JPS5926620B2 - Concentration separation method for naphthalene-1,3,6-trisulfonic acid - Google Patents

Concentration separation method for naphthalene-1,3,6-trisulfonic acid

Info

Publication number
JPS5926620B2
JPS5926620B2 JP1111877A JP1111877A JPS5926620B2 JP S5926620 B2 JPS5926620 B2 JP S5926620B2 JP 1111877 A JP1111877 A JP 1111877A JP 1111877 A JP1111877 A JP 1111877A JP S5926620 B2 JPS5926620 B2 JP S5926620B2
Authority
JP
Japan
Prior art keywords
naphthalene
trisulfonic acid
trisulfonation
acid
reaction mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1111877A
Other languages
Japanese (ja)
Other versions
JPS5395953A (en
Inventor
洋士 是永
弘 飛田
弘道 岡部
範生 小寺
正俊 上垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP1111877A priority Critical patent/JPS5926620B2/en
Priority to DE19772730157 priority patent/DE2730157C2/en
Priority to GB2808077A priority patent/GB1554671A/en
Publication of JPS5395953A publication Critical patent/JPS5395953A/en
Publication of JPS5926620B2 publication Critical patent/JPS5926620B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はナフタレンー1・3・6−トリスルホン酸を主
成分として含有するナフタレンのトリスルホン化反応混
合物中の過剰硫酸を蒸発除去する方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for removing excess sulfuric acid by evaporation in a naphthalene trisulfonation reaction mixture containing naphthalene-1,3,6-trisulfonic acid as a main component.

更に詳しくは該トリスルホン化混合物中の過剰硫酸を1
50〜3000Cの温度で蒸発除去、回収するに当り、
蒸留装置材料としてオーステナイト−フェライト系二相
ステンレス合金を使用した蒸留装置を用〜・ることを特
徴とするナフタレンー1・3・6−トリスルホン酸の濃
縮分離方法である。従来アゾ染料用中間体として、重要
なH酸(1−アミノー8−ナフトールー3・6−ジスル
ホン酸)は、工業的には通常ナフタレンを約7モル倍の
硫酸でトリスルホン化して得られるナフタレンー1・3
・6−トリスルホン酸を主成分として含むトリスルホン
化反応混合物をニトロ化、還元することにより、1−ア
ミノナフタレンー3・6・8−トリスルホン酸に誘導し
、次いで、アルカリ熔融する方法によつて製造されてい
る。
More specifically, the excess sulfuric acid in the trisulfonation mixture is
When removing and recovering by evaporation at a temperature of 50 to 3000C,
This is a method for concentrating and separating naphthalene-1,3,6-trisulfonic acid, which is characterized by using a distillation apparatus using an austenite-ferritic two-phase stainless steel alloy as the distillation apparatus material. Conventionally, H acid (1-amino-8-naphthol-3,6-disulfonic acid), which is important as an intermediate for azo dyes, is industrially usually obtained by trisulfonating naphthalene with about 7 times the mole of sulfuric acid.・3
・By nitration and reduction of a trisulfonation reaction mixture containing 6-trisulfonic acid as a main component, 1-aminonaphthalene-3,6,8-trisulfonic acid is derived, and then alkali melting is performed. It is manufactured by Yotsu.

ところで、上記ナフタレントリスルホン化反応混合物中
には、目的とするナフタレンー1・3・6−トリスルホ
ン酸の他に、副生物及び多量(約50重量%)の過剰硫
酸が含まれており、上記方法による場合には、この過剰
硫酸が廃硫酸として、多量に排出され、排水処理に多大
の経費を要するために、公害防止上、経済上からも該ト
リスルホン化反応混合物中の過剰硫酸を除去、回収し、
同時にナフタレンー1・3・6−トリスルホン酸を分離
することが重要な課題となつている。
By the way, the naphthalene trisulfonation reaction mixture contains by-products and a large amount (approximately 50% by weight) of excess sulfuric acid in addition to the target naphthalene-1,3,6-trisulfonic acid. When using this method, a large amount of excess sulfuric acid is discharged as waste sulfuric acid, and wastewater treatment requires a large amount of expense. Therefore, it is necessary to remove excess sulfuric acid from the trisulfonation reaction mixture from the viewpoint of pollution prevention and economical reasons. , collect,
At the same time, separating naphthalene-1,3,6-trisulfonic acid has become an important issue.

このような問題を解決するものとして、本発明者等はさ
きに、特願昭51−80734号で該トリスルホン化反
応混合物中の、ナフタレンー1・3・6−トリスルホン
酸含量を実質的に低下せしめることなく、過剰硫酸を蒸
発除去、回収する方法を見い出した。この方法により回
収された硫酸は98〜99%濃度の高純度硫酸であり、
ナフタレンをスルホン化するために再循環して使用する
ことができる。本発明の主たる目的は前記特願昭51−
80734号方法を工業的に実施するのに有用な蒸留装
置を提供することにある。
In order to solve such problems, the present inventors previously proposed in Japanese Patent Application No. 51-80734 that the content of naphthalene-1,3,6-trisulfonic acid in the trisulfonation reaction mixture can be substantially reduced. We have found a method to evaporate and recover excess sulfuric acid without causing any deterioration. The sulfuric acid recovered by this method is high purity sulfuric acid with a concentration of 98-99%,
It can be recycled and used to sulfonate naphthalene. The main purpose of the present invention is to
The object of the present invention is to provide a distillation apparatus useful for industrially carrying out the method of No. 80734.

本発明の対象とするナフタレンのトリスルホン化反応混
合物の組成を第1表に例示するが、これに限定されるこ
とはない。
The composition of the naphthalene trisulfonation reaction mixture that is the subject of the present invention is illustrated in Table 1, but is not limited thereto.

第1表で例示されるナフタレンのトリスルホン化反応混
合物は、通常150〜300℃、好ましくは180〜2
60℃に加熱され、減圧下、短い滞留時間で過剰硫酸を
蒸発除去回収する必要があり、蒸留装置としては、例え
ば液膜式蒸留装置がこの目的に適している。
The naphthalene trisulfonation reaction mixture exemplified in Table 1 is usually 150-300°C, preferably 180-200°C.
It is necessary to evaporate and recover excess sulfuric acid by heating to 60° C. under reduced pressure in a short residence time, and as a distillation device, for example, a liquid film distillation device is suitable for this purpose.

ところで本発明者らは150〜300℃のナフタレンの
トリスルホン化反応混合物が高度に腐蝕性の媒体であり
、20合金であるカーベンダー20、デユリメツト20
、ウオーサイト、一般に耐酸性に優れていることが知ら
れているハステロイC、及び高ニツケル合金であるイン
コネル600、モネル等の耐蝕性高級ステンレス材でさ
え、高度な腐蝕速度のため実用に不十分であることを知
り、このきびしい腐蝕条件に対抗しうる腐蝕抵抗及び熔
接性、曲げ加工等の作業性を具備し、更には、蒸留装置
を製作するために必須かつ良好な機械的性質等の組み合
わさつた要求が満たされる装置材料について種々検討の
結果、コマーシヤルな合金であるオーステナイトーフエ
ライト系二相ステンレス合金がその要件を特異的に満た
すものであることを見出し、本発明を完成した。
By the way, the inventors have discovered that the trisulfonation reaction mixture of naphthalene at 150-300°C is a highly corrosive medium, and that the 20 alloys Carbender 20, Dulymet 20
Even corrosion-resistant high-grade stainless steel materials such as , wawsite, Hastelloy C, which is generally known to have excellent acid resistance, and high-nickel alloys such as Inconel 600 and Monel, are insufficient for practical use due to their high corrosion rates. Knowing that it is, it has corrosion resistance, weldability, and workability such as bending that can withstand this severe corrosion condition, and furthermore, it has a combination of good mechanical properties that are essential for manufacturing distillation equipment. As a result of various studies on device materials that meet these requirements, we have discovered that a commercially available austenite-ferritic duplex stainless steel alloy specifically satisfies these requirements, and have completed the present invention.

以下耐蝕性実験結果について説明する。1 腐蝕条件 試験液は液組成を第1表で示したナフタレンのトリスル
ホン化反応混合物を使用し、200℃、100時間のテ
ストを実施した。
The results of corrosion resistance experiments will be explained below. 1. Corrosion Conditions The test liquid used was a naphthalene trisulfonation reaction mixture whose liquid composition was shown in Table 1, and the test was conducted at 200°C for 100 hours.

なお、試験液は熱に対して比較的不安定であるので、溢
流型式の攪拌槽式連続流通容器を用い、実質的に試験液
の熱劣化を防ぐため、平均滞留時間1時間で試験液を連
続供給した。
Since the test liquid is relatively unstable with respect to heat, an overflow type stirring tank type continuous flow container is used, and in order to substantially prevent thermal deterioration of the test liquid, the test liquid is heated within an average residence time of 1 hour. was continuously supplied.

試験結果を第2表に示す。平均腐蝕速度に関して実用上
許容される最大腐蝕速度は0.4mm/年であり、低い
数値ほど好ましいこの結果から、オーステナイトーフエ
ライト系二相ステンレス合金が実用上十分な耐蝕抵抗を
有することを示している。
The test results are shown in Table 2. Regarding the average corrosion rate, the maximum corrosion rate that is practically allowed is 0.4 mm/year, and the lower the value, the better.This result shows that the austenite-ferritic duplex stainless steel alloy has practically sufficient corrosion resistance. There is.

このようにオーステナイトーフエライトニ相ステンレス
のみがナフタレン1・3・6−トリスルホン酸との組合
わせにおいて特異的にすぐれる理由は明らかでないが、
混在するナフタレンスルホン酸類が耐蝕性に何らかの寄
与をしていることが考えられる。従来このような高度に
腐蝕性の媒体では高ケイ素鋳鉄(ベシロン、デユリロン
等)が耐蝕抵抗のみが良好であることから使用されてい
るが、機械的性質が硬くもろいために、鋳造性が悪く、
動的強度を必要とする部分には使用できない欠点がある
Although it is not clear why only austenite-ferrite two-phase stainless steel is uniquely superior in combination with naphthalene-1,3,6-trisulfonic acid,
It is thought that the naphthalene sulfonic acids mixed therein make some contribution to the corrosion resistance. Conventionally, high-silicon cast iron (Vesilon, Dulyron, etc.) has been used in such highly corrosive media because of its good corrosion resistance, but its mechanical properties are hard and brittle, resulting in poor castability.
It has the disadvantage that it cannot be used in parts that require dynamic strength.

対して本発明に用いられるオーステナイトーフエライト
系二相ステンレス合金は加工特性がSUS3l6とほぼ
同等であり、高ケイ素鋳鉄のような機械加工上の制約も
ない。
On the other hand, the austenitic-ferritic duplex stainless steel alloy used in the present invention has almost the same machining properties as SUS3l6, and does not have the same machining limitations as high-silicon cast iron.

比較のため、第3表に機械的性質を記載する。For comparison, mechanical properties are listed in Table 3.

本発明で使用されるオーステナイト・フエライト系二相
ステンレス合金とは20〜28%Crl3〜8%Niを
主成分とし、MOを1〜3%添加したフエライト相(約
70%)とオーステナイト相(約30%)が微細に混合
した組織を有する合金で、更に具体的にはNAR−F(
日本ステンレスKK製)、NTK−R4(日本金属工業
KK製)、NTK−C1(日本金属工業製)、NAS−
45M(日本冶金KK製)、YUS329Jl(新日鉄
煕製)、SANDVIK−3RE60、URANUS5
O等の市販鋼種が相当する。
The austenite-ferritic duplex stainless steel alloy used in the present invention is mainly composed of 20 to 28% Cr and 3 to 8% Ni, with a ferrite phase (approximately 70%) and an austenite phase (approximately 70%) containing 1 to 3% MO. 30%) is an alloy with a finely mixed structure, more specifically NAR-F (
(manufactured by Nippon Stainless Steel KK), NTK-R4 (manufactured by Nippon Metal Industries KK), NTK-C1 (manufactured by Nippon Metal Industries KK), NAS-
45M (manufactured by Nippon Yakin KK), YUS329Jl (manufactured by Nippon Steel Hei), SANDVIK-3RE60, URANUS5
Commercially available steel grades such as O are equivalent.

以下実施例により本発明を説明する。実施例 1 第1表で示されるナフタレンのトリスルホン化反応混合
物を150℃に加熱して溶解し、オーステナイトーJャ
Gライトニ相ステンレス製の上昇型液膜蒸発器を使用し
て、上記反応混合物中の過剰硫酸を連続的に除去した。
The present invention will be explained below with reference to Examples. Example 1 The naphthalene trisulfonation reaction mixture shown in Table 1 was heated to 150°C and dissolved to form an austenitic resin.
Excess sulfuric acid in the reaction mixture was continuously removed using a G-light two-phase stainless steel rising film evaporator.

蒸留条件は以下の通りである。Distillation conditions are as follows.

装置 二重管熱交換式上昇型液膜蒸発器材質NARF(日本ス
テンレス製)、直径27mm、長さ1.37m管断面積
0.00057d、伝熱面積0.1162d二重管熱交
換式上昇型液膜蒸発器を試験後、切断し肉眼観察では全
く腐蝕が認められなかつた。
Equipment Double-tube heat exchange type rising type liquid film evaporator Material: NARF (made by Nippon Stainless), diameter 27 mm, length 1.37 m Tube cross-sectional area 0.00057 d, heat transfer area 0.1162 d Double tube heat exchange type rising type After the liquid film evaporator was tested, it was cut and visually observed, and no corrosion was observed.

Claims (1)

【特許請求の範囲】[Claims] 1 ナフタレン−1・3・6−トリスルホン酸を主成分
として含有するナフタレンのトリスルホン化反応混合物
から該混合物中の過剰硫酸を150〜300℃の温度範
囲で蒸発除去、回収するに当り、蒸留装置材料としてオ
ーステナイト−フェライト系二相ステンレス合金を使用
した蒸留装置を用いることを特徴とするナフタレン−1
・3・6−トリスルホン酸の濃縮分離方法。
1. In removing and recovering excess sulfuric acid in the naphthalene trisulfonation reaction mixture containing naphthalene-1,3,6-trisulfonic acid as a main component by evaporation at a temperature range of 150 to 300°C, distillation is performed. Naphthalene-1 characterized by using a distillation device using an austenite-ferritic duplex stainless steel alloy as the device material
- Concentration and separation method for 3,6-trisulfonic acid.
JP1111877A 1976-07-06 1977-02-02 Concentration separation method for naphthalene-1,3,6-trisulfonic acid Expired JPS5926620B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1111877A JPS5926620B2 (en) 1977-02-02 1977-02-02 Concentration separation method for naphthalene-1,3,6-trisulfonic acid
DE19772730157 DE2730157C2 (en) 1976-07-06 1977-07-04 Process for the preparation of naphthalene-1,3,6-trisulfonic acid by trisulfonation of naphthalene and separation of the excess sulfuric acid from the trisulfonation reaction mixture
GB2808077A GB1554671A (en) 1976-07-06 1977-07-05 Preparation for separating sulphuric acid from naphtalene-1,3,6,trisulphonic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1111877A JPS5926620B2 (en) 1977-02-02 1977-02-02 Concentration separation method for naphthalene-1,3,6-trisulfonic acid

Publications (2)

Publication Number Publication Date
JPS5395953A JPS5395953A (en) 1978-08-22
JPS5926620B2 true JPS5926620B2 (en) 1984-06-29

Family

ID=11769085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1111877A Expired JPS5926620B2 (en) 1976-07-06 1977-02-02 Concentration separation method for naphthalene-1,3,6-trisulfonic acid

Country Status (1)

Country Link
JP (1) JPS5926620B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311943Y2 (en) * 1984-03-02 1988-04-06
JP2003095989A (en) * 2001-09-26 2003-04-03 Nippon Soda Co Ltd Apparatus for dechlorination treatment of organochlorine compound and method for the treatment by using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565570B2 (en) * 1993-08-25 2004-09-15 新日鐵化学株式会社 Method for producing bisphenol A

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311943Y2 (en) * 1984-03-02 1988-04-06
JP2003095989A (en) * 2001-09-26 2003-04-03 Nippon Soda Co Ltd Apparatus for dechlorination treatment of organochlorine compound and method for the treatment by using the same

Also Published As

Publication number Publication date
JPS5395953A (en) 1978-08-22

Similar Documents

Publication Publication Date Title
Rabald Corrosion guide
KR850001120A (en) How to recover heat from concentrated sulfuric acid manufacturing process
US5695716A (en) Austenitic alloys and use thereof
Schütze et al. Corrosion resistance of aluminium and aluminium alloys
JP2009143911A (en) Method for producing nitrobenzene by adiabatic nitration
DK143202B (en) WELDED CONSTRUCTIONS LIKE HEAT EXCHANGERS
Foreman et al. The Reaction of Organic Halides with Piperidine. V. Negatively Substituted Ethyl Bromides
US3114415A (en) Shell and tube heat exchangers
JPS5926620B2 (en) Concentration separation method for naphthalene-1,3,6-trisulfonic acid
JP2021525693A (en) A method for producing a lithium bis (fluorosulfonyl) imide salt
RU2108319C1 (en) Device for production of technological treatment aromatic carboxylic acid and method for its production
JP3708212B2 (en) Concentration method of acrylamide aqueous solution
TEEPLE Corrosion by some organic acids and related compounds
US5030415A (en) Structural part made of ferritic chromium-molybdenum steel which is resistant to concentrated sulfuric acid
US1986973A (en) Prevention of corrosion in urea synthesis
JP2003104959A (en) Method for producing methionine
CA1307138C (en) Use of a chromium-containing alloy
US4791227A (en) Method for handling reaction mixtures containing hydrogen fluoride
SU923364A3 (en) Process for producing maleic anhydride
JPS61207551A (en) Sulfuric acid resistant alloy
JP3214165B2 (en) Nitrobenzene production method
JPS5929061B2 (en) Method for producing aminonaphthalene derivatives
JPH0680408A (en) Method for concentrating and refining sulfuric acid
JP3620256B2 (en) Method for producing methionine
JPH1192415A (en) Purification of terephthalic acid