JPS5926517A - Preparation of nylon 66 yarn having high strength and high modulus - Google Patents

Preparation of nylon 66 yarn having high strength and high modulus

Info

Publication number
JPS5926517A
JPS5926517A JP13295282A JP13295282A JPS5926517A JP S5926517 A JPS5926517 A JP S5926517A JP 13295282 A JP13295282 A JP 13295282A JP 13295282 A JP13295282 A JP 13295282A JP S5926517 A JPS5926517 A JP S5926517A
Authority
JP
Japan
Prior art keywords
temperature
nylon
fiber
yarn
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13295282A
Other languages
Japanese (ja)
Inventor
Minoru Fukui
福井 実
Tomio Kuriki
栗木 登美男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13295282A priority Critical patent/JPS5926517A/en
Publication of JPS5926517A publication Critical patent/JPS5926517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain yarn having high strength and high modulus, having improved adhesiveness and durability, by drawing nylon 66 yarn spun at high-speed, under conditions to satisfy specific tension, temperature, heating zone, etc., quenching it. CONSTITUTION:Nylon 66 yarn spun at >=4,000m/minute spinning speed is heat- treated at 0.5g/d-0.99Tg/d tension (d is denier, and T is breaking tension of the yarn) in an atmosphere substantially containing no oxygen at a temperature exceeding Tm1 of DSC melt curve (the temperature at which the melt curve releases from the base line) and not exceeding Tm3 (the temperature at which the melting of the yarn is finished) in a heating zone having the length l (mm.) in the direction of fiber axis satisfying the formula [v is treatment speed (mm./minute), and theta is heat-treatment temperature ( deg.C)], and the yarn is immediately quenched to <= the glass transition temperature.

Description

【発明の詳細な説明】 本発明は、特殊な構造を有するナイロン66繊維の製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing nylon 66 fibers having a special structure.

ナイロン66繊維は強力、弾性率、耐疲労性、ゴムとの
接着性が他の繊維に比べて優れているので、タイヤコー
ド用繊維や各種樹脂の補強剤として広く使用されている
。しかるに、近年他の繊維の改質改良が進み、接着性を
除けば、ナイロン66繊維の特性に接近もしくは比肩し
うる繊維も出現してきている。従って、接着性の優れた
特徴を生かし、さらに高強力で高弾性率を有するナイロ
ン66繊維の開発が要望されている。
Nylon 66 fiber is superior in strength, modulus of elasticity, fatigue resistance, and adhesion to rubber compared to other fibers, and is therefore widely used as fiber for tire cords and as a reinforcing agent for various resins. However, in recent years, advances have been made in the modification and improvement of other fibers, and fibers have appeared that have properties approaching or comparable to those of nylon 66 fibers, with the exception of adhesive properties. Therefore, there is a demand for the development of nylon 66 fibers that take advantage of their excellent adhesive properties and have even higher strength and higher modulus of elasticity.

上記の要望に応えるために従来、冷延伸や熱延伸などで
タイヤコードの物性改良を行ってきた。
In order to meet the above-mentioned demands, the physical properties of tire cords have been improved by cold stretching, hot stretching, etc.

しかるに、この方法では、ゴムとの高温接着時あるいは
長時間使用後の力学的物性値保持が困難になる。この現
象を繊維の微細構造の而から見ると、冷延伸で極度に緊
張されたタイ分子(強力、弾性率の保持に大きく関与す
る)が熱時あるいは長時間のタイヤ使用により切断し、
強力弾性率の低下をもたらすと考えられる。
However, with this method, it becomes difficult to maintain mechanical properties during high-temperature bonding with rubber or after long-term use. Looking at this phenomenon from the perspective of the microstructure of the fiber, we can see that the tie molecules (which are strong and play a major role in maintaining the elastic modulus) that are extremely tensed during cold stretching are cut when heated or when tires are used for long periods of time.
It is thought that this causes a decrease in the strong elastic modulus.

本発明者らは、ナイロン66繊維の強力や弾性率と該繊
維の微細構造との関連を鋭意研究した結果、繊維が特殊
な微細構造(即ち、伸び切り分子鎖主体型の構造)を有
する際に著しく強力及び弾性率が増大することを見い出
し、そのような繊維を作製する新規な製造法を確立した
As a result of intensive research into the relationship between the strength and elastic modulus of nylon 66 fibers and the microstructure of the fibers, the present inventors found that when fibers have a special microstructure (i.e., a structure mainly composed of extended molecular chains), found that the strength and elastic modulus of fibers were significantly increased, and established a new manufacturing method for producing such fibers.

本発明で得られる典型的な繊維は、20’C,60%R
,H,に於ける初期モジ−ラスが60y−76以上のナ
イロン66繊維であって、測定周波数110Hzに於け
る力学的損失正接のピーク値(tanδ′)m8工に対
応する温度(Tmax ’C)が下式1式% を満足し、かつピーク値(−δ)maXは0.095以
下であり、しかも、該繊維の中心部分に於ける平均屈折
率n 7(0)及びn□(0)がそれぞれ式1.585
0≦n / (Oi≦1.6 i o oおよび1.5
100≦n工(。)≦1.5300を満足する高強力・
高弾性率ナイロン66繊維である。
Typical fibers obtained in the present invention are 20'C, 60%R
, H, is a nylon 66 fiber with an initial modulus of 60y-76 or more, and the temperature (Tmax 'C ) satisfies the following formula 1 formula %, the peak value (-δ) maX is 0.095 or less, and the average refractive index n7(0) and n□(0 ) are each formula 1.585
0≦n/(Oi≦1.6 i o o and 1.5
High strength that satisfies 100≦n(.)≦1.5300.
It is a high modulus nylon 66 fiber.

本発明に於いて使用する「ナイロン66繊維」とは、実
質的にヘキサメチレンジアミンとアジピンピン酸より重
合されるIリヘキサメチレンアジノ臂ミドで構成される
繊維を意味し、ポリヘキサメチレンアジ・ソミドの特性
が実質的に損われない限り、少量の他の共重合成分を含
むコポリアミドの繊維であってもよいし、他の高分子と
の混合物で構成される繊維であってもよい。また通常、
合成繊維に用いられる添加剤、たとえば艶消剤、安定剤
、制電剤などを含んでいてもよい。ナイロン66繊維の
重合度は高ければ高いほど力学的破壊強度が増大するの
で望ましく、特に数平均分子量が43.000以上であ
るものが望ましい。
The "nylon 66 fiber" used in the present invention means a fiber consisting essentially of polyhexamethylene azinamide polymerized from hexamethylene diamine and adipic acid; The fibers may be copolyamide fibers containing a small amount of other copolymer components, or may be fibers composed of a mixture with other polymers, as long as the properties of the fibers are not substantially impaired. Also, usually
It may also contain additives used in synthetic fibers, such as matting agents, stabilizers, antistatic agents, etc. The higher the polymerization degree of the nylon 66 fibers, the higher the mechanical breaking strength, so it is desirable, and it is particularly desirable that the number average molecular weight is 43,000 or more.

本発明の方法の第一の特徴は、紡速4.000m5/n
11n以上で紡糸された高速紡糸繊維を使用する点にあ
る。ここで「紡速」とは、図1に示すような紡糸装置に
於いて引取りロール(7)の引取り速度を意味する。本
発明を貫ぬく基本的な原理は、私・之維に含まれる高融
点の伸び切り分子鎖に着目し、それ以外の低融点の結晶
部分を高張力下でゾーンメルティングして分子鎖を引伸
ばし、続く急冷処理で伸び切シ分子鎖結晶に再結晶化(
自己様利け、結晶化)させ、この時同時に非晶領域の伸
び切った分子鎖も固定化するものである。従って、用い
る繊維は伸び切り分子鎖をより多く含む必要がある。
The first feature of the method of the present invention is that the spinning speed is 4.000 m5/n.
The point is that high speed spun fibers spun at 11n or more are used. Here, "spinning speed" means the take-up speed of the take-up roll (7) in a spinning device as shown in FIG. The basic principle underlying the present invention is to focus on the extended molecular chains with high melting points contained in I-no-fi, and zone-melt the other low-melting point crystal parts under high tension to separate the molecular chains. Stretching and subsequent rapid cooling process recrystallizes into stretched molecular chain crystals (
(self-improvement, crystallization), and at the same time, the fully extended molecular chains of the amorphous region are also immobilized. Therefore, the fibers used need to contain more extended molecular chains.

紡速4,000m/mln未満の繊維では、伸び切り分
子鎖結晶をほとX7ど含まないが、4.000 m/m
in以上で紡糸された繊維は伸び切り分子鎖を多くきむ
。紡糸速度が高いほど伸び切り分子鎖を多く含む。本発
明において、紡速4.000 m/min 以上で紡糸
された繊維を使用するのはそのためである。
Fibers with a spinning speed of less than 4,000 m/ml contain almost no extended molecular chain crystals, but
Fibers spun at in or more are elongated and have many molecular chains. The higher the spinning speed, the more elongated molecular chains are included. This is why fibers spun at a spinning speed of 4,000 m/min or higher are used in the present invention.

−F1紡速5.500 m/ min以上で紡糸された
高速紡糸繊維であるとより好ましい。
-F1 It is more preferable that the fiber is a high speed spun fiber spun at a spinning speed of 5.500 m/min or more.

本発明の方法の第2の特徴は、熱処理時に糸にかかる単
位繊度(デニール)あたりの張力を、0.5f以上で糸
の破断時に於ける張力TK0.99をかけた値0.99
T以下に保持する点にある。張力が0.5未満であると
ゾーンメルティングにより融解した領域内の分子鎖は十
分に引き延ばされずに続く急冷ゾーンで固定化されてし
まうので強力・弾性率の顕著な増大は起らない。また、
0.99T(ロ)を超えるとゾーンメルティング中に糸
切れが発生し、処理が不可能となる場合が多く、また、
もし不可能ではないとしても、巨視的な欠陥部が発生し
やすく、強力・弾性率が逆に低下し耐疲労性も劣る。
The second feature of the method of the present invention is that the tension per unit fineness (denier) applied to the yarn during heat treatment is multiplied by the tension TK 0.99 at the time of yarn breakage at 0.5 f or more, which is 0.99.
The point is to keep it below T. If the tension is less than 0.5, the molecular chains in the region melted by zone melting will not be sufficiently stretched and will be fixed in the subsequent quenching zone, so that no significant increase in strength or elastic modulus will occur. Also,
If it exceeds 0.99T (b), thread breakage will occur during zone melting, making processing impossible in many cases, and
Even if it is not impossible, macroscopic defects are likely to occur, the strength and modulus of elasticity are reduced, and the fatigue resistance is also inferior.

本発明の方法の第3の特徴は実質的に酸素が存在しない
雰囲気中で処理を行う点にある。ゾーンメルティング処
理は、上述のようにかなり高温で行うために、雰囲気中
に酸素が存在すると繊維の酸化分解が起り強力・弾性率
の低下を招く。従って、熱処理は窒素ガスなどの不活性
気体雰囲気下で行う。なお処理を真空中で行うと糸の酸
化分解を防ぐと共に糸の重合度が増大し、糸の力学的性
質が向上するのでより望ましい。
A third feature of the method of the present invention is that the treatment is carried out in an atmosphere substantially free of oxygen. As mentioned above, the zone melting process is performed at a fairly high temperature, so if oxygen is present in the atmosphere, oxidative decomposition of the fibers will occur, resulting in a decrease in strength and elastic modulus. Therefore, the heat treatment is performed in an inert gas atmosphere such as nitrogen gas. It is more desirable to carry out the treatment in a vacuum because it prevents oxidative decomposition of the yarn, increases the degree of polymerization of the yarn, and improves the mechanical properties of the yarn.

本発明の方法の第4の特性は、糸のDSC(示査走査型
熱量計)融解曲線のTm1(基線から融解曲線が離れる
温度)を超える温度とTm3 (繊維の融解が完結する
温度)未満の範囲でゾーンメルティングする点にある。
The fourth characteristic of the method of the present invention is that the DSC (differential scanning calorimetry) melting curve of the yarn exceeds Tm1 (the temperature at which the melting curve departs from the baseline) and is below Tm3 (the temperature at which the melting of the fiber is completed). It is at the point where zone melting occurs within the range of .

ここでいうゾーンメルティングとは、繊維をできるだけ
狭い領域で加熱し、伸び切り分子鎖以外の結晶領域を融
解させる操作である。糸をなるべくむらなく加熱するた
め及び応力を最も効率的に加熱部に集中させるためには
、糸を加熱する加熱ゾーンの繊維軸方向の長さt(朋)
は、処理スピードV(闘/m1n)、処理湿度θ(℃)
、糸の繊度d(デニール)からなる関係式:1≦t≦1
+□、519  を満足することが必要である。
Zone melting here is an operation in which the fiber is heated in as narrow a region as possible to melt the crystal region other than the stretched molecular chains. In order to heat the yarn as evenly as possible and to concentrate stress in the heating area most efficiently, the length t in the fiber axis direction of the heating zone where the yarn is heated is
are processing speed V (f/m1n), processing humidity θ (℃)
, a relational expression consisting of yarn fineness d (denier): 1≦t≦1
+□, 519 must be satisfied.

ゾーンメルティングにより糸が加熱される温度は糸のD
SC融解曲線のTm1を越える湿度(℃)とTm5未滴
の温度範囲であることが必要である。なお、DSC融解
曲線の測定法及びTm1+Tm、5の定義は後述のとお
りである。糸がTm1以下で加熱されると折りたたみ結
晶や他の微結晶が融解されず伸び切り分子鎖主体型の構
造は作製できない。また、Tm5以上に糸が加熱される
と糸は完全に融解してしまい糸切れが発生してゾーンメ
ルティング処理が不能となる。
The temperature at which the yarn is heated by zone melting is the D of the yarn.
It is necessary that the humidity (°C) exceeds Tm1 of the SC melting curve and the temperature range does not drop Tm5. The method for measuring the DSC melting curve and the definition of Tm1+Tm, 5 are as described below. If the thread is heated below Tm1, the folded crystals and other microcrystals will not be melted and a structure mainly composed of molecular chains cannot be produced. Furthermore, if the yarn is heated to a temperature higher than Tm5, the yarn will completely melt and breakage will occur, making zone melting treatment impossible.

加熱温度がTm 1を越えTm3未満の範囲であると糸
はより高融点の伸び切り分子鎖主体型の構造になり強力
・弾性率が著しく増大する。なお、加熱温度範囲がTm
2以上、Tm3未満であると強力・弾性率の点でより望
ましいが、この場合には冷却速度を20℃/IIec以
上にする必要がある。
If the heating temperature is in the range of more than Tm1 and less than Tm3, the yarn will have a structure mainly composed of elongated molecular chains with a higher melting point, and its strength and elastic modulus will increase significantly. Note that the heating temperature range is Tm
2 or more and less than Tm3 is more desirable in terms of strength and elastic modulus, but in this case it is necessary to set the cooling rate to 20° C./IIec or more.

本発明の方法の第5の特徴は、ゾーンメルティングに引
き続いて直ちにナイロン66繊維のガラス転移温度以下
の温度に制御された冷却ゾーンで急冷することにある。
A fifth feature of the method of the present invention is that zone melting is immediately followed by rapid cooling in a cooling zone whose temperature is controlled to be below the glass transition temperature of the nylon 66 fibers.

特に、加熱ゾーンを通った糸が冷却ゾーンへ入るまでの
時間が10秒以内であれば、加熱冷却の処理効果が十分
に発揮される。
In particular, if the time it takes for the yarn to enter the cooling zone after passing through the heating zone is within 10 seconds, the heating and cooling treatment effect will be fully exhibited.

また、この冷却速度は速ければ速いほど、加熱冷却ゾー
ンの処理効果が一層大きくなり、より限界に近い温度(
Tm3近傍)での処理が可能となる。
In addition, the faster this cooling rate, the greater the processing effect of the heating and cooling zone, and the closer the temperature is to the limit (
(near Tm3) becomes possible.

従って、急冷速度は、10℃、/’8 e n以上が望
ましく、より望ましくは20℃/II 86以上である
Therefore, the quenching rate is desirably 10° C./'8 e n or higher, more preferably 20° C./II 86 or higher.

冷却温度は、伸び切り分子鎖結晶に再結晶化(自己種つ
け結晶化)せしめると共に非晶領域の繊維軸方向へ伸ば
された分子を固定化するためにガラス転移温度以下にす
る必要がある。冷却温度がガラス転移温度より高いと、
上記非晶領域内の伸び切り分子鎖が固定化されないこと
から強力・弾性率の著しい増大は期待できない。
The cooling temperature needs to be lower than the glass transition temperature in order to cause recrystallization (self-seeding crystallization) into stretched molecular chain crystals and to fix molecules stretched in the fiber axis direction of the amorphous region. When the cooling temperature is higher than the glass transition temperature,
Since the extended molecular chains in the amorphous region are not fixed, a significant increase in strength and elastic modulus cannot be expected.

また、本発明の方法を2回以上繰り返すことは、それに
よって上記非晶領域の固定化した伸び切り分子鎖が結晶
化すると共に、借維方向に欠陥部のない、より均一な構
造の繊維が得られるので望ましい。特に、5回繰返すこ
とによりl5y−/dの強度を持つ繊維が得られる。
In addition, repeating the method of the present invention two or more times crystallizes the fixed extended molecular chains of the amorphous region and creates fibers with a more uniform structure without defects in the fiber direction. It is desirable because it can be obtained. In particular, by repeating the process five times, fibers with a strength of l5y-/d can be obtained.

次に、本発明方法を添附図面について詳しく説明する。Next, the method of the present invention will be explained in detail with reference to the accompanying drawings.

図2は、本発明方法に用いる加熱・冷却を繰返し行える
装置の一例の概略図である。図において、紡速4.00
0 m /nli n以上で紡糸されたナイロン664
1fiM1は一対のローラー8によって加熱冷却装置に
送りこまれる。この加熱冷却装置は入口および出口にそ
れぞれ一対のローラー8,8′がある。ローラー8.8
′は例えばそれぞれ特公昭38−8395号公報または
特公昭40−2709号公報に開示されているような装
置内外の雰囲気が互に混り合わないようにシールされた
構造を有するものであり、且つナイロン66繊維を加熱
冷却装置に送り込むかまたは取り出す働き、をする。こ
のようなローラー8によって加熱冷却装置内に送り込ま
れたナイロン66 $J1.維はカロ熱ゾーン9によっ
て、Tm1〜Tm5の温度範囲内の適宜の温度に制御+
qlされた雰囲気内で加熱され、引続き直ちに該繊維の
ガラス転移点以下の温度に調節された冷却ゾーンioを
西る。
FIG. 2 is a schematic diagram of an example of an apparatus that can repeatedly perform heating and cooling used in the method of the present invention. In the figure, the spinning speed is 4.00.
Nylon 664 spun at 0 m/nli n or more
1fiM1 is fed into a heating and cooling device by a pair of rollers 8. This heating and cooling device has a pair of rollers 8, 8' at the inlet and outlet, respectively. roller 8.8
' has a sealed structure to prevent the atmosphere inside and outside the device from mixing with each other, as disclosed in Japanese Patent Publication No. 38-8395 or Japanese Patent Publication No. 40-2709, respectively, and Its function is to feed the nylon 66 fibers into the heating/cooling device or take them out. Nylon 66 $J1. is fed into the heating and cooling device by such a roller 8. The fibers are controlled at an appropriate temperature within the temperature range of Tm1 to Tm5 by the Calo-thermal zone 9.
It is heated in an atmosphere of ql and then immediately passes through a cooling zone io whose temperature is adjusted to below the glass transition point of the fiber.

次いで、加熱冷却されたナイロン66繊維はデリベリロ
ーラー11によって次の加熱冷却ゾーンへ送られる。ロ
ーラー8および110表面速度を適宜変えることによっ
て、加熱ゾーン9および冷却ゾーン10で処理をうけて
いるナイロン66繊維にかかる張力を調整する。この加
熱・冷却操作を1回乃至数回繰返すことが可能であり、
すべての繰返し加熱冷却処理を終えた後、ナイロン66
繊維はローラー8′により装置外へ送り出され、巻取り
機12によって巻取られる。この加熱冷却装置はシール
ドカバー13によって被覆されており、排気口14よシ
、シールドカーパー13の内部を真空ポンプによシ真空
にしたり、または排気口14より窒素、ヘリウムなどの
不活性ガスを送り込んでナイロン66繊維の加熱冷却処
理中の酸化分解を防ぐ。
Next, the heated and cooled nylon 66 fibers are sent to the next heating and cooling zone by the delivery roller 11. By appropriately varying the surface speeds of rollers 8 and 110, the tension applied to the nylon 66 fibers undergoing treatment in heating zone 9 and cooling zone 10 is adjusted. This heating and cooling operation can be repeated once or several times,
After all repeated heating and cooling treatments, nylon 66
The fibers are sent out of the device by rollers 8' and wound up by winder 12. This heating and cooling device is covered with a shield cover 13, and the interior of the shield carper 13 is evacuated by a vacuum pump through an exhaust port 14, or an inert gas such as nitrogen or helium is supplied through the exhaust port 14. It is fed to prevent oxidative decomposition during heating and cooling treatment of nylon 66 fibers.

以下余臼 なお、9.10に示した加熱および冷却装置はそれぞれ
加熱および冷却表面に繊維が接触するタイプのものであ
ってもよいし、まだ接触しないタイプのものでもよい。
The heating and cooling devices shown in 9.10 below may be of a type in which the fibers come into contact with the heating and cooling surfaces, respectively, or may be of a type in which the fibers do not come into contact with the heating and cooling surfaces, respectively.

また加熱媒体としては赤外線、高周波、レーザー光線、
電熱ヒーターなどが用いられ、冷却媒体としては、空冷
、水冷、フレオンがス、電子冷却素子などが使われる。
In addition, heating media include infrared rays, high frequencies, laser beams,
Electric heaters are used, and cooling media include air cooling, water cooling, Freon gas, and electronic cooling elements.

なお、前述のような要件が満足される本発明方法による
処理が達成可能であれは、使用される装置は、図2に示
した装置に限定されない。
Note that the apparatus used is not limited to the apparatus shown in FIG. 2, as long as the processing according to the method of the present invention that satisfies the above-mentioned requirements can be achieved.

本発明方法で得られる繊維を特徴づける物性値は次のよ
うに測定される。
Physical property values characterizing the fiber obtained by the method of the present invention are measured as follows.

〔力学的損失正」−!5:(tlIIIδ)および動的
弾性率(E’) 3力学的損失正接(tUδ)及び動的
弾性率(E′)の測定には、東洋ボールドウィン社製レ
オ・パイブロン(Rh@o−Vi bron) DDV
−11c型を用いる。測定周波数110 Hz、昇温速
度10℃/mln、乾燥空気中で−δ一温度(T)特性
、EJ度(T)Ql性を測定する。−δ一温度曲線から
−δビーク高さ−δ)r11aアと−δピーク温度Tm
axに)とを読取る。なお、測定前に試料は48時時間
上相対湿度Oチの雰囲気下で調整される。
[Positive mechanical loss”-! 5: (tlIIIδ) and dynamic elastic modulus (E') 3 To measure the mechanical loss tangent (tUδ) and dynamic elastic modulus (E'), a Rh@o-Vi bron manufactured by Toyo Baldwin was used. )DDV
-11c type is used. The -δ temperature (T) characteristic and the EJ degree (T) Ql characteristic are measured in dry air at a measurement frequency of 110 Hz and a temperature increase rate of 10° C./mln. -δ - From the temperature curve -δ peak height -δ) r11a and -δ peak temperature Tm
ax). In addition, before measurement, the sample is conditioned in an atmosphere with a relative humidity of 0 or more for 48 hours.

〔平均屈折率f17+n、及び平均屈折率分布〕東独カ
ールツアイスイエナ社裂干渉顕微鏡インターフアコを使
用して得られた干渉縞によって、繊維の側面から観察し
た平均屈折率と局所的な平均屈折率分布を測定できる。
[Average refractive index f17+n and average refractive index distribution] Average refractive index and local average refractive index distribution observed from the side of the fiber using interference fringes obtained using an Interfaco fissure interference microscope manufactured by Carl Zeiss Jena, East Germany. can be measured.

ここで説明する測定はすべて緑色光線(波長λ= 54
9 mμ)を使用した。浸液はオリーブ油とα−ブロモ
ナフタレンとを混合することによって作製された。
All measurements described here are performed using green light (wavelength λ = 54
9 mμ) was used. The dip liquid was made by mixing olive oil and alpha-bromonaphthalene.

平均屈折率n7は、繊維軸に平行な電場ベクトルを有す
る偏光に対する平均屈折率である。得られた干渉縞から
、光路差Fはr=五λ= (n7−N) tで表わされ
る。ここで、dは繊維による干渉縞のずれ、Dは平行干
渉縞の開隔、λは使用光線の波長(549mμ)、Nは
繊維の封入剤の屈折率、tは厚みである。繊維の半径な
Rとすると繊維の中心をOとした時の繊維軸方向に垂直
な方向に沿った座標をXとすると、繊維の中心(X=O
)から外周(X=R)までの各位置での光路差から、各
位置での局所的な平均屈折率の分布を求めることができ
る。繊維の中心(X=0)に於ける屈折率が、平均屈折
率n、□である。また、平均屈折率n□は、繊維軸に垂
直な!場ベクトルを有する偏光に対する平均屈折率で’
  ”1f01はX=Oにおける平均屈折率で”/fi
lと同様にして求められる。なお、X=0における複屈
折率Δ”to+は”/Q。−”J−fO)で定義される
The average refractive index n7 is the average refractive index for polarized light with an electric field vector parallel to the fiber axis. From the obtained interference fringes, the optical path difference F is expressed as r=5λ=(n7−N)t. Here, d is the deviation of the interference fringes due to the fibers, D is the aperture of the parallel interference fringes, λ is the wavelength of the light beam used (549 mμ), N is the refractive index of the fiber encapsulant, and t is the thickness. Let R be the radius of the fiber, and let X be the coordinate along the direction perpendicular to the fiber axis direction when the center of the fiber is O, then the center of the fiber (X=O
) to the outer periphery (X=R), the local average refractive index distribution at each position can be determined from the optical path difference at each position. The refractive index at the center of the fiber (X=0) is the average refractive index n, □. Also, the average refractive index n□ is perpendicular to the fiber axis! With the average refractive index for polarized light with field vector'
"1f01 is the average refractive index at X=O"/fi
It can be found in the same way as l. Note that the birefringence Δ"to+ at X=0 is "/Q. −”J−fO).

〔強伸度、初期モジュラス〕[Strong elongation, initial modulus]

東洋ボールドウィン社製、TENSILONUTMn−
20型引張試験機によ、9.20℃60%R,H,(相
対湿度)の条件下で、初長2 Crn、引張速度100
m5/m i nで測定した。
Manufactured by Toyo Baldwin, TENSILONUTMn-
Using a 20-type tensile tester, under conditions of 9.20°C, 60% R, H, (relative humidity), initial length 2 Crn, tensile speed 100.
Measured at m5/min.

(DSC融解曲線〕 P@rk1n−E1mer社製のDSC−1b型を用い
、試料量的1.5〔雫〕をN2がス雰囲気中で、約18
0℃から、昇温速度20℃/m i nで昇温し、融解
曲線を測定する。その融解曲線が基線から離れる温度、
すなわち融解開始温度がTm1であり、融解曲線のピー
ク温度がTm2であシ、その融解曲線が基線に戻る温度
(繊維の融解が完結する温度)がTm3である。図3は
ナイロン66繊維の典型的なりSC融解曲線であシ、同
図において、16はTm1.17はTm2.18はTm
3.19は基線である。
(DSC melting curve) Using a DSC-1b model manufactured by P@rk1n-E1mer, a sample amount of 1.5 [drops] was melted in an N2 gas atmosphere for about 18
The temperature is raised from 0°C at a rate of 20°C/min, and the melting curve is measured. the temperature at which its melting curve departs from the baseline,
That is, the melting start temperature is Tm1, the peak temperature of the melting curve is Tm2, and the temperature at which the melting curve returns to the baseline (the temperature at which the melting of the fiber is completed) is Tm3. Figure 3 shows a typical SC melting curve of nylon 66 fiber, in which 16 is Tm1.17 is Tm2.18 is Tm
3.19 is the baseline.

〔実施例1〕 相対粘度(VR)35(25℃、溶媒濃硫酸)のナイロ
ン66を孔径0.23 wn、孔数13の紡糸口金よシ
295℃で溶融紡出し、冷却し7、油剤付与によって集
束性を与え、種々の引取り速度(4000,5500,
6000および7000m/m1n)で引取ったナイロ
ン66繊維に本発明の加熱・冷却処理を施した。すなわ
ち、加熱処理ゾーン長1咽、処理温度260℃、処理速
度4 wimi n 。
[Example 1] Nylon 66 with a relative viscosity (VR) of 35 (25°C, solvent concentrated sulfuric acid) was melt-spun at 295°C through a spinneret with a pore diameter of 0.23 wn and a number of holes of 13, cooled 7, and oiled. gives focusing properties, and various take-up speeds (4000, 5500,
Nylon 66 fibers taken at 6000 and 7000 m/m1n) were subjected to the heating and cooling treatment of the present invention. That is, the heat treatment zone length is 1 mm, the treatment temperature is 260° C., and the treatment speed is 4 wimin.

荷重2.0()/d)、冷却速度60℃/see、  
冷却温度30eC)、真空状態の各条件下で本発明方法
の加熱・急冷処理を一回行うことによって試料属3゜4
.5.6(いずれも本発明例)を得た。
Load 2.0()/d), cooling rate 60°C/see,
By performing the heating and quenching treatment of the method of the present invention once under each condition of a cooling temperature of 30 eC) and a vacuum state, the sample genus 3°4
.. 5.6 (all examples of the present invention) were obtained.

紡速を500および2000 m/minと変えた他は
上記と同様に紡糸して得た繊維に上記と同様な加熱・急
冷処理を行うことによシ試料/f61およびA2(いず
れも比較例)を得た。
Samples/f61 and A2 (both comparative examples) were obtained by subjecting fibers obtained by spinning in the same manner as above, except that the spinning speed was changed to 500 and 2000 m/min, and then subjecting them to the same heating and quenching treatment as above. I got it.

上述の試料について(論δ)ma工、T□3工(℃)。For the above sample (theory δ) ma engineering, T□3 engineering (℃).

”/10) ’ ”uol ’Δn2強度(y/d)、
室温(25℃)に於ける力学的損失、弾性率E’(dy
ne/確2)を測定した結果を表1に示す。なお、未処
理系(紡速5500 m/m1r3)属7と市販旭化成
ナイロン66タイヤコード繊維(1260D/210f
)A8について測定して得た結果を比較例として表1に
併記する。
"/10) '"uol'Δn2 intensity (y/d),
Mechanical loss at room temperature (25°C), elastic modulus E' (dy
Table 1 shows the results of measuring ne/certainty 2). In addition, untreated type (spinning speed 5500 m/m1r3) Group 7 and commercially available Asahi Kasei nylon 66 tire cord fiber (1260D/210f) were used.
) The results obtained by measuring A8 are also listed in Table 1 as a comparative example.

表1から紡速か4000 m7分以上で急激に強度、弾
性率が増大していることがわかるO以下余白 〔実施例2〕 実施例1で使用した紡速5500 m/mi nのナイ
ロン66繊維を加熱処理ゾーン長1闇、処理温度250
および260℃、処理速度4m/m1n1荷重2.0(
IP−/d)、冷却速度60℃/Bee、冷却温度30
(℃)、真空状態の各条件下で一回処理して試料黒3.
4(いずれも本発明例)を得た。比較のために、処理温
度を150および200℃に変えた他は同様な条件下に
処理して試料AI、2(いずれも比較例)を得た。これ
らの試料について(−δ)m a x r Tm a 
x (℃) r n /1(II + n BO) +
Δi1強度U’/d)、室温(25℃)に於ける力学的
損失弾性率E’(dyne/篩” )の各数値を表2に
示す。また、未処理系(紡速5500 m/#) & 
5と市販旭化成ナイロン66タイヤコード繊ft1f:
 (1260D/13f )A6の構造と物性の各数値
を表2に併記する。
From Table 1, it can be seen that the strength and elastic modulus increase rapidly when the spinning speed is 4000 m/min or more. The heat treatment zone length is 1 darkness, the treatment temperature is 250
and 260℃, processing speed 4m/m1n1 load 2.0 (
IP-/d), cooling rate 60℃/Bee, cooling temperature 30
(°C), vacuum condition, and the sample was treated once under the following conditions: 3.
4 (all examples of the present invention) were obtained. For comparison, samples AI and 2 (both comparative examples) were obtained by processing under the same conditions except that the processing temperature was changed to 150 and 200°C. For these samples (-δ)m a x r Tm a
x (℃) r n /1 (II + n BO) +
Table 2 shows the numerical values of Δi1 strength U'/d) and mechanical loss modulus E' (dyne/sieve) at room temperature (25°C). ) &
5 and commercially available Asahi Kasei nylon 66 tire cord fiber ft1f:
(1260D/13f) The structure and physical properties of A6 are also listed in Table 2.

なお未処理系のTm + 、Tm2 + Tm3はそれ
ぞれ230.3,260.3訃工び269.8 (1:
)である。
Note that Tm + and Tm2 + Tm3 of the untreated system are 230.3 and 260.3, respectively, and 269.8 (1:
).

表2から処理温度がTm1を越えTm5以下であると著
しく強度と弾性率の値が大きくなることがわかる。
From Table 2, it can be seen that when the treatment temperature exceeds Tm1 and is below Tm5, the values of strength and elastic modulus become significantly large.

〔実施例3〕 実施例2で使用した紡速5500 m1m1nのナイロ
ン66繊維(破断時張力=4.12!?/d)を加熱処
理ゾーン長1隅、処理温度260℃、処理速度4酎/朋
、荷重】5および3.0(Vd)、冷却速度60℃/l
1ec、冷却温度30 (t))、真空状態の各条件下
で一回処理して試料A3.4(本発明例)を得た。比較
のために荷重を0.2.0.4および4.1(?/d)
に変えた他は同様な条件下に処理して試料ml、2.5
(いずれも比較例)をそれぞれ得た。
[Example 3] Nylon 66 fibers (tension at break = 4.12!?/d) with a spinning speed of 5500 m1m1n used in Example 2 were heat-treated at one corner of the zone length, at a treatment temperature of 260°C, and at a treatment speed of 4/d. Load】5 and 3.0 (Vd), cooling rate 60℃/l
Sample A3.4 (an example of the present invention) was obtained by processing once under the following conditions: 1 ec, cooling temperature 30 (t)), and vacuum state. For comparison, load is 0.2, 0.4 and 4.1 (?/d)
Sample ml, 2.5 ml was treated under the same conditions except that
(all comparative examples) were obtained.

これらの試料について(側δ)   、T  (℃)。For these samples (side δ), T (°C).

maX     maX ”/lel ’ ”1101 ’Δ”tco +強度(
i!−/d)、室温(25℃)に於ける力学的損失弾性
率E’(dyne/(−rn2)の各数値を表3に示す
。櫨た、未処理系(紡速5500m/分)屋6と市販旭
化成ナイロン66タイヤコード繊維(1260D/13
f)應7の構造と物性の各数値を表3に併記する。
maX maX ”/lel ' ”1101 'Δ”tco + intensity (
i! -/d) and the mechanical loss modulus E' (dyne/(-rn2) at room temperature (25°C) are shown in Table 3. 6 and commercially available Asahi Kasei nylon 66 tire cord fiber (1260D/13
f) The structure and physical properties of 應7 are also listed in Table 3.

表3から糸にかける荷重が0.5 C7/d )以上4
0U’/d)以下であると強度及び弾性率の著しい向上
が見られることがわかる。
From Table 3, the load applied to the thread is 0.5 C7/d) or more 4
0U'/d) or less, the strength and elastic modulus are significantly improved.

〔実施例4〕 実施例2で使用した紡速5500 m/m1llの引取
繊維試料を加熱処理ゾーン長1酬、処理温度260℃、
処理速度4 mm 7mM、荷重2.0 C9/d )
、冷却速度60℃/8 e e %冷却温度40.30
および10℃、真空状態下で一回処理して試料& 2 
、3 、4 (いずれも本発明例)を得た。比較のため
に冷却温度を100℃に変えたほかは同様な条件下に処
理して試料AI(比較例)を得た。これらの試料の構造
と物性の各数値を表4に示す。まだ未処理系(紡速55
00 rn /min )?65と市販旭化成ナイロン
66タイヤコード繊維(1260V13f)扁6の構造
と物性の各数値を表4に併記する。
[Example 4] The drawn fiber sample used in Example 2 at a spinning speed of 5500 m/ml was heat-treated at a treatment temperature of 260° C. with a zone length of 1.
Processing speed 4 mm 7 mm, load 2.0 C9/d)
, cooling rate 60℃/8 ee % cooling temperature 40.30
and processed once under vacuum at 10°C to prepare samples &2.
, 3 and 4 (all examples of the present invention) were obtained. For comparison, sample AI (comparative example) was obtained by processing under the same conditions except that the cooling temperature was changed to 100°C. Table 4 shows the structures and physical properties of these samples. Still unprocessed system (spinning speed 55
00rn/min)? Table 4 also lists the structures and physical properties of Asahi Kasei Nylon 65 and commercially available Asahi Kasei Nylon 66 tire cord fiber (1260V13f) Flat 6.

なお、未処理系のがラス転移温度Tgは49 (1:)
である。
The untreated system has a lath transition temperature Tg of 49 (1:)
It is.

表4から冷却温度がTg (℃)以下になると強度弾性
率が高いことがわかる。
Table 4 shows that the strength-elasticity modulus is high when the cooling temperature is below Tg (°C).

以下余白 〔実施例5〕 実施例2で使用した紡速5500 m/m1yrの引取
繊維試料を加熱処理ゾーン長1閣、処理温度260℃、
処理速度4 m/m1yr 、荷重2.0(、P、ろ)
、冷却速度60℃/s e c 、冷却温度30 (℃
)、真空状態下で1゜2.3.4および5回処理して試
料屋1,2,3゜4.5(いずれも本発明例)を得た。
The following margin [Example 5] The taken fiber sample used in Example 2 at a spinning speed of 5500 m/ml was heated in a heat treatment zone at a treatment temperature of 260°C.
Processing speed 4 m/m1yr, load 2.0 (,P,ro)
, cooling rate 60℃/sec, cooling temperature 30 (℃
) and 1°2.3.4 and 5 times under vacuum conditions to obtain samples 1, 2, and 3°4.5 (all examples of the present invention).

これらの試料の構造と物性の各数値を表5に示す。壕だ
未処理系(紡速5500 m/mrR)A 6と市販無
化成ナイロン66@維(1260D/13f)高7の構
造と物性の各数値を表5に示す。
Table 5 shows the structures and physical properties of these samples. Table 5 shows the structure and physical property values of the trench-untreated system (spinning speed 5500 m/mrR) A 6 and the commercially available chemical-free nylon 66@fiber (1260D/13f) High 7.

表5から処理回数を増すと強度・弾性率共に増すことが
わかる。
It can be seen from Table 5 that as the number of treatments increases, both the strength and elastic modulus increase.

以下余1″I 〔実施例6〕 熱処理時の雰囲気のみを真空状態下に於ける処理にかえ
て、不活性雰囲気としてN2ガスおよび■Ieがスを使
用した他は実施例1,2.3.4および5と同様な条件
下に処理して試料屋1及び届2.1(いずれも本発明例
)と、比較して空気中で行った試料A3の構造及び物性
値を表6に示す。
The remaining 1"I [Example 6] Examples 1 and 2.3 except that only the atmosphere during heat treatment was changed to treatment under a vacuum condition, and N2 gas and ■Ie gas were used as an inert atmosphere. Table 6 shows the structure and physical property values of sample A3, which was processed under the same conditions as 4 and 5 and compared with sample shop 1 and notification 2.1 (both examples of the present invention) in air. .

表6から、不活性雰囲気下であれば、糸の酸化分解を防
ぐことが可能となり、空気中処理に比べて強力、弾性率
が高い糸が得られることがわかる。
Table 6 shows that under an inert atmosphere, it is possible to prevent oxidative decomposition of the yarn, and yarns with higher strength and higher elastic modulus can be obtained than when treated in air.

以下余白 紡糸繊維を紡糸する装置の一例の概略図である。Margin below FIG. 1 is a schematic diagram of an example of an apparatus for spinning spun fibers.

図に於いて、1は糸条、2は紡糸ヘッド、3は管状加熱
域、4は流体吸引装置、5は油剤付与装置、図である。
In the figure, 1 is a yarn, 2 is a spinning head, 3 is a tubular heating area, 4 is a fluid suction device, and 5 is an oil application device.

図に於いて、1は糸条、8 、8’はシールドを兼ねる
フィードローラー、9は加熱ゾーン、10は冷却ゾーン
、1 t 、 11′、 11’實回転速度が相違する
デリベリローラー、12は捲取機、13はシールドカバ
ー、14は不活性ガスの流入口または真空にするための
排気口であり、15は線であり、Tm1 * Tm2 
* Tm3の説明図である。図において、16はTm1
  + 17はTrn2 * 18はTm3をそれぞれ
示し、19は基線である。
In the figure, 1 is a yarn, 8 and 8' are feed rollers that also serve as shields, 9 is a heating zone, 10 is a cooling zone, 1t, 11', and 11' are delivery rollers with different rotation speeds, 12 is a winding machine, 13 is a shield cover, 14 is an inlet for inert gas or an exhaust port for creating a vacuum, and 15 is a wire, Tm1 * Tm2
*This is an explanatory diagram of Tm3. In the figure, 16 is Tm1
+17 indicates Trn2, *18 indicates Tm3, and 19 is the baseline.

Claims (1)

【特許請求の範囲】 1、紡速4000m/min以上で紡糸されたナイロン
66繊維を熱処理するに際し、 ■ 該繊維の繊維軸方向にかかる張力が0.5tA以上
で且つ0.99T、P/d以下(但しdはデニール、T
は該繊維の破断時の張力である)、(2)実質的に酸素
が存在しない雰囲気中において、 ■ 熱処理温度がDSC融解曲線のTm1(基線から融
解曲線が離れる温度)を越えTm5(繊維の融解が完結
する温度)未満 の条件下で繊維軸方向の長さt(+1111 )がある
加熱ゾーンで熱処理し、引続き直ちに該繊維のガラス転
移点以下の温度に制御された冷却ゾーンで急冷処理を行
なうことを特徴とする高強力高弾性率ナイロン66繊維
の製造法。 2、紡速か5,500m1m1 n以上である特許請求
の範囲第1項記載の高強力高弾性率ナイロン66繊維の
製造法。 3、10℃/ 8@e以上の冷却速度で急冷処理を行う
特許請求の範囲第1項記載の高強力高シiP性率ナイロ
ン66繊維の製造法。 4、紡糸された糸を熱処理するに際し、真空中で行う特
許請求の範囲第1項または第2項記載の高強力高弾性率
ナイロン66繊維の製造法。 5、紡糸された糸をTm2以上Tm3未満の温度範囲で
加熱ゾーンで熱処理後、冷却速度が20℃Aecで急冷
する特許請求の範囲第1項記載の高強力高弾性率ナイロ
ン66繊維の製造法。 6、紡糸された繊維に熱処理−急冷処理を2回以上繰り
返す特許請求の範囲第1項から第5項までのいずれかに
記載の高強力高弾性率ナイロン66繊維の製造法。
[Claims] 1. When heat-treating nylon 66 fibers spun at a spinning speed of 4000 m/min or more, (1) the tension applied to the fiber axis in the fiber axis direction is 0.5 tA or more and 0.99 T, P/d; Below (where d is denier, T
(2) In an atmosphere substantially free of oxygen, (1) the heat treatment temperature exceeds Tm1 of the DSC melting curve (the temperature at which the melting curve departs from the base line), and The fiber is heat-treated in a heating zone having a length t (+1111 ) in the axial direction of the fiber under conditions below the temperature at which melting is completed, and then immediately rapidly cooled in a cooling zone whose temperature is controlled to be below the glass transition point of the fiber. A method for producing high-strength, high-modulus nylon 66 fiber, characterized by carrying out the following steps. 2. The method for producing high-strength, high-modulus nylon 66 fibers according to claim 1, wherein the spinning speed is 5,500 m1 m1 n or more. 3. A method for producing a high-strength, high-SiP property nylon 66 fiber according to claim 1, wherein the quenching treatment is performed at a cooling rate of 10° C./8@e or more. 4. A method for producing a high-strength, high-modulus nylon 66 fiber according to claim 1 or 2, in which the spun yarn is heat-treated in a vacuum. 5. The method for producing high-strength, high-modulus nylon 66 fibers according to claim 1, wherein the spun yarn is heat-treated in a heating zone at a temperature range of Tm2 or higher and lower than Tm3, and then rapidly cooled at a cooling rate of 20°C Aec. . 6. A method for producing high-strength, high-modulus nylon 66 fibers according to any one of claims 1 to 5, wherein the spun fibers are subjected to heat treatment and quenching treatment two or more times.
JP13295282A 1982-07-31 1982-07-31 Preparation of nylon 66 yarn having high strength and high modulus Pending JPS5926517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13295282A JPS5926517A (en) 1982-07-31 1982-07-31 Preparation of nylon 66 yarn having high strength and high modulus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13295282A JPS5926517A (en) 1982-07-31 1982-07-31 Preparation of nylon 66 yarn having high strength and high modulus

Publications (1)

Publication Number Publication Date
JPS5926517A true JPS5926517A (en) 1984-02-10

Family

ID=15093328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13295282A Pending JPS5926517A (en) 1982-07-31 1982-07-31 Preparation of nylon 66 yarn having high strength and high modulus

Country Status (1)

Country Link
JP (1) JPS5926517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183311A (en) * 1984-09-28 1986-04-26 Asahi Chem Ind Co Ltd Method of spinning nylon 66 polymer
US4944821A (en) * 1987-12-28 1990-07-31 Bridgestone Corporation Adhesive treatment for nylon cords

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183311A (en) * 1984-09-28 1986-04-26 Asahi Chem Ind Co Ltd Method of spinning nylon 66 polymer
US4944821A (en) * 1987-12-28 1990-07-31 Bridgestone Corporation Adhesive treatment for nylon cords

Similar Documents

Publication Publication Date Title
US4690866A (en) Polyester fiber
JPH0128127B2 (en)
JPS5947726B2 (en) Polyester fiber manufacturing method
JPS6088120A (en) Polyester yarn
JPS5926517A (en) Preparation of nylon 66 yarn having high strength and high modulus
JPH0261109A (en) Polyester fiber
JPS58156017A (en) Production of high strength polyester yarn
JPS6059119A (en) Production of polyester fiber
JP2882697B2 (en) Polyester fiber and method for producing the same
JPH0323644B2 (en)
JPS5915513A (en) Production of polyester fiber
JPH06136612A (en) Production of polyester fiber having improved dimensional stability
JPS63315608A (en) Polyester fiber
KR100595607B1 (en) Polyethylene-2,6-naphthalate fibers by using high speed spinning and radial in to out quenching method, and process for preparing the same
JPS63159518A (en) Polyester fiber
JPS60134023A (en) Direct spin-draw process for polyester fiber
JPS62268814A (en) Production of high tenacity polyamide fiber
JPS5818445B2 (en) Polyester fiber manufacturing method
JPH05163627A (en) Production of polyester tire cord
JPH0571033A (en) Polyester tire cord for passenger car and its production
JPS62110913A (en) Production of combined filament yarn of different shrinkage
JPH04163314A (en) Polyester fiber and production thereof
JPH10251919A (en) Polyester fiber and its production
KR810001779B1 (en) Mutilobed feed yarn for texturing
JPH062209A (en) Production of polyester fiber for reinforcing rubber