JPS5926931A - Electrical smelting method - Google Patents

Electrical smelting method

Info

Publication number
JPS5926931A
JPS5926931A JP13430682A JP13430682A JPS5926931A JP S5926931 A JPS5926931 A JP S5926931A JP 13430682 A JP13430682 A JP 13430682A JP 13430682 A JP13430682 A JP 13430682A JP S5926931 A JPS5926931 A JP S5926931A
Authority
JP
Japan
Prior art keywords
batch
layer
glass
bubble
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13430682A
Other languages
Japanese (ja)
Inventor
Hisayoshi Kageyama
尚義 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP13430682A priority Critical patent/JPS5926931A/en
Publication of JPS5926931A publication Critical patent/JPS5926931A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To carry out the electrical smelting of special glass, stably, without causing bumping, by covering a part of the bubble-containing glass layer covering the whole surface of the smelting tank, with the raw material batch layer. CONSTITUTION:The full electrical smelting of a special glass (e.g. E-glass or S- glass for glass fiber) is carried out by supplying the batch concentratedly to the center of the smelting tank 10 so as to cover the whole surface of the smelting tank 10 with a bubble-containing glass layer 23 covered partially with the intermediate layer 22 and the batch layer 21 leaving the ring-shaped exposed part 23' of the bubble-containing layer 23. The width (l) of the batch layer 21 is preferably about <=1m, and the area of the exposed part 23' of the bubble-containing glass layer is preferably about >=20% of the area of the top face of the smelting tank 10.

Description

【発明の詳細な説明】 本発明はガラスの全電融法、特に、従来全電融が難しい
とされていた特殊ガラスの全電融法に関するものである
。従 来、ガラスの溶融は主として重油を燃料とする溶融炉が
用いられていたが、近年は、エネルギー効率が良く、公
害防止のための費用が少なく、操炉の簡便な電気溶融ロ
の採用が増えている。特にソーダライムガラスのような
普通のガラス溶融には、電力のみで溶融する全電湯融炉
が極めて有効である。しかし、特殊ガラス、例えばガラ
ス繊維用のEガラスやSガラスなどは全電融による溶融
が極めて困難であり、種々の改良が試みられているが有
効な方法は得られていない。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an all-electro-melting method for glass, and in particular to an all-electro-melting method for special glasses for which it has been conventionally considered difficult to do all-electro-melting. Traditionally, melting furnaces fueled by heavy oil were mainly used to melt glass, but in recent years electric melting furnaces have been increasingly adopted because they are energy efficient, cost less to prevent pollution, and are easy to operate. ing. In particular, an all-electric melting furnace that uses only electricity is extremely effective for melting ordinary glass such as soda lime glass. However, special glasses such as E-glass and S-glass for glass fibers are extremely difficult to melt by full electric melting, and although various improvements have been attempted, no effective method has been found.

ガラス全電融においては、通常、溶融槽の表面全体をバ
ッチで覆うコールドチップ方式が用いられている。溶融
槽の表面全体に略均一な厚さのバッチ層が形成されるよ
うに、溶融槽表面の全体に亘って移動する特別な投入機
でバッチを供給する。このバッチの槽により溶融槽表面
からの放熱を防止する。
In total glass melting, a cold tip method is usually used in which the entire surface of the melting tank is covered with a batch. The batch is fed by a special dosing machine that moves over the entire surface of the melting tank so that a batch layer of approximately uniform thickness is formed over the entire surface of the melting tank. This batch tank prevents heat radiation from the melting tank surface.

普通ガラスの溶融における全電融炉の溶融槽の上方の状
態を第1図に示す。溶融炉の最上層はバッチ槽(1)で
、通常10〜20cmの厚さで、溶融槽の表面を均一に
覆っている。バッチ層(1)は調合されたガラス原料が
未だ粉末状態のまま存在しており、バッチ中の蒸発し易
い水分等は蒸発して大気中に放出される。その下の中間
層(2)ではかなり温度も上昇して、バッチ中の溶融し
易いソーダ分などは溶融して液状となり、溶融し難い成
分は固体のまま相互に固体反応を起して気体(2′)を
放出する。従って中間層(2)には比較的大きい気泡と
固体と液体が混在している。中間層(2)の下には含泡
ガラス層(3)が存在する。含泡ガラス層(3)では、
上述の溶融した成分が他の成分と反応してガラス化反応
がかなり進行し、中位の泡(3′)を多量に含んだ軽石
状のガラスになっている。含泡ガラス層(3)の下方は
透明な溶融ガラス層(4)で、気泡(4′)は上方に浮
き出てしまい、この槽ではほとんど気泡は存在しない。
Figure 1 shows the state above the melting tank of an all-electric melting furnace during the melting of ordinary glass. The top layer of the melting furnace is the batch tank (1), which is usually 10-20 cm thick and uniformly covers the surface of the melting tank. In the batch layer (1), the prepared glass raw materials still exist in a powder state, and easily evaporated water and the like in the batch are evaporated and released into the atmosphere. In the intermediate layer (2) below, the temperature rises considerably, and the easily melted soda components in the batch melt and become liquid, while the less meltable components remain solid and undergo a solid reaction with each other to form a gas ( 2') is released. Therefore, relatively large bubbles, solids, and liquids coexist in the intermediate layer (2). Below the intermediate layer (2) there is a foamed glass layer (3). In the bubble-containing glass layer (3),
The above-mentioned molten components react with other components, and the vitrification reaction progresses considerably, resulting in a pumice-like glass containing a large amount of medium bubbles (3'). Below the bubble-containing glass layer (3) is a transparent molten glass layer (4), in which bubbles (4') float upward, and there are almost no bubbles in this tank.

溶融槽表面に供給されたバッチは温度上昇とともに反応
を起し順次下方の槽へ移っていく。下方へいく程温度が
高い。含泡ガラス層(3)の気泡(3′)(4′)は中
間層(2)を通り、中間層(2)の気泡(2′)と共に
バッチ槽(1)を抜けて大気中に放出される。
The batches supplied to the surface of the melting tank undergo a reaction as the temperature rises and gradually move to the lower tank. The temperature gets higher the further down you go. Bubbles (3') (4') in the bubble-containing glass layer (3) pass through the intermediate layer (2), exit the batch tank (1) together with the bubbles (2') in the intermediate layer (2), and are released into the atmosphere. be done.

特殊ガラス、例えば、ガラス繊維用のEガラスの場合は
、上述の普通ガラスの場合とは全く様子が異なる。ソー
ダライムガラス等の場合には、中間層(2)の液体分は
ソーダ分が多く粘土が低いので、中間層(2)で発生し
た気泡(2′)及びその下方の含泡ガラス槽(3)、溶
融ガラス層(4)で発生した気泡(3′)(4′)も比
較的容易に浮上し、バッチ層(1)を通り抜けて消滅す
る。しかし、Eガラス等の場合は、バッチ中にソーダ等
の比較的低い温度で溶融する成分の含有率が小さいので
、中間層(2)の厚さは薄いが粘度は高い。従って、発
生した気泡は中間層(2)中を浮上することが出来ず、
第2図に示すように中間層(2)と含泡ガラス層(3)
の間に溜って巨大気泡(5)に生長する。巨大気泡(5
)は中間層(2)及びバッチ層(1)を押し上げ、バッ
チ層(1)は脹れ上がる。巨大気泡(5)が更に生長す
ると中間層(2)を突き破り、その上のバッチ粉末を吹
き飛ばす突沸現象を起す。或いは、気泡が逃げないので
含泡ガラス層(3)が増加し、遂には第3図に示すよう
に溶融槽(19)の電極(11)に達するまで厚くなる
。このような状態になると、含泡ガラス層は電気抵抗が
大きいので電流が流れ難く、溶融状態は益々悪化し、操
縦不能に陥る。
In the case of special glass, for example, E-glass for glass fibers, the situation is completely different from that of the above-mentioned ordinary glass. In the case of soda-lime glass, etc., the liquid content of the intermediate layer (2) is high in soda and low in clay, so the air bubbles (2') generated in the intermediate layer (2) and the bubble-containing glass tank (3) below ), the bubbles (3') and (4') generated in the molten glass layer (4) also float relatively easily, pass through the batch layer (1), and disappear. However, in the case of E-glass, etc., the content of components that melt at relatively low temperatures, such as soda, is small in the batch, so the intermediate layer (2) has a thin thickness but a high viscosity. Therefore, the generated bubbles cannot float in the intermediate layer (2),
As shown in Figure 2, the intermediate layer (2) and the bubble-containing glass layer (3)
It collects in between and grows into a giant bubble (5). Giant bubble (5
) pushes up the intermediate layer (2) and the batch layer (1), and the batch layer (1) swells. When the giant bubbles (5) grow further, they break through the intermediate layer (2) and cause a bumping phenomenon that blows away the batch powder above. Alternatively, since the bubbles do not escape, the bubble-containing glass layer (3) increases in thickness until it finally reaches the electrode (11) of the melting tank (19) as shown in FIG. In such a state, the electrical resistance of the bubble-containing glass layer is high, so it is difficult for current to flow through it, and the molten state worsens, making it impossible to operate the glass layer.

Eガラス等の特殊ガラスの全電融の場合、バッチ槽(1
)の厚さを2.5cm前後にすると、バッチ層全体に亘
って小さな亀裂が生じる。この亀裂は含泡ガラス層(3
)に達しており、ここから気泡が放出され、同時に小さ
な突沸現象も発生するが、ガラス溶融作業は継続するこ
とができる。しかし、バッチ槽(1)が薄いのでバッチ
層(1)の温度が上昇し、溶融槽(19)表面からの熱
の損失が大きく、又、小さな突沸による塵埃で作業環境
が汚染されて好ましくない。
In the case of full electric melting of special glasses such as E-glass, a batch tank (1
) around 2.5 cm, small cracks occur throughout the batch layer. This crack is caused by the bubble-containing glass layer (3
), from which air bubbles are released and a small bumping phenomenon also occurs, but the glass melting operation can continue. However, since the batch tank (1) is thin, the temperature of the batch layer (1) increases, heat loss from the surface of the melting tank (19) is large, and the working environment is contaminated with dust due to small bumping, which is not desirable. .

本発明は、特殊ガラスの全電融についての上述の欠点を
解決した新規な全電融法を提供するものである。
The present invention provides a novel all-electric fusing process that overcomes the above-mentioned drawbacks of all-electric fusing of specialty glasses.

従来の全電融炉では上述のように、溶融槽の表面全体に
略均一な厚さのバッチ層を形成するようにバッチを均一
に供給したが、本発明方法は、溶融槽表面にバッチ層の
無い部分を形成することを特徴とする。
As mentioned above, in the conventional all-electric melting furnace, the batch is uniformly supplied to form a batch layer of approximately uniform thickness over the entire surface of the melting tank, but in the method of the present invention, the batch layer is uniformly supplied on the entire surface of the melting tank. It is characterized by forming a part without.

本発明方法による全電融炉のバッチ投入は、従来のよう
に高価な特別の投入機を必要とせず、通常の簡単な投入
機を使用して1個所又は数個所に集中的に供給すればよ
い。従って本発明方法の全電融炉では、溶融槽の上面を
断熱材で覆うことが可能で、溶融槽表面からの放熱によ
る熱損失を防ぐことができる。
Batch charging of all electric melting furnaces according to the method of the present invention does not require an expensive special charging machine unlike the conventional method, and can be fed centrally to one or several locations using an ordinary simple charging machine. good. Therefore, in the all-electric melting furnace of the method of the present invention, it is possible to cover the upper surface of the melting tank with a heat insulating material, and it is possible to prevent heat loss due to heat radiation from the surface of the melting tank.

本発明の実施例について図面を参照して説明する。実施
例は断面が正六角形で、相対する辺の間隔が約1.2m
の溶融槽を用いた。
Embodiments of the present invention will be described with reference to the drawings. The cross section of the example is a regular hexagon, and the distance between opposing sides is approximately 1.2 m.
A melting tank was used.

第4図の実施例は、バッチを溶融槽(10)の中央部に
集中して供給し、バッチ層(21)を凸レンズ状或いは
山形状にして、バッチ層(21)周辺と溶融槽(19)
側壁との間にバッチ層(21)及び中間層(22)が存
在せず、含泡ガラス層(23)が露出している部分(2
3′)を形成するものである。バッチ層(21)の周辺
に中間層(22)が多少存在していても差し支えない。
In the embodiment shown in FIG. 4, the batch is supplied in a concentrated manner to the center of the melting tank (10), and the batch layer (21) is formed into a convex lens shape or a mountain shape, and the batch layer (21) and the melting tank (19) are fed in a concentrated manner. )
The part (2) where the batch layer (21) and the intermediate layer (22) are not present between the side wall and the bubble-containing glass layer (23) is exposed.
3'). There is no problem even if some intermediate layer (22) exists around the batch layer (21).

この含泡ガラス層の露出部(23′)では活発な気泡の
放出(泡切れ)が見られ、バッチ槽(21)の亀裂も突
沸現象もなく安定した溶融作業が維持できた。これは、
バッチ層(21)の下の中間層(22)及び含泡ガラス
層(23)の気泡が浮力により含泡ガラス露出部(23
′)に移動し、露出部(23′)の気泡とともに大気中
に放出されていることを示すものである。安定した溶融
を容易に維持するためには露出部(23′)の面積を、
溶融層上面面積の約20%以上にすることが好ましい。
Active release of bubbles (bubble breakage) was observed in the exposed portion (23') of the bubble-containing glass layer, and stable melting operation was maintained without cracks or bumping phenomena in the batch tank (21). this is,
The bubbles in the intermediate layer (22) and the bubble-containing glass layer (23) below the batch layer (21) are exposed to the bubble-containing glass exposed portion (23) due to buoyancy.
′) and is released into the atmosphere together with the bubbles in the exposed portion (23′). In order to easily maintain stable melting, the area of the exposed part (23') should be
It is preferable that the area be approximately 20% or more of the area of the top surface of the molten layer.

又、バッチ層(21)の幅(・)は約1m或いはそれ以
下であることが好ましい。使用電力を一定のままバッチ
層(21)の幅(・)を大きくすると、バッチの溶融す
る量が次第に減少した。これはバッチ層(21)の下方
の含泡ガラス層(23)の気泡が露出部(23′)に移
動する距離が長くなったために気泡が残り、含泡ガラス
層(23)が次第に厚くなって熱伝導が悪くなり、バッ
チ層(21)の温度が上がらなくなったためと考えられ
る。
Further, it is preferable that the width (.) of the batch layer (21) is about 1 m or less. When the width (.) of the batch layer (21) was increased while the power used was kept constant, the amount of batch melted gradually decreased. This is because the bubbles in the bubble-containing glass layer (23) below the batch layer (21) have a longer distance to travel to the exposed part (23'), leaving bubbles and the bubble-containing glass layer (23) gradually becoming thicker. This is thought to be because heat conduction deteriorated and the temperature of the batch layer (21) did not rise.

或いは、溶融槽の表面にドーナツ状、縞状、島状等のバ
ッチ層を形成し、その他の部分は含泡ガラス露出部とし
てもよい。この場合、バッチ層の各部から含泡ガラス露
出部までの最短距離が約50cm或いはそれ以下になる
ようにすることが好ましい。
Alternatively, a doughnut-shaped, striped, island-shaped, etc. batch layer may be formed on the surface of the melting tank, and the other portions may be exposed portions of the bubble-containing glass. In this case, it is preferable that the shortest distance from each part of the batch layer to the exposed part of the bubble-containing glass is about 50 cm or less.

第5図の実施例は、バッチ層(21)と含泡ガラス露出
部(23′)との境界にセパレータ(6)を設けたもの
である。セパレータ(6)は白金板を用いたが、他の耐
火物でもよい。セパレータ(6)を用いると、バッチが
少々多量に供給されてもバッチ層(21)の厚さが大き
くなるだけで露出部(23′)は維持され、ガラスの溶
融作業は安定して継続できた。セパレータ(6)の挿入
位置は、第5図(a)に示すように含泡ガラス層(23
)中に挿入してもよく、同図(b)に示すように含泡ガ
ラス層(23)の液面に配置してもよい。セパレータ(
6)は必ずしもバッチ層(21)の全周を囲む必要はな
く、所々に隙間が有っても差支えない。
In the embodiment shown in FIG. 5, a separator (6) is provided at the boundary between the batch layer (21) and the exposed portion of the bubble-containing glass (23'). Although a platinum plate was used for the separator (6), other refractories may be used. If the separator (6) is used, even if a slightly large amount of batch is supplied, the thickness of the batch layer (21) will only increase and the exposed portion (23') will be maintained, allowing the glass melting operation to continue stably. Ta. The insertion position of the separator (6) is as shown in FIG. 5(a).
), or it may be placed on the liquid surface of the bubble-containing glass layer (23) as shown in FIG. Separator (
6) does not necessarily need to surround the entire circumference of the batch layer (21), and there may be gaps here and there.

第6図に示すような天井付セパレータを用いると、溶融
槽(10)の上面が熱的に密封されるので、溶融作業は
更に安定する。
When a ceiling-mounted separator as shown in FIG. 6 is used, the upper surface of the melting tank (10) is thermally sealed, making the melting operation more stable.

以上、断面が正六角形の溶融槽の場合について述べたが
、第7図に示すように断面が長方形の溶融槽(30)の
場合、バッチ層(31)を溶融槽(30)の一方の側壁
から相対する側壁に向って延びるような状態にしてもよ
い。この場合、溶融作業を安定して継続させるためには
、バッチ層(31)の幅(・)は約1m、或いはそれ以
下であり、バッチ層(31)と溶融槽(30)の側壁と
の間隔、即ち含泡ガラス露出部(33′)の幅は約10
cm或いはそれ以上であることが望ましく、露出部(3
3′)は、溶融槽(30)の上面面積の20%以上を占
めることが望ましい。
The case of a melting tank with a regular hexagonal cross section has been described above, but in the case of a melting tank (30) with a rectangular cross section as shown in FIG. It may be in a state where it extends from the opposite side wall toward the opposite side wall. In this case, in order to continue the melting operation stably, the width (.) of the batch layer (31) should be approximately 1 m or less, and the width between the batch layer (31) and the side wall of the melting tank (30) should be approximately 1 m or less. The width of the gap, i.e. the exposed portion of the bubble-containing glass (33'), is approximately 10
cm or more is desirable, and the exposed part (3
3') desirably occupies 20% or more of the upper surface area of the melting tank (30).

以上述べたように、本発明方法は、従来困難とされてい
た特殊ガラスの全電溶融を工業的に極めて安定して行な
うことができるものである。特に中小型炉における特殊
ガラスの溶融の熱効率を飛躍的に改善するとともに、従
来の全電融炉には必要な高価な散布式バッチ投入機は使
用しないので、運転経費や設備費が低減でき、高品位の
ガラスが得られる。
As described above, the method of the present invention makes it possible to industrially perform all-electric melting of special glass, which has been considered difficult in the past, in an extremely stable manner. In particular, it dramatically improves the thermal efficiency of melting special glass in small and medium-sized furnaces, and because it does not use the expensive scattering batch feeder required for conventional all-electric melting furnaces, operating and equipment costs can be reduced. High quality glass can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は全電融炉の溶融槽上層部におおけるガラス化過
程を示す断面図、第2図及び第3図は従来の全電融炉に
よるEガラス溶融の状態を示す断面図、第4図、第5図
、第6図は本発明方法の実施例を示す断面図、第7図は
本発明方法の実施例を示す平面図である。 1、21、31;バッチ層、2、22;中間層、3、2
3;含泡ガラス層、6;セパレータ、7;天井付セパレ
ータ、 23′、33′;含泡ガラス露出部 特許出願人 影山尚■
Figure 1 is a sectional view showing the vitrification process in the upper layer of the melting tank of an all-electric melting furnace; Figures 2 and 3 are sectional views showing the state of E-glass melting in a conventional all-electric melting furnace; 4, 5, and 6 are sectional views showing an embodiment of the method of the present invention, and FIG. 7 is a plan view showing an embodiment of the method of the present invention. 1, 21, 31; Batch layer, 2, 22; Intermediate layer, 3, 2
3; Bubble-containing glass layer, 6; Separator, 7; Ceiling separator, 23', 33'; Patent applicant for exposed part of bubble-containing glass: Takashi Kageyama■

Claims (5)

【特許請求の範囲】[Claims] (1)ガラスの全電融において、溶融槽表面を原料バッ
チで覆われた部分と、主として含泡ガラスからなる部分
とで構成し、この含泡ガラス露出部を略一定に保ちなが
ら溶融することを特徴とした特殊ガラスの電気溶融法。
(1) In full electric melting of glass, the surface of the melting tank is composed of a part covered with the raw material batch and a part mainly made of bubble-containing glass, and the exposed part of the bubble-containing glass is maintained at a substantially constant level during melting. An electric melting method for special glass.
(2)溶融槽表面のバッチで覆われた部分の各点から含
泡ガラス露出部までの最短距離を約50cm以下とする
特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the shortest distance from each point of the portion of the melting tank surface covered with the batch to the exposed portion of the bubble-containing glass is approximately 50 cm or less.
(3)溶融槽表面の中心部の1ヶ所又は他の数ヶ所に集
中してバッチを投入し、凸レンズ状のバッチ槽を形成す
る特許請求の範囲第1項記載の方法。
(3) The method according to claim 1, wherein the batch is concentrated at one location or several other locations on the surface of the melting tank to form a convex lens-shaped batch tank.
(4)溶融槽表面のバッチ層部分と含泡ガラス露出部と
の境にセパレータを設ける特許請求の範囲第1項記載の
方法。
(4) The method according to claim 1, wherein a separator is provided at the boundary between the batch layer portion on the surface of the melting tank and the exposed portion of the bubble-containing glass.
(5)溶融槽表面のバッチ層の占める割合が溶融槽全表
面の約80%以下である特許請求の範囲第1項乃至第4
項記載の方法。
(5) Claims 1 to 4, wherein the proportion of the batch layer on the surface of the melting tank is about 80% or less of the total surface of the melting tank.
The method described in section.
JP13430682A 1982-07-30 1982-07-30 Electrical smelting method Pending JPS5926931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13430682A JPS5926931A (en) 1982-07-30 1982-07-30 Electrical smelting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13430682A JPS5926931A (en) 1982-07-30 1982-07-30 Electrical smelting method

Publications (1)

Publication Number Publication Date
JPS5926931A true JPS5926931A (en) 1984-02-13

Family

ID=15125203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13430682A Pending JPS5926931A (en) 1982-07-30 1982-07-30 Electrical smelting method

Country Status (1)

Country Link
JP (1) JPS5926931A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054126A1 (en) * 2017-09-13 2019-03-21 日本電気硝子株式会社 Glass article manufacturing method
WO2019054385A1 (en) * 2017-09-13 2019-03-21 日本電気硝子株式会社 Method for producing glass article

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054126A1 (en) * 2017-09-13 2019-03-21 日本電気硝子株式会社 Glass article manufacturing method
WO2019054385A1 (en) * 2017-09-13 2019-03-21 日本電気硝子株式会社 Method for producing glass article
JP2019052052A (en) * 2017-09-13 2019-04-04 日本電気硝子株式会社 Glass article production method
CN110944949A (en) * 2017-09-13 2020-03-31 日本电气硝子株式会社 Method for manufacturing glass article
KR20200052248A (en) * 2017-09-13 2020-05-14 니폰 덴키 가라스 가부시키가이샤 Method for manufacturing glass articles
JPWO2019054385A1 (en) * 2017-09-13 2020-08-27 日本電気硝子株式会社 Method for manufacturing glass article
US11225428B2 (en) 2017-09-13 2022-01-18 Nippon Electric Glass Co., Ltd. Glass article manufacturing method
US11613487B2 (en) 2017-09-13 2023-03-28 Nippon Electric Glass Co., Ltd. Method for producing glass article
CN110944949B (en) * 2017-09-13 2023-05-19 日本电气硝子株式会社 Method for manufacturing glass article

Similar Documents

Publication Publication Date Title
EP0115863B1 (en) Process for melting glass
KR880002701B1 (en) Method for liquifying glass batch material
CN102648163B (en) The manufacture method of the manufacture method of glass melting furnace, melten glass, the manufacturing installation of glasswork and glasswork
US2834157A (en) Glass melting furnace
JP2003183031A (en) Electric melting furnace for manufacturing glass fiber and method of melting glass for glass fiber
WO2012091133A1 (en) Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device
NO850858L (en) ELECTRIC GLASS Melting Furnace
JP2019510977A (en) Method and apparatus for thermocouple of molten material
SE8702299D0 (en) TECHNIQUE DE FUSION ELECTRIQUE DU VERRE
US3278282A (en) Glass spinning crucible
US5236484A (en) Method of firing glass-melting furnace
JPS5926931A (en) Electrical smelting method
CA1296070C (en) Electric melter for high electrical resistivity glass materials
CA1108861A (en) Method for the melting of glass, and glass melting furnace for carrying out such method
WO2022075016A1 (en) Glass melting device, glass production method, and molten glass base material exchange method
JP3753974B2 (en) Glass melting furnace
JP7459624B2 (en) Glass melting furnace, glass manufacturing apparatus, and glass manufacturing method
US4017674A (en) Method for starting operation of a resistance melter
Sengupta et al. Refractories for glass manufacturing
SE466753B (en) SELF-LIGHTING LIGHT, INCLUDING A SHELTER PROVIDED BETWEEN WEEKS AND LIGHTMASS
DE2966746D1 (en) High performance melting furnace for melting corrosive mineral matter with sharp viscosity curves
US4796276A (en) Melting furnace
CN113548787B (en) Glass melting furnace, glass manufacturing apparatus, and glass manufacturing method
US2802656A (en) Element for insulating the surface of a molten product
RU2074130C1 (en) Lead glass-making furnace