JPS5925649B2 - Method for controlling cross-sectional area distribution of parison for blow molding - Google Patents

Method for controlling cross-sectional area distribution of parison for blow molding

Info

Publication number
JPS5925649B2
JPS5925649B2 JP56141307A JP14130781A JPS5925649B2 JP S5925649 B2 JPS5925649 B2 JP S5925649B2 JP 56141307 A JP56141307 A JP 56141307A JP 14130781 A JP14130781 A JP 14130781A JP S5925649 B2 JPS5925649 B2 JP S5925649B2
Authority
JP
Japan
Prior art keywords
parison
sectional area
cross
nozzle
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56141307A
Other languages
Japanese (ja)
Other versions
JPS5842437A (en
Inventor
久彦 深瀬
章 岩脇
秀夫 柴田
久盛 東藤
浩太郎 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP56141307A priority Critical patent/JPS5925649B2/en
Publication of JPS5842437A publication Critical patent/JPS5842437A/en
Publication of JPS5925649B2 publication Critical patent/JPS5925649B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/325Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles being adjustable, i.e. having adjustable exit sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/475Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pistons, accumulators or press rams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C2049/788Controller type or interface
    • B29C2049/78805Computer or PLC control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92447Moulded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/926Flow or feed rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92666Distortion, shrinkage, dilatation, swell or warpage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/42412Marking or printing
    • B29C49/42413Marking or printing with a pattern for analysing deformation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/258Tubular

Description

【発明の詳細な説明】 本発明はブロー成形機のパリソンの断面積分布9 の制
御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the cross-sectional area distribution 9 of a parison in a blow molding machine.

ブロー成形では、ノズルから円筒状に押し出されたパリ
ソンを金型ではさみ、パリソン内に気体を吹き込むこと
により膨張させて型内壁にはりつかせ固化させ、中空製
品を成形させるようにして”5 ある。
In blow molding, a parison extruded into a cylindrical shape from a nozzle is sandwiched between molds, and gas is blown into the parison to cause it to expand, stick to the inner wall of the mold, and solidify to form a hollow product. .

したがつて、成形品の肉厚は、金型の上下部ではさまれ
て型内に入るパリソンの長手方向の断面/9一積の分布
により大きく左右される。
Therefore, the wall thickness of the molded product is largely influenced by the distribution of the longitudinal cross section/9 product of the parison that is sandwiched between the upper and lower parts of the mold and enters the mold.

同じ断面積のパリソンであつてもその径の大小により成
形品の肉厚分布は変るが、与えられたノズルを使う限り
、パリソン径はほとんど変らず、この影響は実際上無視
できる。又、パリソン径をプリプロ一により変えること
もできるが、径の安定性が悪く通常使用されていない。
パリソンの断面積を制御するためにそれを言帽1jする
方法には、4パリソンの肉厚Tpと径Dpの両方を計測
し、断面積Apを、Apェπ・Dp−Tpの関係式から
求める方法。
Even if parisons have the same cross-sectional area, the wall thickness distribution of the molded product will change depending on the size of the diameter, but as long as a given nozzle is used, the parison diameter will hardly change and this effect can be ignored in practice. It is also possible to change the parison diameter by pre-processing, but this is not normally used because the diameter is unstable.
To control the cross-sectional area of the parison, measure both the thickness Tp and the diameter Dp of the parison, and calculate the cross-sectional area Ap from the relational expression Apeπ・Dp−Tp. How to ask.

@ パリソンが押出される速度υ,dと押出量Gの両方
を剖瑣uし、パリソンの断面積Apを、GAp二?の関
係式から求める方法。
@ Analyze both the speed at which the parison is extruded υ, d and the extrusion amount G, and calculate the cross-sectional area Ap of the parison by GAp2? A method of finding it from the relational expression.

υPd の2つの方法がある。υPd There are two methods.

4の方法は、超音波厚み計を用いれば可能であるが、パ
リソンにカーテニング現象として縦しわが人ると、パリ
ソン径の計測が全くできなくなる欠点がある。
Method 4 is possible if an ultrasonic thickness meter is used, but it has the drawback that if the parison develops vertical wrinkles as a result of a curtaining phenomenon, the diameter of the parison cannot be measured at all.

カーテニング現象が起き易い中、大型ブロー成形では特
に困難である。Oの方法に類似のものとして、「連続押
出ブロー成形機において、パリソンの下端の特定高さの
通過時刻を型の上下方向に複数個並べた光電管で計測し
、パリソンの押出され速度υPdを求め、押出機のスク
リユ一速度にフイードバツクして型ではさむ直前のパリ
ソンの長さを=定に制御するIKVの方式(Kunst
Offberater9VOl22,黒2,78−87
,2/1977)」がある。
Although curtaining phenomenon is easy to occur, it is particularly difficult in large-scale blow molding. Similar to O's method, ``In a continuous extrusion blow molding machine, the time when the lower end of the parison passes a specific height is measured with multiple phototubes arranged in the vertical direction of the mold, and the extrusion speed υPd of the parison is determined. , IKV method (Kunst
Offberater9VOl22, black 2, 78-87
, 2/1977).

しかし、この方式は、アキユムレータ式ブロー成形機に
あてはめられないと共に断面積制御ができない。
However, this method cannot be applied to an accumulator type blow molding machine and cannot control the cross-sectional area.

その理由は、(a)パリソンの粘弾性特性が、樹脂ロッ
ドの違い、気温の変化等の外乱で変り、断面積が=定に
保てないこと、(5)(a)の欠点を補うには押出量を
測定して一定の体積のパリソンにもなるようにノズルス
リツトを変える必要があるが、押出量の連続測定にはヘ
ツドの前に溶融プラスチツクス用のギヤポンプを設ける
必要があり、高価なものとなり、通常のブロー成形では
経済的に成りたたない。
The reasons for this are: (a) the viscoelastic properties of the parison change due to disturbances such as differences in resin rods and changes in temperature, and the cross-sectional area cannot be kept constant; (5) to compensate for the drawbacks of (a). It is necessary to measure the amount of extrusion and change the nozzle slit to obtain a parison with a constant volume, but continuous measurement of the amount of extrusion requires a gear pump for molten plastic to be installed in front of the head, which is expensive. Therefore, normal blow molding is not economically viable.

(c)パリソンの形は、前回の成形の際切つた形でノあ
り、水平面のような形であることは稀で、通常ぎざぎざ
のある不規則な形になる。
(c) The shape of the parison is a sharp shape from the previous molding, and it is rarely a horizontal shape, but usually has an irregular shape with jagged edges.

このため、下端の通過時刻を基準にパリソンの長手方向
の肉厚分布を細かく制御することはできない。(d)光
電管等検出器を多数配置することは、その調整に手間が
かかると共に成形上製品の取り出し、付属装置の取付け
等に不便がある。又、アキユムレータ式ブロー成形機に
おいて、パリソン全体を1つのものとして長さと重量(
すなわち、平均的な断面積)を一定に保つ方法に次のも
のがある。
For this reason, it is not possible to finely control the thickness distribution in the longitudinal direction of the parison based on the passage time of the lower end. (d) Arranging a large number of detectors such as phototubes requires time and effort to adjust them, and it is inconvenient to take out molded products, attach accessory devices, etc. In addition, in an accumulator type blow molding machine, the length and weight (
In other words, the following methods are available for keeping the average cross-sectional area constant.

すなわち、予め射出量を一定に限定して重量を一定に保
ち、パリソン下端の一定位置への到着時刻とプランシャ
ーが射出限に達する時刻を比較してノズルのスリツトの
開度を変えてパリソンの長さを一定に制御するようにし
たものがある(特公昭55−16816号)。
In other words, the amount of injection is limited in advance to keep the weight constant, and the time when the plunger reaches a certain position at the lower end of the parison is compared with the time when the plunger reaches the injection limit, and the opening degree of the nozzle slit is changed to control the parison. There is one in which the length is controlled to be constant (Japanese Patent Publication No. 55-16816).

しかし、この方法では、パリソンを長手方向の2個所以
上に分割した各部分の断面積と長さを一定に保つことは
できず、複雑な長手方向の断面積分布をもつパリソンの
形状を設定どおりに制御することはできない。
However, with this method, it is not possible to keep the cross-sectional area and length of each part of the parison divided into two or more parts constant in the longitudinal direction. cannot be controlled.

以上の如く、従来では、パリソンの長手方向の各位置で
断面積を測定することが行われていなかつたため、長手
方向に変る断面積分布を設定どおりに制御する試みはな
されていなかつた。
As described above, conventionally, the cross-sectional area has not been measured at each position in the longitudinal direction of the parison, and therefore no attempt has been made to control the cross-sectional area distribution that changes in the longitudinal direction as set.

このように従来は、押出したパリソンの肉厚と外径又は
断面積を計測する方法がなかつたため、設定したパリソ
ンの形になつたか否か、一定のパリソンが出続けている
か否か、等は成形品の複雑な肉厚分布の計測値から間接
的にしか確認できなかつた。
Conventionally, there was no way to measure the wall thickness, outer diameter, or cross-sectional area of the extruded parison, so it was difficult to know whether the parison had reached the set shape or whether a certain parison continued to come out. This could only be confirmed indirectly from measurements of the complex wall thickness distribution of molded products.

本発明は、パリソンの長手方向の断面積分布を、パリソ
ンを押出しつつ計測し制御しようとするもので、ノズル
の直下でパリソンの通過する近くにマーカを設け、該マ
ーカの下にマーク検出器を垂直方向に狭い間隔で2台設
置し、マークが2台の検出器を通過する各瞬間の検出信
号を発するようにし、且つパリソンの長手方向の断面積
分布の設定のための入出力等ができるマイクロコンピユ
ータと該マイクロコンピユータからの信号によりバリソ
ンコントロールを行うサーボ制御系をもつアキユムレー
タ式ブロー成形機において、押出されているパリソンに
マーカにより断続的にマークをつけて該マ−クが2台の
検出器間を通過する時間を計測し、パリソンの移動速度
を求め、同時に押出プランシャーのストローク速度を計
測して押出流量を求め、これをパリソンの移動速度で除
してパリソンの長手方向に垂直な断面積を求め、次Kノ
カレスリツトとノズ径からノズル開口面積を求め、この
値でパリソンの断面積を除して肉厚スウエル比と径スウ
エル比の積を求め、一方、設定したパリソンの長手方向
の位置とその断面積の関係を、樹脂の体積一定の関係か
らプランシャーのストローク位置と断面積の関係に換算
しておき、プランシャーの位置が変る毎に設定した断面
積になるように上記求めたスウエル比の積のデータの直
前のもの、又は前回の押出中に求めた同じプランシャー
位置に近いところの値あるいは前回の射出中に使つたス
リツト値とスウエルの値から使用するスリツト値に対応
したスウエルの値を内挿か外挿してもとめたものを使つ
てノズルスリツトを計算し、そのノズルスリツトになる
ようにマンドレルの位置を制御し、パリソンの長手方向
の複数個所の断面積分布を設定したとおりに制御するこ
とを特徴とするものである。
The present invention attempts to measure and control the longitudinal cross-sectional area distribution of the parison while extruding the parison. A marker is provided directly under the nozzle near where the parison passes, and a mark detector is installed below the marker. Two detectors are installed at close intervals in the vertical direction so that a detection signal is emitted each moment the mark passes through the two detectors, and input/output for setting the cross-sectional area distribution in the longitudinal direction of the parison can be performed. In an accumulator blow molding machine that has a microcomputer and a servo control system that performs balisong control using signals from the microcomputer, the extruded parison is intermittently marked with a marker, and the mark is detected on two machines. The time it takes to pass between the containers is measured to find the moving speed of the parison, and at the same time the stroke speed of the extrusion plunger is measured to find the extrusion flow rate, and this is divided by the moving speed of the parison to calculate the flow rate perpendicular to the longitudinal direction of the parison. Find the cross-sectional area, then find the nozzle opening area from the nozzle slit and the nozzle diameter, and divide the cross-sectional area of the parison by this value to find the product of the wall thickness swell ratio and the diameter swell ratio. Convert the relationship between the position of the plunger and its cross-sectional area from the relationship where the volume of the resin is constant to the relationship between the stroke position of the plunger and the cross-sectional area, and adjust the above so that the set cross-sectional area is reached each time the position of the plunger changes. The slit value to be used is determined from the data immediately before the obtained swell ratio product data, or the value near the same plunger position obtained during the previous extrusion, or the slit value and swell value used during the previous injection. The nozzle slit was calculated using the value determined by interpolation or extrapolation of the corresponding swell value, the position of the mandrel was controlled to achieve the nozzle slit, and the cross-sectional area distribution at multiple points in the longitudinal direction of the parison was set. It is characterized by the fact that it can be controlled according to the conditions.

以下、本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法を実施するためのアキユムレータ
式プロ一成形機の構成を示すもので、1はヘツド、2は
プランシャー、3はマンドレル、4ぱプランシャー2の
位置検出器、5はサーボシリンダ、6はサーボバルブ、
7はマンドレル3の位置検出器、8はパリソン9にマー
ク10を付するためのマーカ、11はマーク検出器、1
2は位置検出器4,7、マーク検出器11からの信号を
受け、又、サーボバルブ6を駆動する電流を出すと共に
マーカ8に作動信号を出すよう接続してあるマイクロコ
ンピユータで、関数の設定ができ、記憶ができ、計算が
でき、時刻が刻める等の特徴がもたせてある。
FIG. 1 shows the configuration of an accumulator type professional molding machine for carrying out the method of the present invention, in which 1 is a head, 2 is a plunger, 3 is a mandrel, 4 is a position detector for the plunger 2, and 5 is a servo cylinder, 6 is a servo valve,
7 is a position detector for the mandrel 3, 8 is a marker for attaching a mark 10 to the parison 9, 11 is a mark detector, 1
2 is a microcomputer connected to receive signals from the position detectors 4, 7 and mark detector 11, and to output a current to drive the servo valve 6 and an activation signal to the marker 8, and is used to set functions. It has the characteristics of being able to remember things, do calculations, and keep track of time.

13はノズルスリツト、14は樹脂入口、15はアキユ
ムレータ、16はノズル部である。
13 is a nozzle slit, 14 is a resin inlet, 15 is an accumulator, and 16 is a nozzle portion.

尚、上記マーク検出器11は、マーカ9でつけたマーク
10(黒色のマジツクインキ、銀色のペンキパステル等
をつけたもの)がマーク検出器の視野に入ると確認信号
を出すもので、マーク相互間の距離よりも小さい上下方
向の間隔T8を保つて配した上下2個のマーク検出器1
1を1組として、ノズルスリツト13の下でマーカ8の
すぐ下に設置されている。
Note that the mark detector 11 outputs a confirmation signal when a mark 10 made with the marker 9 (made with black magic ink, silver paint pastel, etc.) enters the field of view of the mark detector. Two upper and lower mark detectors 1 arranged with a vertical interval T8 smaller than the distance of
1 is set as one set, and they are installed under the nozzle slit 13 and immediately below the marker 8.

上記マークをつける方法としては特開昭56−2883
0号の方法もある。又上記マーク検出器は市販されてい
る。上記構成により実施される本発明の方法において(
1)先ず、パリソンの断面積を測定する原理を説明する
The method for attaching the above mark is JP-A-56-2883.
There is also method number 0. Further, the above mark detector is commercially available. In the method of the present invention implemented with the above configuration (
1) First, the principle of measuring the cross-sectional area of a parison will be explained.

押し出されつつあるパリソン9にマーカ8によりマーク
10がつけられると、このマーク10は直ちに上側のマ
ーク検出器11によつて検出されて検出信号がマイクロ
コンピユータ12へ送られ、次いで、マーク検出器11
間の間隔T8を通過したマーク10が下側のマーク検出
器11により検出され、同一マーク10の検出信号がマ
イクロコンピユータ12に送られる。
When a mark 10 is placed on the parison 9 that is being pushed out by the marker 8, this mark 10 is immediately detected by the upper mark detector 11 and a detection signal is sent to the microcomputer 12.
The mark 10 that has passed through the interval T8 is detected by the lower mark detector 11, and a detection signal of the same mark 10 is sent to the microcomputer 12.

マイクロコンピユータ12では、内蔵されている時計に
より上記2つの信号間の時間Δtが計算され、検出器1
1間の間隔T8からマークがつけられた部分のパリソン
の移動速度(押出され速度)υ,dが次式により求めら
れる。
The microcomputer 12 calculates the time Δt between the two signals using a built-in clock, and calculates the time Δt between the two signals.
The moving speed (extrusion speed) υ,d of the parison in the marked portion is determined from the interval T8 between 1 and 1 by the following equation.

一方、マーク10をつけると同時にプランシャー2の移
動速度υIも、位置検出器4からの信号がマイクロコン
ピユータ12に送られることにより該信号の変化速度か
ら計測される。
On the other hand, at the same time that the mark 10 is placed, the moving speed υI of the plunger 2 is also measured from the rate of change of the signal from the position detector 4 by being sent to the microcomputer 12.

この結果、プランシャー2の押出方向に向いた断面積を
AIとすると、パリソンの断面積A,は、体積一定の関
係から次式により求められる。このようにしてパリソン
のマークをつけた点すべての断面積Apをパリソンの押
出中に求めることができる。パリソン9をプランシャー
2で押出すとき、スクリユ一押出機が停止していれば、
2式は厳密に正しい。
As a result, assuming that the cross-sectional area of the plunger 2 in the extrusion direction is AI, the cross-sectional area A of the parison can be determined from the following equation based on the constant volume relationship. In this way, the cross-sectional area Ap of all marked points on the parison can be determined during extrusion of the parison. When extruding parison 9 with plunger 2, if the screw extruder is stopped,
Equation 2 is strictly correct.

しかし、押出機が連続運転していたとしてもアキユムレ
ータ15に溜めた樹脂をプランシャー2で押出す流量は
、一例として3000cc/sに対して押出機からの押
出量は100cc/sと1/30位であり、通常2式が
成立するとしてよい。(代)次に、パリソンの断面積を
、設定したとおりに制御する原理を説明する。
However, even if the extruder is in continuous operation, the flow rate at which the plunger 2 extrudes the resin stored in the accumulator 15 is, for example, 3000 cc/s, whereas the amount of extrusion from the extruder is 100 cc/s, which is 1/30 It is generally assumed that two equations hold true. Next, the principle of controlling the cross-sectional area of the parison as set will be explained.

パリソンの厚さスウエル比をRtl径スウエル比をRh
lパリソンの厚さをTPlノズルスリツトをS1ノズル
径をDNlパリソン径をD,、パリソンの断面積をA,
とすると、次の関係がある。
Parison thickness swell ratio Rtl diameter swell ratio Rh
l The thickness of the parison is TPl The nozzle slit is S1 The nozzle diameter is DNl The parison diameter is D, The cross-sectional area of the parison is A.
Then, there is the following relationship.

この関係から明らかなようにA,を制御するためには、
(Rt−Rh)、DN.Sの値を知り、このうちのいず
れかを変えればよい。
As is clear from this relationship, in order to control A,
(Rt-Rh), DN. All you have to do is know the value of S and change one of them.

ノズル径DNは定数、ノズルスリツトSはマンドレルの
上下位置により自由に制御できる。スウエル比(Rt−
Rh)は物性と流距形状、押出条件により変化し制御す
ることはできず、成形前にその値と傾向を適確に推定す
ることもできない。しかし、スウエル比(Rt−Rh)
はノズルと使用樹脂が決れば、ノズルスリツトSの開度
とSの変化に伴う圧力等の変化により僅か変化するのみ
である。したがつて、パリソンの断面積A,を制御する
には、一度スウエル比(Rt−Rh)を仮定してA,に
対するSを5式から求め、このノズルスリツトSでパリ
ソンを成形して実際の断面:ニ雫−?ぜ7一↑ζ=≠求
め、この値を直ちに後続の押出しにフイードバツクして
使えばよいことになる。
The nozzle diameter DN is a constant, and the nozzle slit S can be freely controlled by the vertical position of the mandrel. Swell ratio (Rt-
Rh) changes depending on physical properties, flow path shape, and extrusion conditions and cannot be controlled, and its value and tendency cannot be accurately estimated before molding. However, the swell ratio (Rt-Rh)
Once the nozzle and the resin to be used are determined, it will only change slightly due to changes in the opening degree of the nozzle slit S and pressure accompanying changes in S. Therefore, in order to control the cross-sectional area A, of the parison, first assume the swell ratio (Rt-Rh), calculate S for A from equation 5, and then mold the parison with this nozzle slit S to obtain the actual cross-section. :Ni-drop? This means that it is sufficient to calculate ze71↑ζ=≠ and use this value as immediate feedback to the subsequent extrusion.

1回のパリソン押出し中、何個所か(多いほどよい)で
(Rt−Rh)を求めることにより計測した近くのノズ
ルスリツトSの逆算(5式)にそれらを使えば、パリソ
ンの断面積を設定どおりに制御することができる。
By calculating (Rt-Rh) at several locations (the more the better) during one parison extrusion, and using them to back-calculate the nearby nozzle slit S (formula 5), the cross-sectional area of the parison can be adjusted as set. can be controlled.

尚、パリソンの断面積の計測法については、前記(1)
で述べてある。([[I)1以上から、パリソンの長手
方向の断面積分布を設定したどおりに制御する方法を第
2図を参照して次に説明する。
Regarding the method of measuring the cross-sectional area of the parison, see (1) above.
It is stated in ([[I) A method for controlling the cross-sectional area distribution in the longitudinal direction of the parison according to a set value from 1 or more will now be described with reference to FIG.

第2図は設定一押出開始一パリソン成形一押出終了の工
程における制御を示すフローチヤートである。1.先ず
、パリソンの長手方向の位置t沿いの断面積Aの分布を
いくつかの曲り部の点P A,i−tの関係として設定する。
FIG. 2 is a flowchart showing control in the steps of setting, start of extrusion, parison formation, and end of extrusion. 1. First, the distribution of the cross-sectional area A along the position t in the longitudinal direction of the parison is set as a relationship between points P A,i-t of several bends.

A,i=f(Ti)(1=1〜N) ・・・・・02.
一方、プランシャーで押出す量とパリソンの体積の関係
から、パリソンの長さTiとプランシャーのストローク
位置Xiの間には、次の関係がある。
A, i=f(Ti) (1=1~N)...02.
On the other hand, based on the relationship between the amount pushed out by the plunger and the volume of the parison, the following relationship exists between the length Ti of the parison and the stroke position Xi of the plunger.

但し、Ti同志の間隔はΔtで一定とする(すなわち、 Ti,+1−Ti=ΔTi=1〜N−1)。However, the interval between Ti atoms is constant at Δt (i.e., Ti, +1-Ti=ΔTi=1~N-1).

11Xi =互占A,kΔt(1=1〜N)・・・・・[F][株
]式から、Xi−TiyAPi−Xiの関係が得られる
11Xi = Mutual monopoly A, kΔt (1=1 to N)...[F] From the [stock] formula, the relationship Xi-TiyAPi-Xi is obtained.

3.上記A,i−Xi関係の各設定点は相互に離れてお
り、相互を直線で結ぶ等の方法で補1完しないと滑らか
なパリソン形状にならないので、XiとXi+1の間を
=定な微小な間隔Δx毎に補完した値A,j−Xjを押
出開始後に求めておく(j=1〜NJ,NJ>>N)。
3. The setting points of the above A, i-Xi relationships are far from each other, and unless they are complemented by connecting them with straight lines, a smooth parison shape cannot be obtained. The interpolated values A, j−Xj for each interval Δx are determined after the start of extrusion (j=1 to NJ, NJ>>N).

4.次に、位置検出器4で検出したプランシャーのスト
ローク位置Xj毎にスウエル比(Rt−Rh)jを仮定
して設定したパリソンの断面積A,jを出せるノズルス
リツトSjを次式で求める。
4. Next, for each stroke position Xj of the plunger detected by the position detector 4, a nozzle slit Sj that can produce the set cross-sectional area A, j of the parison is determined by the following equation assuming a swell ratio (Rt-Rh)j.

ノズルスリツトSjは、マンドレルの位置Y,に簡単な
幾何学的な関係式で変換される。
The nozzle slit Sj is converted to the mandrel position Y by a simple geometrical relation.

Yj←Sj・・・・・・ 0これから、Xjに対応した
Yjが出力されることになる。
Yj←Sj...0 From now on, Yj corresponding to Xj will be output.

5.一方、マークはマーキング間隔設定としてΔtの整
数倍のところΔTmで付すことにすると、Tl,.Xi
に関していくつか置きに付すことになる(たとえば、i
=2、4、6・・・・・・)。
5. On the other hand, if we decide to attach marks at ΔTm at integral multiples of Δt as marking interval settings, then Tl, . Xi
(for example, i
= 2, 4, 6...).

マークを付すときのXiをXMiと呼ぶことにする。Xi used when marking is referred to as XMi.

6.このようにしておいてパリソンを押出すと、XMj
毎に前記(1)の原理によりパリソンの実際の断面積A
,′が計測される。
6. When the parison is extruded in this way, XMj
According to the principle of (1) above, the actual cross-sectional area A of the parison is
, ′ are measured.

この計測されたAp′と6式から真のスウエル比(Rt
−Rh)′が求められる。
From this measured Ap' and equation 6, the true swell ratio (Rt
-Rh)' is obtained.

′ この(Rt−Rh)を直ちに次のストローク位置Xj+
1から9式に代入してノズルスリツトSj+1及びマン
ドレル位置Yj+1を求めるのに使う。
' Immediately move this (Rt-Rh) to the next stroke position Xj+
This is used to calculate the nozzle slit Sj+1 and the mandrel position Yj+1 by substituting it into Equations 1 to 9.

これを次のマーク点で新たな(Rt−Rh)′を求める
まで続ける。′又、求めた(Rt−Rh)は、次回の押
出しで(Rt−Rh)′を求めないときは、前回求まつ
た各Xjでの値をそのまま使う。
This process is continued until a new (Rt-Rh)' is obtained at the next mark point. 'Also, if (Rt-Rh)' is not determined in the next extrusion, the previously determined values for each Xj are used as they are.

第1′回目のマークを付すまでの値は、(Rt−Rh)
Xi=1の値を使う。
The value until the 1'th mark is (Rt-Rh)
Use the value of Xi=1.

このようにして、次回のパリソンの押出しに際してパリ
ソンの断面積A を計測するが、pノズルスリツトSを
変えなくても真のスウエル比にもとづいたノズルスリツ
トSj−Yjになつているので、設定したとおりの断面
積A,jになると共に、8式の関係から、パリソンの長
さTiと断面積A,iの関係も自動的に満たされる。
In this way, the cross-sectional area A of the parison is measured the next time the parison is extruded, but even without changing the p nozzle slit S, the nozzle slit Sj-Yj is based on the true swell ratio, so the cross-sectional area A of the parison is measured as set. In addition to the cross-sectional area A,j, the relationship between the length Ti of the parison and the cross-sectional area A,i is also automatically satisfied from the relationship of Equation 8.

7.ノズルスリツトSiを修正したことによりスウエル
比がいくらか変る影響等に対しては、前記4.〜6.の
ステツプを繰り返す。
7. Regarding the effect that the swell ratio changes somewhat due to the modification of the nozzle slit Si, please refer to 4. above. ~6. Repeat steps.

8.一旦設定どおりのパリソンが作れるようになると、
安定して成形できているか確かめるため、時間を置いて
断面積A,の計測と制御を行うが、A,の計測をしない
場合はYj−Xjの関係でプランシャーの位置xの検出
値によりマンドレルの位置yをプログラム制御すること
にし、スウエル比(Rt−Rh)によるスリツトSの計
算を省く。
8. Once you can make a parison according to the settings,
In order to confirm that the molding is stable, the cross-sectional area A, is measured and controlled at certain intervals, but if A is not measured, the mandrel is The position y of is program-controlled, and the calculation of the slit S based on the swell ratio (Rt-Rh) is omitted.

尚、上記は、本発明の方法の一例であり、これに限定さ
れるものではなく、次のようにすることもできる。
Note that the above is an example of the method of the present invention, and the method is not limited thereto, and the following method may also be used.

すなわち、4パリソン押出中はスウエル比(Rt.Rh
)を修正せず、次回の押出しに際して修正した(Rt−
Rh)を使うこともできる。
That is, during extrusion of 4 parisons, the swell ratio (Rt.Rh
) was not corrected, but was corrected during the next extrusion (Rt-
Rh) can also be used.

さらに前回の射出中に使つたスリツトの値とスウエルの
値から使用するスリツトに対応したスウエルの値を内挿
か外挿してもとめた値を使うこともできる。
Furthermore, it is also possible to use a value determined by interpolating or extrapolating the swell value corresponding to the slit to be used from the slit value and swell value used during the previous injection.

この場合、1回目の押出中は制御されない欠点があるが
、マイクロコンピユータの演算速度が速くなの成形条件
の自動設定ができる。
In this case, although there is a drawback that the control is not performed during the first extrusion, molding conditions can be automatically set because the calculation speed of the microcomputer is fast.

QlO樹脂のロッドの違い、気温の変化等、長時間運転
における各種の外乱もほとんどが自動修正できるため、
常に一定のパ リソン形状が得られる。
Most of the various disturbances during long-term operation, such as differences in QlO resin rods and changes in temperature, can be automatically corrected.
A constant parison shape is always obtained.

これにより成形の安定性が高まり、監視作業が不要とな り、省力化が図れる。This increases molding stability and eliminates the need for monitoring. This allows for labor savings.

(1V)パリソンの移動速度υ,d測定を吊下つたパリ
ソンの上中下各部の高さに対応したとことで行うことに
より、ドローダ ウンの傾向を測定できるので、ドローダ ウンを補償したパリソンの断面積分布を 作ることもできる。
(1V) By measuring the moving speed υ, d of the parison at the heights of the upper, middle and lower parts of the suspended parison, it is possible to measure the tendency of drawdown. It is also possible to create a cross-sectional area distribution.

そのため、ドローダウンの激しく適正なノズルスリツト
の設 定が困難な樹脂の成形も容易になる。
Therefore, it becomes easier to mold resins that have severe drawdown and for which it is difficult to set an appropriate nozzle slit.

等の優れた効果を奏し得る。It can produce excellent effects such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するためのアキユムレータ
式ブロー成形機の断面図、第2図は本発明の方法のフロ
ーチヤートである。 1・・・・・・ヘツド、2・・・・・・プランシャー、
3・・・・・・マンドレル、4,7・・・・・・位置検
出器、8・・・・・・マーカ、9・・・・・・パリソン
、10・・・・・・マーク、11・・・・・・マーク検
出器、12・・・・・・マイクロコンピユータ、13・
・・・・・ノズルスリツト、15・・・・・・アキユム
レータ。
FIG. 1 is a sectional view of an accumulator blow molding machine for carrying out the method of the present invention, and FIG. 2 is a flowchart of the method of the present invention. 1...Head, 2...Pransha,
3... Mandrel, 4, 7... Position detector, 8... Marker, 9... Parison, 10... Mark, 11 ...Mark detector, 12...Microcomputer, 13.
...Nozzle slit, 15...Accumulator.

Claims (1)

【特許請求の範囲】[Claims] 1 ノズルの直下でパリソンの通過する近くにマーカを
設け、該マーカの下にマーク検出器を垂直方向に狭い間
隔で2台設置し、マークが2台の検出器を通過する各瞬
間の検出信号を発するようにし、且つパリソンの長手方
向の断面積分布の設定のための入出力等ができるマイク
ロコンピュータと該マイクロコンピュータからの信号に
よりパリソンコントロールを行うサーボ制御系をもつア
キュムレータ式ブロー成形機において、押出されている
パリソンにマーカにより断続的にマークをつけて該マー
クが2台の検出器間を通過する時間を計測し、パリソン
の移動速度を求め、同時に押出プランジャーのストロー
ク速度を計測して押出流量を求め、これをパリソンの移
動速度で除してパリソンの長手方向に垂直な断面積を求
め、次に、ノズルスリットとノズル径からノズル開口面
積を求め、この値でパリソンの断面積を除して肉厚スウ
エル比と径スウエル比の積を求め、一方、設定したパリ
ソンの長手方向の位置とその断面積の関係を、樹脂の体
積一定の関係からプランジャーのストローク位置と断面
積の関係に換算しておき、プランジャーの位置が変る毎
に設定した断面積になるように上記求めたスウエル比の
積のデータの直前のもの、又は前回の押出中に求めた同
じプランジャー位置に近いところの値あるいは前回の射
出中使つたスリットの値とスウエルの値から使用するス
リット値に対応したスウエルの値を内挿か外挿してもと
めたものを使つてノズルスリットを計算し、そのノズル
スリットになるようにマンドレルの位置を制御し、パリ
ソンの長手方向の複数個所の断面積分布を設定したとお
りに制御することを特徴とするブロー成形用パリソンの
断面積分布制御方法。
1. A marker is provided directly below the nozzle near where the parison passes, and two mark detectors are installed vertically at close intervals below the marker, and the detection signal is obtained at each moment when the mark passes through the two detectors. In an accumulator type blow molding machine, the accumulator type blow molding machine has a microcomputer capable of inputting and outputting information for setting the cross-sectional area distribution in the longitudinal direction of the parison, and a servo control system that controls the parison using signals from the microcomputer. The parison being extruded is intermittently marked with a marker, the time it takes for the mark to pass between two detectors is measured, the movement speed of the parison is determined, and at the same time the stroke speed of the extrusion plunger is measured. Determine the extrusion flow rate, divide this by the moving speed of the parison to determine the cross-sectional area perpendicular to the longitudinal direction of the parison, then determine the nozzle opening area from the nozzle slit and nozzle diameter, and use this value to calculate the cross-sectional area of the parison. The product of the wall thickness swell ratio and the diameter swell ratio is obtained by dividing the ratio, and on the other hand, the relationship between the longitudinal position of the set parison and its cross-sectional area is calculated by calculating the relationship between the stroke position of the plunger and the cross-sectional area based on the relationship that the volume of the resin is constant. Convert it into a relationship, and each time the plunger position changes, set the cross-sectional area immediately before the swell ratio product data obtained above, or change it to the same plunger position obtained during the previous extrusion. Calculate the nozzle slit using the closest value or the swell value that corresponds to the slit value used during the previous injection and interpolate or extrapolate it from the swell value and the swell value used during the previous injection. A method for controlling the cross-sectional area distribution of a parison for blow molding, characterized in that the position of a mandrel is controlled so as to form a slit, and the cross-sectional area distribution at multiple locations in the longitudinal direction of the parison is controlled as set.
JP56141307A 1981-09-08 1981-09-08 Method for controlling cross-sectional area distribution of parison for blow molding Expired JPS5925649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56141307A JPS5925649B2 (en) 1981-09-08 1981-09-08 Method for controlling cross-sectional area distribution of parison for blow molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56141307A JPS5925649B2 (en) 1981-09-08 1981-09-08 Method for controlling cross-sectional area distribution of parison for blow molding

Publications (2)

Publication Number Publication Date
JPS5842437A JPS5842437A (en) 1983-03-11
JPS5925649B2 true JPS5925649B2 (en) 1984-06-20

Family

ID=15288841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56141307A Expired JPS5925649B2 (en) 1981-09-08 1981-09-08 Method for controlling cross-sectional area distribution of parison for blow molding

Country Status (1)

Country Link
JP (1) JPS5925649B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202712A (en) * 1985-09-28 1987-09-07 Kyoraku Co Ltd Method of extruding parison and its device
DE3816273C3 (en) * 1988-05-12 1996-03-21 Harald Feuerherm Process for extrusion blow molding of a hollow body and device for carrying out the process
US5185109A (en) * 1991-09-12 1993-02-09 Cincinnati Milacron Inc. Extrusion blow-molding machine control
DE19631640C1 (en) * 1996-08-05 1998-04-02 Windmoeller & Hoelscher Process for controlling the film thickness on a blown film line
US5928581A (en) * 1997-04-18 1999-07-27 Owens-Brockway Plastics Products Inc. Synchronization of parison profile in a plastic container molding system
FR2766120B1 (en) 1997-07-21 1999-10-08 Solvay METHOD OF MARKING AN ARTICLE PRODUCED BY EXTRUSION-BLOWING
DE102010047616A1 (en) * 2010-10-07 2012-04-12 Krones Aktiengesellschaft Machine-readable plastic preform

Also Published As

Publication number Publication date
JPS5842437A (en) 1983-03-11

Similar Documents

Publication Publication Date Title
US4444702A (en) Method and apparatus for producing extruded sections of thermoplastic material
US4551289A (en) Method of and apparatus for maintaining a constant wall thickness for an extruded article
JP4335442B2 (en) Extrusion head
JPS5925649B2 (en) Method for controlling cross-sectional area distribution of parison for blow molding
US3759648A (en) Extruder control system
JPS60178019A (en) Method and device for extrusion-molding plastic pipe
US6258301B1 (en) Method of blow molding hollow articles from thermoplastic synthetic resin
US3989779A (en) Method of calibrating extruded filaments
RU2005107521A (en) METHOD AND DEVICE FOR MANUFACTURING THERMOPLASTIC PIPE WITH DOUBLE WALLS AND CONNECTING COUPLING
GB2178361A (en) Blow moulding
JPH042087B2 (en)
JP2833673B2 (en) Mold clamping control method and apparatus for blow molding machine
US4959001A (en) Blow molding machine with accumulator waiting time control
US4971542A (en) Blow molding machine with accumulator cushion regulation
JPH0415446Y2 (en)
JPH0788945A (en) Wall thickness control method for parison
JPS61175008A (en) Apparatus for controlling wall thickness of parison in blow molding machine
DE3935338A1 (en) Controls on extrusion-blow moulding - automatic system uses weight of tubular parison as datum value and adjusts extruded die gap as required to keep prod. within tolerances
JPH0460405B2 (en)
CN108215119A (en) A kind of extrusion foaming sheet material head
CN209336053U (en) Extrusion foaming piece head
JPH06270242A (en) Blow molding machine
JPH1058530A (en) Blow molding machine
JPH05154895A (en) Method and device for moldig extruded piece
JPS61244523A (en) Correcting method of length of parison in blow molding device