JPS5926413B2 - Electric discharge machining equipment - Google Patents

Electric discharge machining equipment

Info

Publication number
JPS5926413B2
JPS5926413B2 JP49076828A JP7682874A JPS5926413B2 JP S5926413 B2 JPS5926413 B2 JP S5926413B2 JP 49076828 A JP49076828 A JP 49076828A JP 7682874 A JP7682874 A JP 7682874A JP S5926413 B2 JPS5926413 B2 JP S5926413B2
Authority
JP
Japan
Prior art keywords
machining
signal
discharge
pulse
proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49076828A
Other languages
Japanese (ja)
Other versions
JPS515692A (en
Inventor
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP49076828A priority Critical patent/JPS5926413B2/en
Publication of JPS515692A publication Critical patent/JPS515692A/en
Publication of JPS5926413B2 publication Critical patent/JPS5926413B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 微小な間隙を維持して加工する放電加工においては加工
間隙の追従制御と同様に加工屑の排除制御が極めて重要
であり、この良否により放電加工性能が大きく左右され
る。
[Detailed description of the invention] In electrical discharge machining, which involves machining while maintaining a minute gap, control of removing machining debris is extremely important, as is the tracking control of the machining gap, and the quality of this control greatly affects the performance of electrical discharge machining. .

従来はこれをポンプ装置による加工液の噴流、吸引等に
よつて制御するが、このポンプ装置による液の流速、噴
流圧、吸引圧等の変更制御は通常手動匍卿等で行つてい
るため、加工間隙に介在する加工屑を常に一定濃度に制
御し、この一定濃度の加工屑を攪拌して加工液中に均一
に混合分布させる最適制御ができない。一万放電加工に
おいて、加工速度を増大し、且つ安定加工を行なうため
に、電極形状により加工の進行にしたがつて変化してい
く加工面積を検出して、これを信号として電流密度が常
に設定された最良値に近づくよう加工用パルス電源のオ
ンパルス巾、オフパルス巾、波高値等を制御変更させる
ことが考えられているが、このパルス電源の変更制御に
よつて加工屑の発生速度が変化する、即ち例えばオンパ
ルス巾、波高値を一定としてオフパルス巾を変化して放
電の繰返周波数を制御すれば繰返周波数に比例して発生
する加工屑量が大体予測され、したがつて本発明はこの
発生屑の排除が加工間隙に介在する加工屑の濃度が常に
一定になるようポンプ装置の流速、噴流圧、吸引圧のレ
ベルも加工面積比例信号によつて自動変更制御するよう
にしたものである。以下図面の一実施例により本発明を
説明すると、1は電極と被加工体の加工間隙に発生する
パルス放電に比例する検出パルス信号の入力端子で、信
号パルスはカウンター2によつてカウントされる。
Conventionally, this is controlled by jetting, suctioning, etc. of the machining fluid using a pump device, but since changes in the flow rate, jet pressure, suction pressure, etc. of the fluid by this pumping device are usually controlled by a manual screwdriver, etc. Optimum control cannot be achieved in which the concentration of machining debris present in the machining gap is always controlled to a constant level, and this constant concentration of machining debris is stirred and distributed uniformly in the machining fluid. In electrical discharge machining, in order to increase machining speed and perform stable machining, the machining area, which changes as machining progresses, is detected by the electrode shape, and this is used as a signal to constantly set the current density. It has been considered to control and change the on-pulse width, off-pulse width, peak value, etc. of the pulse power source for machining so as to approach the best value determined by the process, but this change control of the pulse power source changes the rate of generation of machining waste. That is, for example, if the on-pulse width and peak value are kept constant and the off-pulse width is varied to control the repetition frequency of discharge, the amount of machining waste generated in proportion to the repetition frequency can be approximately predicted. The flow rate, jet pressure, and suction pressure levels of the pump device are automatically changed and controlled by the machining area proportional signal so that the concentration of machining debris present in the machining gap is always constant during removal of generated debris. . The present invention will be explained below with reference to an embodiment of the drawings. Reference numeral 1 denotes an input terminal for a detection pulse signal proportional to the pulse discharge generated in the machining gap between the electrode and the workpiece, and the signal pulse is counted by a counter 2. .

3はカウントするパルス数を予じめプリセットするため
のプリセット装置であり、カウンター2はこのプリセッ
ト数をカウントすると信号を出力するようにしてある。
Reference numeral 3 denotes a presetting device for presetting the number of pulses to be counted, and the counter 2 outputs a signal when it counts this preset number.

4は加工間隙を追従制御するための電極送り距離をエン
コーダー,マグネスケール等でデジタルパルス信号とし
て検出した信号の入力端子で、入力信号はカウンター5
によりカウントされる。
4 is an input terminal for a signal detected as a digital pulse signal by an encoder, Magnescale, etc., of the electrode feeding distance for follow-up control of the machining gap, and the input signal is sent to the counter 5.
It is counted by

このカウンター5は前記カウンター2の出力信号によつ
てカウント数を出力する。6はクロツクパルスの発振器
で、カウンター5出力をこのクロツクパルスで置換して
次のカウンター7に入力する。
This counter 5 outputs a count number based on the output signal of the counter 2. Reference numeral 6 denotes a clock pulse oscillator, which replaces the output of the counter 5 with this clock pulse and inputs it to the next counter 7.

8は装置3でプリセツトした信号、即ちプリセツトした
放電の繰返数Nとカウンター7からの電極送り距離に比
例する信号Lとを割算して加工面積比例信号を出力する
デバイダ一,9はその出力表示装置である。
8 is a divider 1, which outputs a machining area proportional signal by dividing the signal preset by the device 3, that is, the preset number of discharge repetitions N and the signal L proportional to the electrode feeding distance from the counter 7; It is an output display device.

デバイダ一8の面積比例信号は次のコンパレーター10
に加えられ、こ\で基準値と比較される。11はきめら
れたオンパルス巾τ。
The area proportional signal of the divider 18 is transferred to the next comparator 10.
and is compared with the reference value here. 11 is the determined on-pulse width τ.

nと波高値σθ等の加工条件に応じて基準値をプリセツ
トするためのプリセツト装置で、τ00,Ip等の加工
条件を変えれば基準値も変更できるようにしてある。1
2はコンパレーター10で検出信号と基準値を比較した
差または比の出力信号を発振器6からのクロツクパルス
で変換しながらカウントするカウンター,13はデコー
ダー,14はデコーダー13出力を一旦記憶するメモリ
ー,15がデコーダーで、この出力によりオフパルス巾
τ。
This is a presetting device for presetting a reference value according to machining conditions such as n and peak value σθ, and the reference value can be changed by changing machining conditions such as τ00 and Ip. 1
2 is a counter that counts the difference or ratio output signal obtained by comparing the detection signal with the reference value by the comparator 10 while converting it with a clock pulse from the oscillator 6; 13 is a decoder; 14 is a memory that temporarily stores the output of the decoder 13; 15 is the decoder, and this output gives the off-pulse width τ.

Ffを切換制御するリレー群16を切換作動せしめる。
17はポンプ装置の加工液噴流圧等、即ち噴流圧制御バ
ルブ等を切換匍脚するリレー群で、これもデコーダー1
5の出力によつて作動せしめられる。
The relay group 16 that switches and controls Ff is operated.
17 is a group of relays that switches the machining liquid jet pressure of the pump device, that is, the jet pressure control valve, etc.; this is also connected to the decoder 1;
It is activated by the output of 5.

以上において、プリセツト装置3によるサンプリングパ
ルス数Nを、例えば10,000としてプリセツトして
おけば、端子1から検出放電パルスをカウンター2でカ
ウントするとき、そのカウント数が10,000に達す
れば信号をカウンター5に加えて、カウンター5のカウ
ント数を出力せしめる。このときカウンター5は端子4
からの電極送り距離の信号パルスをカウントしており、
このカウント数Lがクロックパルスで置換されて力Nウ
ンター7でカウントされ、デバイダ一8で一の)
L割算が行なわれる。
In the above, if the number N of sampling pulses by the preset device 3 is preset to 10,000, for example, when the counter 2 counts the discharge pulses detected from the terminal 1, the signal will be output when the count reaches 10,000. In addition to counter 5, the count number of counter 5 is output. At this time, counter 5 is connected to terminal 4.
The signal pulses of the electrode feeding distance from the
This count number L is replaced by a clock pulse and counted by the force N counter 7, and the number is 1 by the divider 18).
L division is performed.

しかして一般に放電加工において、一発の放電エネルギ
ーにより生ずるクレータ一の体積が単一パルスによる加
工量であり、理論的に放電エネルギーとパルスによる加
工量W。は比例し、で表わされ、したがつて放電パルス
N個の加工量Wは次のようになる。
Generally, in electric discharge machining, the volume of a crater produced by one discharge energy is the amount of machining by a single pulse, and theoretically the amount of machining W by the discharge energy and pulse. is proportional and is expressed as follows. Therefore, the machining amount W of N discharge pulses is as follows.

一万加工面積Sと加工深さ方向の電極送り量Lとの積は
加工量Wに比例すると考えられ、で表わされる。
The product of the machining area S and the electrode feed amount L in the machining depth direction is considered to be proportional to the machining amount W, and is expressed by:

したがつて前記デバイダ一8出力の仝は加工面積Sに比
例する信号であり、力旺の進行にしたがう電極送り方向
に対して刻々変化する加工面積がデバイダ一8より出力
し、デイスプレ一9で表示される。またこの検出信号は
コンパレーター10に加わつてプリセツトした基準値と
比較される。今検出した信号を斜=Bとし、プリセツト
値をAとし、コンパレーター10で比較して例えばその
差A−Bを出力するとすれば、加工面積が増大するとコ
ンパレーター10の出力は小さくなり、反対に加工面積
が減少すると出力は大きくなり、これがカウンター12
でカウントされ、デコーダー13で分割され、メモリー
14及びデコーダー15を通して切換信号が出力する。
リレー回路16のτ。Ffの切換制御は、加工面積が増
大してA−Bが小さくなるときはこのA−Bに比例した
カウンター15の出力信号によつてオフパルスτ。Ff
が小さく、したがつて単位時間当りの放電繰返数を増加
して加工速度を高め、加工面積が減少してA−Bが大き
くなるときは、このA−Bに比例してオフパルスτ。F
f力状きくなるようリレー回路16の多段切換匍脚が行
なわれる。したがつて、例えば加工始めの電極先端の尖
つた部分が被加工体と対向して小加工面積で加工が行な
われるときは電流密度が増大することによりアーク放電
が発生し易いが、このようなときには面積比例信号の検
出によりオフパルスτ。Ffを大きく制御してやること
によつてアークの発生を防止せしめ、また加工の進行に
したがつて電極が被加工体内に侵入するにしたがつて加
工而積が次第に増加する場合は、この増加割合に応じて
オフパルスτ。Ffを小さく制御し、電流密度の減少に
より電極送り速度が低下しないよう、常に設定した電流
密度に近づけ加工速度が増大するよう制御してやること
によつて能率の良い加工を行なうことができる。また加
工終了直前では加工面積が再び減少するが、このときは
再び面積の減少に応じてオフパルスτ。Ffを大きく制
御することによつてアーク等の異常放電の発生を防止し
、加工終了まで極めて安定した高速度の加工を完了させ
ることができる。一万このようにオフパルスτ。
Therefore, the other output of the divider 18 is a signal proportional to the machining area S, and the machining area that changes every moment with respect to the electrode feeding direction according to the progress of the force is output from the divider 18 and displayed on the display 19. Is displayed. This detection signal is also applied to a comparator 10 and compared with a preset reference value. Let the signal just detected be slope = B, let the preset value be A, and compare it with the comparator 10 and output the difference A-B. If the machining area increases, the output of the comparator 10 will become smaller, and the opposite will occur. When the machining area decreases, the output increases, and this is the counter 12.
is counted, divided by a decoder 13, and outputted as a switching signal through a memory 14 and a decoder 15.
τ of the relay circuit 16. Switching control of Ff is such that when the machining area increases and A-B becomes smaller, an off pulse τ is controlled by the output signal of the counter 15 proportional to A-B. Ff
is small, therefore, the number of discharge repetitions per unit time is increased to increase the machining speed, and when the machining area decreases and A-B becomes large, the off-pulse τ is set in proportion to this A-B. F
Multi-stage switching of the relay circuit 16 is performed to increase the power level. Therefore, for example, when machining is performed on a small machining area with the sharp part of the electrode tip facing the workpiece at the beginning of machining, the current density increases and arc discharge is likely to occur. Sometimes the off-pulse τ is detected by area proportional signal. By greatly controlling Ff, arc generation can be prevented, and if the machining volume gradually increases as the electrode penetrates into the workpiece as machining progresses, this increase rate will Off pulse τ accordingly. Efficient machining can be performed by controlling Ff to a small value and controlling the machining speed so that it always approaches the set current density and increases the machining speed so that the electrode feeding speed does not decrease due to a decrease in current density. Also, just before the end of machining, the machining area decreases again, and at this time, the off-pulse τ is again adjusted according to the decrease in area. By greatly controlling Ff, it is possible to prevent the occurrence of abnormal electrical discharges such as arcs, and to complete extremely stable high-speed machining until the end of machining. 10,000 thus off-pulse τ.

Ffを制御して放電繰返円波数の制御をすると当然に加
工屑の発生量も変化し、加工面積の増大により繰返周波
数を高める場合は加工屑の発生速度が比例的に増大し、
反対に面積が減少して繰返周波数を低下させると加工屑
の発生速度が減少することになる。そこでデコーダー1
5の出力は加工液のポンプ装置の切換リレー回路17に
も加わり、加工液噴流圧の変更制御を行なう。即ち比較
出力A−Bが加工面積が増大して小さくなるときは放電
の繰返周波数が増大制御されると同時に噴流圧が増大制
御され発生加工屑の排除効果を高め、反対に加工面積の
減少に伴つてA−Bが大きくなるときは放電繰返周波数
の減少と噴流圧の低減制御が、リレー回路17によつて
行なわれる。したがつて放電繰返周波数と加工液噴流圧
は常に一定の関係比率で切換制御が行なわれるため加工
屑が間隙に堆積したり、また必要以上に加工屑の排除を
行つて放電の発生“5を困難にするといつたことがなく
、加工間隙には常に一定濃度の加工屑を介在させ、且つ
それを攪拌して加工液中に均一に混合分布させ、安定し
た放電加工を行なうことができるものである。
When Ff is controlled to control the discharge repetition circular wave number, the amount of machining debris generated naturally changes, and when the repetition frequency is increased due to an increase in the machining area, the rate of machining debris generation increases proportionally.
On the other hand, if the area is reduced and the repetition frequency is lowered, the rate of generation of machining debris will be reduced. So decoder 1
The output of No. 5 is also applied to the switching relay circuit 17 of the machining fluid pump device to control changes in the machining fluid jet pressure. In other words, when the comparison output A-B decreases as the machining area increases, the discharge repetition frequency is controlled to increase, and at the same time the jet pressure is controlled to increase, increasing the effect of removing generated machining debris, and conversely decreasing the machining area. When A-B increases as a result of this, the relay circuit 17 controls to reduce the discharge repetition frequency and the jet pressure. Therefore, since the discharge repetition frequency and the machining fluid jet pressure are always controlled at a constant relationship ratio, machining debris may accumulate in the gap, or more machining debris may be removed than necessary, causing electrical discharge. It is possible to perform stable electric discharge machining by always having a constant concentration of machining debris in the machining gap and stirring it to evenly mix and distribute it in the machining fluid. It is.

なお以上は加工パルスの制御をτ。0,,1pを一定(
勿論一定と言つても個々のパルスは加工間隙の状態によ
つて制御され、設定値を中心として上下のある範囲内で
適応制御されるアダプテイブコントロールパルス電源を
用いる場合もある)とし、τ0ffを加工面積比例信号
で匍脚する場合について説明したがτ。
In addition, the processing pulse control is described above with τ. 0,,1p constant (
Of course, even though it is said to be constant, the individual pulses are controlled depending on the state of the machining gap, and an adaptive control pulse power source that is adaptively controlled within a certain range above and below the set value is sometimes used), and τ0ff We have explained the case of using a machining area proportional signal to calculate τ.

Ff,τ0n,Ipのうちの一つだけでなく二つまたは
三つを加工面積比例信号で変更制御するようにしてもよ
い(この場合は放電の繰返周波数が一定の場合もある)
。また加工液を提供するポンプ装置の制御も噴流圧に限
らず流速あるいは吸引圧を加工面積比例信号で変更制御
することもあり、その場合も加工屑濃度を一定に制御す
る目的を同様に達成できる。また加工面積比例信号の検
出にあたり、図におけるカウンター2の放電繰返数のカ
ウントNとカウンター5の送り量カウント数Lとを図示
しない時間タイマーを設けて所定の時間々隔で比例しC
面積検出を行なうようにしてもよい。
Not only one but two or three of Ff, τ0n, and Ip may be changed and controlled using a machining area proportional signal (in this case, the repetition frequency of discharge may be constant).
. In addition, the control of the pump device that supplies machining fluid is not limited to the jet pressure, but the flow velocity or suction pressure may also be controlled by changing the machining area proportional signal, and in that case, the purpose of controlling the machining waste concentration at a constant level can also be achieved. . In addition, in detecting the machining area proportional signal, a timer (not shown) is provided and the count N of the number of discharge repetitions of the counter 2 shown in the figure and the feed amount count number L of the counter 5 are proportionally adjusted at predetermined time intervals C.
Area detection may also be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例回路図である。 The figure is a circuit diagram of one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 加工用電極と被加工体間の加工間隙に加工液を供給
するポンプ装置を設けると共に、加工パルスを供給する
パルス電源を設け、且つ前記電極または被加工体に追従
制御のサーボ送りを与えるサーボ装置を設けた放電加工
装置において、前記加工間隙に繰返される放電の繰返数
を検出する装置と、前記サーボ装置による前記加工間隙
を微小に保つための追従送り距離を検出する装置、及び
この両検出装置の検出する放電繰返数に比例する信号と
追従送り距離に比例する信号とを割算して加工面積比例
信号を検出する演算装置を設け、該演算装置の検出出力
信号を信号として加工電流が常に設定された電流密度に
近づくよう前記パルス電源のオンパルス幅、オフパルス
幅、及び波高値のうちの一つのレベルを自動変更制御す
る制御装置と、前記演算装置の検出出力信号を信号とし
て加工面積が変化しても加工間隙に介在する加工屑が常
に設定された一定濃度に維持されるよう前記ポンプ装置
による供給加工液の流速、噴流圧、及び吸引圧のうちの
一つのレベルを自動変更制御する制御装置を設けて成る
放電加工装置。
1. A pump device is provided to supply machining liquid to the machining gap between the machining electrode and the workpiece, and a pulse power source is provided to supply machining pulses, and a servo that provides servo feed of follow-up control to the electrode or the workpiece. In the electric discharge machining apparatus equipped with the device, a device for detecting the number of repetitions of electrical discharge repeated in the machining gap, a device for detecting a follow-up feed distance for keeping the machining gap small by the servo device, and both of these devices. A calculation device is provided to detect a machining area proportional signal by dividing a signal proportional to the number of discharge repetitions detected by the detection device and a signal proportional to the follow-up feed distance, and processing is performed using the detection output signal of the calculation device as a signal. a control device that automatically changes and controls the level of one of the on-pulse width, off-pulse width, and peak value of the pulse power source so that the current always approaches a set current density; and processing the detection output signal of the arithmetic device as a signal. Automatically changing the level of one of the flow rate, jet pressure, and suction pressure of the machining fluid supplied by the pump device so that the machining debris present in the machining gap is always maintained at a preset constant concentration even if the area changes. An electrical discharge machining device equipped with a control device.
JP49076828A 1974-07-03 1974-07-03 Electric discharge machining equipment Expired JPS5926413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49076828A JPS5926413B2 (en) 1974-07-03 1974-07-03 Electric discharge machining equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49076828A JPS5926413B2 (en) 1974-07-03 1974-07-03 Electric discharge machining equipment

Publications (2)

Publication Number Publication Date
JPS515692A JPS515692A (en) 1976-01-17
JPS5926413B2 true JPS5926413B2 (en) 1984-06-27

Family

ID=13616528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49076828A Expired JPS5926413B2 (en) 1974-07-03 1974-07-03 Electric discharge machining equipment

Country Status (1)

Country Link
JP (1) JPS5926413B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328007Y2 (en) * 1986-09-25 1991-06-17

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109230A (en) * 1981-12-22 1983-06-29 Mitsubishi Electric Corp Wire cut electric spark machining device
US5362417A (en) * 1992-07-09 1994-11-08 Xerox Corporation Method of preparing a stable colloid of submicron particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB134092A (en) *
US362942A (en) * 1887-05-17 Paper-cleaning compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB134092A (en) *
US362942A (en) * 1887-05-17 Paper-cleaning compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328007Y2 (en) * 1986-09-25 1991-06-17

Also Published As

Publication number Publication date
JPS515692A (en) 1976-01-17

Similar Documents

Publication Publication Date Title
US10259062B2 (en) Pulse and gap control for electrical discharge machining equipment
US3699303A (en) Edm process a method and apparatus for controlling the flow rate of dielectric as a function of gap impedance
US4602142A (en) Electric discharge system including means to normalize the interpole gap to minimize abnormal discharge conditions
JPS5926413B2 (en) Electric discharge machining equipment
US4357516A (en) EDM Method and apparatus utilizing successive trains of elementary pulses with controlled pulse-off periods
US3624337A (en) Method and apparatus for detecting and controlling through pulse energy variations arcing conditions in an edm process
JPS6238092B2 (en)
JPS62292317A (en) Working feed control device in wire electric discharge machine
JPS6059098B2 (en) Power supply device for electrical discharge machining
JP2946666B2 (en) EDM control device
JPS5847292B2 (en) Hoden Kakousouchi
JP3113305B2 (en) Electric discharge machine
JPS5822295B2 (en) Hoden Kakousouchi
SU1710238A1 (en) Device for automatic control of the feed drive of electrode- tool in electroerosion machines
JPS5847295B2 (en) Hoden Kakousouchi
JPS5850811B2 (en) Houden Kakoseigiyohouhou
JPS63120024A (en) Wire-cut electric discharge machine
JPS6052891B2 (en) Power supply device for wire cut electrical discharge machining
SU952495A1 (en) Pulse generator for electric discharge machine
JPS5911410B2 (en) Electric discharge machining equipment
SU932715A1 (en) Method of automatic control of electric erosion machining
JPS55112729A (en) Electric discharge processing method and its device for wire cutting
JPS5933496B2 (en) Electric discharge machining equipment
JPS6236807B2 (en)
JPS6312727B2 (en)