) Caue filling method for tunnel back lining
CN115450082B (en) Light solidifying and modifying construction method for soft soil
JP3230147B2 (en) Fluidized soil construction structure and its construction method
JP2003277738A (en) Pile periphery fixing liquid and embedding method of pile
JPS6070241A (en) Construction of sewage pipe culvert
JPH07100822A (en) Manufacture of hydraulic material
JP2004197474A (en) Vibration isolation banking structure
JPS57108328A (en) Formation of basement
JPH0258634A (en) Foundation installation construction
JP2003193503A (en) Method for filling cavity caused under sluice
JPS6240488B2 (en)
SU1629372A1 (en) Method for construction of concreate dam
Kennedy Symposium on Grouting: Research in Foundation Grouting with Cement
SU829785A1 (en) Method of making pits in sandy soils
JPH0612012B2 (en) Tsukishima construction method
JP3341541B2 (en) Backfilling method for buried objects
Hartlen et al. Deep stabilization of soft soils with lime-cement columns