JPS5926197Y2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPS5926197Y2
JPS5926197Y2 JP11922680U JP11922680U JPS5926197Y2 JP S5926197 Y2 JPS5926197 Y2 JP S5926197Y2 JP 11922680 U JP11922680 U JP 11922680U JP 11922680 U JP11922680 U JP 11922680U JP S5926197 Y2 JPS5926197 Y2 JP S5926197Y2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
detection device
evaporator
temperature detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11922680U
Other languages
Japanese (ja)
Other versions
JPS5742374U (en
Inventor
治 川井
敏和 矢田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP11922680U priority Critical patent/JPS5926197Y2/en
Publication of JPS5742374U publication Critical patent/JPS5742374U/ja
Application granted granted Critical
Publication of JPS5926197Y2 publication Critical patent/JPS5926197Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Description

【考案の詳細な説明】 この考案は冷凍装置に関するものであり、特に蒸発器の
除霜を確実に行わせるようにした冷凍装置に関するもの
である。
[Detailed Description of the Invention] This invention relates to a refrigeration system, and particularly relates to a refrigeration system that reliably defrosts an evaporator.

一般にこの種の冷凍装置では、蒸発器が着霜すると圧縮
機の高温、高圧の吐出ガスを直接蒸発器に供給して、蒸
発器の着霜を除霜運転を行っている。
Generally, in this type of refrigeration system, when the evaporator is frosted, high-temperature, high-pressure discharge gas from the compressor is directly supplied to the evaporator to perform a defrosting operation.

この除霜運転は蒸発器の吐出側冷媒の温度が所定値以上
になると中止される。
This defrosting operation is stopped when the temperature of the refrigerant on the discharge side of the evaporator exceeds a predetermined value.

しかしながら、冷凍装置が一手を通じて連続して運転さ
れている場合、蒸発器の吐出側冷媒の温度も夏期は高く
、冬期は低くなる。
However, when the refrigeration system is operated continuously, the temperature of the refrigerant on the discharge side of the evaporator is also high in the summer and low in the winter.

従って、従来の冷凍装置では、−年を通じて蒸発器の吐
出側冷媒の温度が同一の所定値以上になると除霜運転を
中止しているため、夏期は蒸発器の除霜が完全に行われ
ていないにもかかわらず除霜運転が中止され、且つ冬期
は蒸発器の除霜が完了しているにもかかわらず除霜運転
が継続される不都合があった。
Therefore, in conventional refrigeration equipment, defrosting operation is stopped when the temperature of the refrigerant on the discharge side of the evaporator exceeds the same predetermined value throughout the year, so the evaporator is not completely defrosted in the summer. There are disadvantages in that the defrosting operation is stopped even though there is no defrosting, and in the winter, the defrosting operation is continued even though the defrosting of the evaporator is completed.

この考案は上記従来の欠点を除去するためになされたも
ので、夏期には除霜運転を中止する蒸発器の吐出冷媒の
検出動作温度を高め、冬期には低めるようにしたもので
ある。
This invention was made in order to eliminate the above-mentioned drawbacks of the conventional technology, and is designed to increase the detection operating temperature of the refrigerant discharged from the evaporator to stop defrosting operation in the summer, and lower it in the winter.

以下図面によってこの考案の一実施例を説明する。An embodiment of this invention will be described below with reference to the drawings.

第1図はこの考案に係る冷凍装置の冷媒系統図である。FIG. 1 is a refrigerant system diagram of the refrigeration system according to this invention.

第1図において、圧縮機1で圧縮された冷媒は凝縮器2
で凝縮され、主系路電磁弁3を介して膨張弁4に供給さ
れる。
In Fig. 1, the refrigerant compressed by the compressor 1 is transferred to the condenser 2.
It is condensed and supplied to the expansion valve 4 via the main line electromagnetic valve 3.

膨張弁4は供給された冷媒を膨張させて蒸発器5に送り
込む。
The expansion valve 4 expands the supplied refrigerant and sends it to the evaporator 5.

蒸発器5は送り込まれた冷媒を蒸発させ負荷と熱交換し
た後、アキュームレータ6に一時蓄えられて圧縮機1に
戻される。
The evaporator 5 evaporates the sent refrigerant and exchanges heat with the load, and then is temporarily stored in the accumulator 6 and returned to the compressor 1.

この冷媒の循環系路によって冷凍冷媒系路Aを構成して
いる。
This refrigerant circulation path constitutes a freezing refrigerant system A.

除霜用電磁弁7は蒸発器5の着霜時に圧縮機1の吐出冷
媒を直接蒸発器5に供給するもので、除霜冷媒系路Bを
構成している。
The defrosting solenoid valve 7 supplies the refrigerant discharged from the compressor 1 directly to the evaporator 5 when the evaporator 5 is frosted, and constitutes a defrosting refrigerant line B.

温度検出装置8は蒸発器5の吐出側冷媒温度を検出する
ものである。
The temperature detection device 8 detects the temperature of the refrigerant on the discharge side of the evaporator 5.

次に第1図に示す冷凍冷却装置の動作を第2図を用いて
説明する。
Next, the operation of the refrigeration/cooling system shown in FIG. 1 will be explained using FIG. 2.

第2図は第1図の制御回路図である。FIG. 2 is a control circuit diagram of FIG. 1.

第2図において、入力端子9a→圧縮機駆動用の継電器
R1→入力端子9bの閉回路によって継電器R1が付勢
され、圧縮機1は駆動される。
In FIG. 2, relay R1 is energized by a closed circuit of input terminal 9a→compressor drive relay R1→input terminal 9b, and compressor 1 is driven.

またこの時、入力端子9a→補助継電器R1oのブレイ
ク接点10b→主系路電磁弁3の継電器R3→入力端子
9bの閉回路が形成されて、主系路電磁弁3が開き冷凍
冷媒系路Aが形成される。
At this time, a closed circuit is formed from the input terminal 9a to the break contact 10b of the auxiliary relay R1o to the relay R3 of the main system path solenoid valve 3 to the input terminal 9b, and the main system path solenoid valve 3 opens. is formed.

さらにこの時、タイマ11は通電されている。Furthermore, at this time, the timer 11 is energized.

タイマ11が通電されて所定時間経過すると、タイマ1
1は付勢されて、そのメイク接点11 aを瞬時閉じる
When timer 11 is energized and a predetermined period of time has elapsed, timer 1
1 is energized and instantaneously closes its make contact 11a.

このため、入力端子9a→外気温度検出装置12を構成
する切換スイッチ121→接続端子12 a→温度検出
装置8をの閉回路が形成されて、継電器R7が付勢され
除霜用電磁弁7を開放する。
Therefore, a closed circuit is formed from the input terminal 9a to the changeover switch 121 constituting the outside temperature detection device 12 to the connection terminal 12a to the temperature detection device 8, and the relay R7 is energized to activate the defrosting solenoid valve 7. Open.

また補助継電器RIOが付勢され、そのメイク接点10
aを閉じて補助継電器Rtoを自己保持すると共に、そ
のブレイク接点10bを開いて継電器R3を消勢する。
Also, the auxiliary relay RIO is energized, and its make contact 10
A is closed to self-hold the auxiliary relay Rto, and its break contact 10b is opened to deenergize the relay R3.

このため、冷凍冷媒系路Aは閉じられ、除霜冷媒系路B
が構成されて、蒸発器5の着霜を除霜する除霜運転を行
う。
Therefore, the freezing refrigerant line A is closed and the defrosting refrigerant line B is closed.
is configured to perform a defrosting operation to defrost the frost on the evaporator 5.

この場合、温度検出装置8を構成する冬期用のブレイク
接点8Aは、動作温度が低温度に設定され、例えばl0
℃以上になると開放するものである。
In this case, the operating temperature of the winter break contact 8A constituting the temperature detection device 8 is set to a low temperature, for example, 10
It opens when the temperature exceeds ℃.

また外気温度検出装置12は外気が15℃以下になると
切換スイッチ121が接続端子12 aに接続され、外
気が15℃以上になると切換スイッチ121が接続端子
12bに接続されるものである。
Further, in the outside air temperature detection device 12, when the outside air becomes 15°C or lower, the changeover switch 121 is connected to the connection terminal 12a, and when the outside air becomes 15°C or higher, the changeover switch 121 is connected to the connection terminal 12b.

従って蒸発器5の着霜が除霜され、蒸発器5の吐出冷媒
温度が10℃以上になると、冬期用のブレイク接点8A
が開き、継電器R7及び補助継電器RIOが消勢される
Therefore, when the frost on the evaporator 5 is defrosted and the temperature of the refrigerant discharged from the evaporator 5 exceeds 10°C, the winter break contact 8A
opens, and relay R7 and auxiliary relay RIO are deenergized.

このため除霜冷媒系路Bが閉じ、冷凍冷媒系路Aが構成
されて、再び冷凍運転が行われる。
Therefore, the defrosting refrigerant system B is closed, the freezing refrigerant system A is configured, and the refrigeration operation is performed again.

次に夏期の場合、外気温度検出装置12は外気が15℃
以上であることを検出して、切換スイッチ121を接続
端子12bに接続する。
Next, in the case of summer, the outside air temperature detection device 12 detects that the outside air is 15°C.
After detecting the above, the changeover switch 121 is connected to the connection terminal 12b.

従って、前述と同様にタイマ11が付勢されると、入力
端子9a→切換スイッチ121→接続端子12b→温度
検出装置8を構成する夏期用のブレイク接点 11 a→入力端子9bの閉回路が形成されて、前述の
ように除霜運転を行う。
Therefore, when the timer 11 is energized in the same manner as described above, a closed circuit is formed from the input terminal 9a → the changeover switch 121 → the connection terminal 12b → the summer break contact 11a that constitutes the temperature detection device 8 → the input terminal 9b. defrost operation as described above.

この場合、温度検出装置8を構成する夏期用ブレイク接
点8Bは、動作温度が高温度に設定され、例えば20℃
以上になると開放するものである。
In this case, the operating temperature of the summer break contact 8B constituting the temperature detection device 8 is set to a high temperature, for example, 20°C.
If it becomes more than that, it will be released.

従って、蒸発器5の着霜が除霜され、蒸発器5の吐出冷
媒温度が20℃以上になると、夏期用のブレイク接点8
Bが開き、継電器R7及び補助継電器Rt。
Therefore, when the frost on the evaporator 5 is defrosted and the temperature of the refrigerant discharged from the evaporator 5 reaches 20°C or higher, the summer break contact 8
B opens, relay R7 and auxiliary relay Rt.

が消勢される。is deactivated.

このため上述のように再び冷凍運転が行われる。Therefore, the refrigeration operation is performed again as described above.

この考案は上記のように構成され、夏期には外気温度が
高くなり、冬期には低くなることを利用して、夏期には
除霜運転を中止する蒸発器5の吐出冷媒の検出動作温度
を高め、冬期には低めることにより、蒸発器5の着霜を
良好に除霜できるようにしている。
This device is configured as described above, and takes advantage of the fact that the outside air temperature is high in the summer and low in the winter, and the detection operating temperature of the refrigerant discharged from the evaporator 5 is adjusted to stop defrosting operation in the summer. By increasing the temperature and lowering it in winter, the frost on the evaporator 5 can be effectively defrosted.

以上のようにこの考案によれば、蒸発器の着霜を良好に
除霜することができる。
As described above, according to this invention, it is possible to effectively defrost the evaporator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る冷凍装置の冷媒系統図である。 第2図は第1図の制御回路図である。図において、1は
圧縮機、2は凝縮器、3は主系路電磁弁、4は膨張弁、
5は蒸発器、7は除霜用電磁弁、8は温度検出装置、8
Aは冬期用のブレイク接点、8Bは夏期用のブレイク接
点、12は外気温度検出装置、Aは冷凍冷媒系路、Bは
除霜冷媒系路である。
FIG. 1 is a refrigerant system diagram of a refrigeration system according to the present invention. FIG. 2 is a control circuit diagram of FIG. 1. In the figure, 1 is a compressor, 2 is a condenser, 3 is a main line solenoid valve, 4 is an expansion valve,
5 is an evaporator, 7 is a defrosting solenoid valve, 8 is a temperature detection device, 8
A is a break contact for winter, 8B is a break contact for summer, 12 is an outside temperature detection device, A is a freezing refrigerant system path, and B is a defrosting refrigerant system path.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された冷媒
を凝縮する凝縮器と、前記凝縮器で凝縮された冷媒が主
系路電磁弁を介して供給され膨張させる膨張弁と、前記
膨張弁で膨張された冷媒が蒸発された後、前記圧縮機に
戻される蒸発器とからなる冷媒冷却系路、前記蒸発器の
着霜時に前記圧縮機の吐出冷媒を前記蒸発器に直接供給
する除霜冷媒系路、前記蒸発器の吐出冷媒温度を検出し
その検出温度が動作温度以上になると動作して前記除霜
冷媒系路を閉ざす温度検出装置、及び外気温度を検出し
、その検出温度が高ければ前記温度検出装置の動作温度
を高めその検出温度が低ければ前記温度検出装置の動作
温度を低める外気温度検出装置を備えたことを特徴とす
る冷凍装置。
a compressor for compressing refrigerant; a condenser for condensing the refrigerant compressed by the compressor; an expansion valve for supplying and expanding the refrigerant condensed in the condenser via a main path solenoid valve; a refrigerant cooling system path consisting of an evaporator in which the refrigerant expanded by the valve is evaporated and then returned to the compressor; a defrost refrigerant system, a temperature detection device that detects the temperature of the refrigerant discharged from the evaporator and operates to close the defrost refrigerant system when the detected temperature exceeds the operating temperature; and a temperature detection device that detects the outside air temperature and detects the detected temperature. A refrigeration system characterized by comprising an outside air temperature detection device that increases the operating temperature of the temperature detection device if the detected temperature is high, and lowers the operating temperature of the temperature detection device if the detected temperature is low.
JP11922680U 1980-08-21 1980-08-21 Refrigeration equipment Expired JPS5926197Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11922680U JPS5926197Y2 (en) 1980-08-21 1980-08-21 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11922680U JPS5926197Y2 (en) 1980-08-21 1980-08-21 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS5742374U JPS5742374U (en) 1982-03-08
JPS5926197Y2 true JPS5926197Y2 (en) 1984-07-30

Family

ID=29479875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11922680U Expired JPS5926197Y2 (en) 1980-08-21 1980-08-21 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS5926197Y2 (en)

Also Published As

Publication number Publication date
JPS5742374U (en) 1982-03-08

Similar Documents

Publication Publication Date Title
JPS5926197Y2 (en) Refrigeration equipment
JPS60555B2 (en) Capacity control device for multi-type refrigerators
JPH051868A (en) Refrigerating device
JPH06185836A (en) Freezer
JPS6243253Y2 (en)
JPS5842850Y2 (en) Reizou Koyoureitouchi
JPS604058Y2 (en) Defrosting circuit device for refrigeration equipment
JP2691929B2 (en) Heat recovery type cold / hot water device
JPH046377A (en) Control method of defrosting of refrigerating device
JPS6136132Y2 (en)
JPH0623886Y2 (en) Heat pump air conditioner
JPS6015849B2 (en) air conditioner
JPS58102067A (en) Air conditioner
JPH0623880Y2 (en) Heat pump device
JPS6038852Y2 (en) air conditioner
JPS5833067A (en) Refrigerator
JPS6021716Y2 (en) Refrigerator defrost device
JPS583014Y2 (en) refrigeration cycle
JPH04320774A (en) Freezer device
JPH0428975A (en) Freezing cycle
JPS5928287Y2 (en) Refrigeration equipment
JPH0428976A (en) Freezing cycle
JPS6143190Y2 (en)
JPH065572Y2 (en) Refrigeration equipment
JPS5892740A (en) Operation control of heat accumulating type air conditioner