JPS5925091A - Tornado type wind power generating apparatus - Google Patents

Tornado type wind power generating apparatus

Info

Publication number
JPS5925091A
JPS5925091A JP57135917A JP13591782A JPS5925091A JP S5925091 A JPS5925091 A JP S5925091A JP 57135917 A JP57135917 A JP 57135917A JP 13591782 A JP13591782 A JP 13591782A JP S5925091 A JPS5925091 A JP S5925091A
Authority
JP
Japan
Prior art keywords
heat receiving
receiving body
stream
suction
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57135917A
Other languages
Japanese (ja)
Inventor
Masayuki Ishikawa
昌行 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP57135917A priority Critical patent/JPS5925091A/en
Publication of JPS5925091A publication Critical patent/JPS5925091A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/007Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with means for converting solar radiation into useful energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/34Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures
    • F03D9/35Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures within towers, e.g. using chimney effects
    • F03D9/37Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures within towers, e.g. using chimney effects with means for enhancing the air flow within the tower, e.g. by heating
    • F03D9/39Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures within towers, e.g. using chimney effects with means for enhancing the air flow within the tower, e.g. by heating by circulation or vortex formation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/131Stators to collect or cause flow towards or away from turbines by means of vertical structures, i.e. chimneys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/911Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose
    • F05B2240/9111Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose which is a chimney
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/24Heat transfer, e.g. cooling for draft enhancement in chimneys, using solar or other heat sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Wind Motors (AREA)

Abstract

PURPOSE:To aim at improvements in power generating efficiency, by installing a heat receiving body in close vicinity to the lower end of a cylindrical body, and condensing the sunlight onto the heat receiving body in making full use of a reflecting mirror, while heating a suction stream passing around the heat receiving body. CONSTITUTION:A heat receiving body 13 and a reflecting mirror 14 are installed in position, and then the sunlight S is condensed onto the heat receiving body 13 through the reflecting mirror 14, making the heat receiving body into a high temperature. Therefore, a suction stream flowing upward around the heat receiving body 13 is heated. When the suction stream is forcibly heated, a rising current of air due to a temperature rise is produced there and simultaneously the central suction pressure of a swirly stream is much intensified whereby the speed of an air current in a stream contraction part 9 increases. Moreover, with the swirly stream intensified, an incoming air quantity also increases, through which the swirly stream is as well intensified. That is to say, not only supplying energy to a generator 2 grows larger but also a power generating value increases.

Description

【発明の詳細な説明】 本発明はトルネート式風力発電装置に関し、特に2本来
の風力エネルギーの他の太陽熱をも利用することにより
発電効率の向上を図ったトルネート式風力発電装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tornato type wind power generator, and more particularly to a tornato type wind power generator which improves power generation efficiency by also utilizing solar heat in addition to the two original wind energy.

風力発電装置の一つにトルネート式風力発電装置があり
、これは自然界の風力エネルギーを利用する発電装置で
あるため省資源省エネルギーのみならず環境保全の観点
からその有効活用が期待されている。
One type of wind power generation device is a tornado type wind power generation device, and since this is a power generation device that utilizes wind energy in the natural world, it is expected to be used effectively not only from the viewpoint of resource and energy conservation but also from the perspective of environmental conservation.

このトルネート式風力発電装置は、周囲に形成された吸
入開口、上端に形成された排風口並びに吸入開口から排
風口に向って形成された縮流部を有する縮流部材と、前
記排風口上方近傍に鉛直姿勢で配置されかつ周囲に空気
導入用開口を有する上下端開放の円筒体と、前記縮流部
の最小断面部分近傍に位置するブレードにより回転駆動
可能に設置された発電機とを備え、前記円筒体内に生成
される旋回流により前記縮流部材内に生じる空気流を利
用して前記発電機を駆動するような構造のものである。
This tornado type wind power generation device includes a constrictor member having an inlet opening formed around the circumference, an exhaust outlet formed at the upper end, a constrictor part formed from the inlet opening toward the exhaust outlet, and a constrictor member that has a constrictor part formed from the inlet opening toward the exhaust outlet, and A cylindrical body arranged in a vertical position and having an opening for introducing air around the periphery and having an open upper and lower end, and a generator installed so as to be rotatably driven by a blade located near the smallest cross-section part of the contraction part, The structure is such that the generator is driven by utilizing the airflow generated within the contracted flow member due to the swirling flow generated within the cylindrical body.

上記トルネート式風力発電装置は、その構造から明らか
なごとく、前記空気導入用開口を風上に向けることによ
り前記円筒体内に旋回流を発生させ、この旋回流の中心
部の負圧により前記縮流部材を通して前記円筒体内へ向
う増速吸引流を生じさせ、この吸引流の運動エネルギー
を利用して発電機を駆動するものである。
As is clear from its structure, the tornado type wind power generation device generates a swirling flow within the cylinder by orienting the air introduction opening upwind, and the negative pressure at the center of this swirling flow causes the contracted flow to flow upward. An accelerated suction flow is generated through the member into the cylindrical body, and the kinetic energy of this suction flow is used to drive a generator.

しかして、上述のような従来のトルネート式風力発電装
置にあっては、単に風のエネルギーのみを利用する構造
であるため、発電効率が低くその実用化の範囲は限られ
たものであった。
However, since the conventional tornado type wind power generation device as described above has a structure that simply uses wind energy, the power generation efficiency is low and the range of its practical application is limited.

本発明の目的は、風のエネルギーのみならず太陽光の熱
エネルギーをも併せて利用することにより、上昇流の運
動エネルギーを増大させて発電効率の向上を図ったトル
ネート式風力発電装置を提供することである。
An object of the present invention is to provide a tornado type wind power generation device that uses not only wind energy but also thermal energy of sunlight to increase the kinetic energy of upward flow and improve power generation efficiency. That's true.

本発明は、前述の構造を有する従来のトルネート式風力
発電装置において、さらに、前記円筒体下端近傍に受熱
体を配設するとともに、反射鏡を利用して該受熱体に太
陽光を集光するよう構成し、この受熱体まわVを通過す
る吸引流を加熱することにより上昇気流の発生および前
記旋回流の強化(3) を図り、もって発電効率の向上を達成するものである。
The present invention provides a conventional tornado type wind power generation device having the above-described structure, further disposing a heat receiving body near the lower end of the cylindrical body, and concentrating sunlight on the heat receiving body using a reflecting mirror. By heating the suction flow passing around the heat receiving body V, an upward air flow is generated and the swirling flow is strengthened (3), thereby achieving an improvement in power generation efficiency.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図〜第3図は本発明の一実施例を示す図である。1 to 3 are diagrams showing one embodiment of the present invention.

第1図および第2図において、基台1に発電気2が設置
され、この発電機2から上方へ突出する発電機軸3の先
端にはブレード4が固定されている。−また、基台l上
には、複数本の脚5により、前記ブレード4と同心にこ
れを覆う形状配置の縮流部材6が支持されている。
1 and 2, a power generator 2 is installed on a base 1, and a blade 4 is fixed to the tip of a generator shaft 3 that projects upward from the generator 2. As shown in FIGS. - Further, on the base l, a contracting member 6 is supported by a plurality of legs 5 and is arranged to cover the blade 4 concentrically.

この縮流部材6は、図示の例では富士山形をしており、
その周囲に吸入量ロアが形成され、その上部は開放され
て排風口8が形成されている。また、縮流部材内には、
吸入量ロアから排風口8に向って絞られた縮流部9が形
成されている。
In the illustrated example, this contracted flow member 6 has a Mt. Fuji shape,
A suction lower is formed around it, and the upper part thereof is open to form an exhaust port 8. In addition, inside the contraction member,
A contracted flow section 9 is formed that is narrowed from the lower suction amount toward the exhaust port 8.

前記ブレード4は前記縮流部9の最小断面部分近傍に位
置している。
The blade 4 is located near the minimum cross section of the contracted flow section 9.

前記縮流部材6上には複数本の脚lOを介して円筒体1
1が支持されている。この円筒体はその(4) 下端面が前記縮流部材6に近接するようにして鉛直姿勢
で支持されており、また、その上下端は開放されている
The cylindrical body 1 is mounted on the contraction member 6 via a plurality of legs lO.
1 is supported. This cylindrical body is supported in a vertical position with its (4) lower end surface being close to the flow contraction member 6, and its upper and lower ends are open.

前記円筒体11の周囲には第3図に示すごとく開閉可能
なドア式の空気導入用開口12が円周方向に複数個設け
られている。これら空気導入用開口12は、第3因に示
すごとく、矢印F方向に風が吹いているとき、−側の略
接線方向位置の所望個数〔図示の例では4個)の開口1
2につきそのドア部分12Ak開いて空気を内部に導入
するようにし、他は全て閉じる状態にして使用される。
Around the cylindrical body 11, as shown in FIG. 3, a plurality of door-type air introduction openings 12 which can be opened and closed are provided in the circumferential direction. As shown in the third factor, when the wind is blowing in the direction of arrow F, a desired number (four in the illustrated example) of these air introduction openings 12 are provided at substantially tangential positions on the negative side.
2, the door portion 12Ak is opened to introduce air into the interior, and the rest are all closed during use.

前記ドア部分12Aはガイドベーンとして機能するもの
であり、開口する数および開き角度は空気導入効果を考
慮して適宜設定することができる。
The door portion 12A functions as a guide vane, and the number of openings and the opening angle can be appropriately set in consideration of the air introduction effect.

前記円筒体11の下端近傍の中心部には受熱体13が適
当な方法で配設されている。また、基台1の前記縮流部
材6のまわりには適当数の反射鏡14が設置されている
。各反射鏡14は脚15により支持され、かつ太陽の高
さおよび方向に合せて所望方向に向けうるよう回転可能
に支持されている。使用に際しては、各反射鏡14によ
り太陽光Sを反射させて前記受熱体13に太陽光Sを集
光さぜ、該受熱体を高温にし熱伝達によりそのまわりを
流れる上向き流を加熱するよう[なっている。
A heat receiving body 13 is disposed in a suitable manner at the center of the cylindrical body 11 near its lower end. Further, an appropriate number of reflecting mirrors 14 are installed around the contraction member 6 of the base 1. Each reflecting mirror 14 is supported by legs 15 and is rotatably supported so that it can be oriented in a desired direction according to the height and direction of the sun. In use, each reflecting mirror 14 reflects sunlight S and focuses the sunlight S on the heat receiving body 13, so that the heat receiving body is heated to a high temperature and the upward flow flowing around it is heated by heat transfer. It has become.

以上説明した実施例の作用および効果を以下に説明する
The functions and effects of the embodiments described above will be explained below.

第3図に示すごとく、風向Fの方向に合せて適当数の空
気導入用開口12’!に開くと、これらの開口を通して
空気が接線方向に流入し円筒体ll内に旋回流が形成さ
れる。旋回流ではその中心部に近いほど圧力が低く負圧
の程度が高いので、この負圧吸引作用によって前記縮流
部材6内に流れが透起され、この流れは前記排風口8か
ら円筒体ll内へ吸入され前記旋回流とともに上端から
流出する。
As shown in FIG. 3, an appropriate number of air introduction openings 12' are provided according to the wind direction F! When opened, air flows tangentially through these openings and a swirling flow is formed within the cylinder 11. In the swirling flow, the pressure is lower and the degree of negative pressure is higher as it approaches the center, so this negative pressure suction action causes the flow to permeate into the contracted flow member 6, and this flow flows from the exhaust port 8 to the cylindrical body ll. It is sucked into the interior and flows out from the upper end along with the swirling flow.

したがって、縮流部材6内ではその縮流部9で流れが増
速され、その運動エネルギーがブレード4の回転運動に
転換されて発電機2が駆動される。
Therefore, within the flow contraction member 6, the flow speed is increased in the flow contraction section 9, and the kinetic energy thereof is converted into rotational motion of the blades 4, thereby driving the generator 2.

以上の作用は従来装情と同じであるが、本実施例では前
記受熱体】3および前記反射鏡14が設けられているの
で一反射鏡14によって太陽光Sを受熱体13に集光さ
せることができ、これによって受熱体を高温にすること
ができる。したがって、受熱体13の捷わりを上向きに
流れる前記吸引流が加熱される。
The above action is the same as that of the conventional design, but in this embodiment, the heat receiving body 3 and the reflecting mirror 14 are provided, so that the sunlight S can be focused on the heat receiving body 13 by the reflecting mirror 14. This allows the heat receiving element to reach a high temperature. Therefore, the suction flow flowing upward along the bends of the heat receiving body 13 is heated.

こうして、吸引流が強制的に加熱されると、温度上昇に
よる上昇気流が発生するとともに前記旋回流の中心負圧
が強化され、前記縮流部9の流速が一段と増加する。さ
らに、前記中心貧圧強化に伴なう旋回流の強化により一
円筒部材ll内への導入風量も一段に増大し、これによ
っても旋回流が強化される。
When the suction flow is forcibly heated in this manner, an upward air flow is generated due to the temperature increase, and the central negative pressure of the swirling flow is strengthened, so that the flow velocity in the contracted flow section 9 is further increased. Further, due to the strengthening of the swirling flow due to the strengthening of the central low pressure, the amount of air introduced into one cylindrical member 11 is further increased, and this also strengthens the swirling flow.

すなわち、太陽エネルギーで向向き吸引流を加熱するこ
とにより、上昇気流の発生および旋回流の強化が得られ
、これらの相乗作用によってさらに旋回流の強化および
吸引流の強化が得られ、発電機2への供給エネルギーが
大巾に増大し、発電普が増大する。すなわち、風力エネ
ルギーに太陽エネルギーを追加してその有効利用を図る
ことができる。
That is, by heating the counter-directed suction flow with solar energy, an updraft is generated and the swirling flow is strengthened, and the synergistic effect of these effects further strengthens the swirling flow and the suction flow. The amount of energy supplied to the area will increase significantly, and the amount of electricity generated will increase. In other words, solar energy can be added to wind energy to make effective use of it.

以上説明した実施例によれば、風力エネルギーに加え太
陽エネルギーを追加利用することにより円筒体内に上昇
気流を生じさせるとともにより強い旋回流〔トルネート
)を発生させ、これにより発電効率の大巾向上を達成す
ることができる。
According to the embodiment described above, by additionally utilizing solar energy in addition to wind energy, an upward air current is generated inside the cylinder, and a stronger swirling flow (tornato) is generated, thereby greatly improving power generation efficiency. can be achieved.

なお1本発明に係わるトルネート式風力発電装置は静か
で安全な運転ができ、しかも風車の場合のようなプロペ
ラ部分が見えないので不安感も与えることがなく、居住
地域で使用しても環境を損なうことは全くない装置であ
る。また−装置の各部はプラスチック製とすることがで
き、工場用あるいは家庭用など機種の大型小型を問わず
全ての機種に対して本発明を適用することができる。
Note that the tornado type wind power generation device according to the present invention can be operated quietly and safely, and since the propeller part is not visible unlike in the case of a wind turbine, it does not give a sense of anxiety, and it is environmentally friendly even when used in residential areas. It is a device that cannot be damaged at all. Furthermore, each part of the device can be made of plastic, and the present invention can be applied to all types of devices, whether large or small, such as for factory use or home use.

第4図は本発明の他の実施例を示す図である。FIG. 4 is a diagram showing another embodiment of the present invention.

第4図の実施例では円筒体11の周囲に設けられる空気
導入用開口として常時開口式の空気取入口16が1個所
膜けられ、この円筒体自体は風向きに応じて回転可能に
支持されている。
In the embodiment shown in FIG. 4, one permanently open air intake port 16 is provided as an air introduction opening provided around the cylindrical body 11, and the cylindrical body itself is supported so as to be rotatable according to the direction of the wind. There is.

第4図の実施例は、第1図〜第3図の実施例とは、前述
の円筒体11の支持方法および空気導入用開口の構造の
点でのみ相異し−その他の部分は全て実質上同じであり
、対応する部分を同一符号で表示しその説明を省略する
The embodiment shown in FIG. 4 differs from the embodiment shown in FIGS. 1 to 3 only in the method of supporting the cylindrical body 11 described above and the structure of the air introduction opening; all other parts are substantially the same. This is the same as above, and corresponding parts are denoted by the same reference numerals and their explanation will be omitted.

この第4図の実施例によっても、第1図〜第3図の実施
例の場合と同一の作用効果を達成することができる。
The embodiment shown in FIG. 4 can also achieve the same effects as the embodiments shown in FIGS. 1 to 3.

以上の説明から明らかなごとく1本発明によれば従来装
置に比べ発電効率の高いトルネート式風力発電装置が得
られる。
As is clear from the above description, according to the present invention, a tornado type wind power generation device having higher power generation efficiency than conventional devices can be obtained.

【図面の簡単な説明】 第1図は本発明によるトルネート式風力発電装置の一実
施例を示す斜視図、第2図は第1図の縦断面図、第3図
は第2図中の線ト」に沿った断面図、第4図は本発明に
よるトルネート式風力発電装置の他の実施例を示す斜視
図である。 2・・・発電機、3・・・発電機軸、4・・・ブレード
、6・・・縮流部材、7・・・吸入開口、8・・・排風
口。 9・・・縮流部、11・・・円筒体、12.16・・・
空気導入用開口、13・・・受熱体、14・・・反射鏡
。 F・・・風向き、S・・・太陽光。 代理人  鵜 沼 辰 之 (ほか2名)
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a perspective view showing an embodiment of a tornado type wind power generation device according to the present invention, FIG. 2 is a longitudinal sectional view of FIG. 1, and FIG. 3 is a line taken along lines in FIG. 2. FIG. 4 is a perspective view showing another embodiment of the tornado type wind power generator according to the present invention. 2... Generator, 3... Generator shaft, 4... Blade, 6... Contraction member, 7... Suction opening, 8... Air exhaust port. 9... Contraction part, 11... Cylindrical body, 12.16...
Air introduction opening, 13...heat receiving body, 14...reflector. F...Wind direction, S...Sunlight. Agent Tatsuyuki Unuma (and 2 others)

Claims (1)

【特許請求の範囲】[Claims] (1)  周囲に形成された吸入開口、上端に形成され
た排風口並びに吸入開口から排風口に向って形成された
縮流部を有する縮流部材と、前記排風口上方近傍に鉛直
姿勢で配置されかつ周囲に空気導入用開口を有する上下
端開放の円筒体と5前記縮流部の最小断面部分近傍に位
置するブレードにより回転駆動可能に設置された発電機
とを備え、前記円筒体内に生成される旋回流によジ前記
縮流部材内に生じる吸引流を利用して前記発電機を駆動
するトルネート式風力発電装置において、前記円筒体下
端近傍に受熱体を配設し1反射鏡により太陽光を前記受
熱体に集光して吸引流全加熱することを特徴とするトル
ネート式風力発電装置。
(1) A constrictor member having a suction opening formed around the circumference, an exhaust port formed at the upper end, and a constrictor portion formed from the suction opening toward the exhaust port, and arranged in a vertical position near the top of the exhaust port. 5. A cylindrical body with open upper and lower ends and an opening for introducing air around the periphery, and a generator installed so as to be rotatably driven by blades located near the minimum cross section of the contraction section, In a tornado type wind power generation device that drives the generator by using a suction flow generated in the contracted flow member due to a swirling flow caused by A tornado type wind power generation device characterized in that light is focused on the heat receiving body to completely heat the suction flow.
JP57135917A 1982-08-04 1982-08-04 Tornado type wind power generating apparatus Pending JPS5925091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57135917A JPS5925091A (en) 1982-08-04 1982-08-04 Tornado type wind power generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57135917A JPS5925091A (en) 1982-08-04 1982-08-04 Tornado type wind power generating apparatus

Publications (1)

Publication Number Publication Date
JPS5925091A true JPS5925091A (en) 1984-02-08

Family

ID=15162858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57135917A Pending JPS5925091A (en) 1982-08-04 1982-08-04 Tornado type wind power generating apparatus

Country Status (1)

Country Link
JP (1) JPS5925091A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149238A (en) * 1991-11-27 1993-06-15 Masanori Nakayama Method and device for wind power generation using waste fuel
WO2003004868A2 (en) * 2001-07-05 2003-01-16 Vida, Nikolaus Tornado-type wind turbine
WO2003025387A1 (en) * 2001-09-18 2003-03-27 Makoto Yanagita Generating unit relying upon composite ascending force of air and utilizing stack
ES2247948A1 (en) * 2005-05-11 2006-03-01 Jose Maria Martinez-Val Peñalosa Suction type wind converter for converting wind energy into kinetic energy in vertical tube, has resistant structure separated from aerodynamic machine, and air exhaust unit provided on wind suction inductor
WO2008142459A2 (en) * 2007-05-17 2008-11-27 Emmanuil Dermitzakis Composite solar tower chimney
WO2010005337A1 (en) 2008-12-29 2010-01-14 Kiknadze Gennady Iraklievich Converter and an energy conversion method, a torque flow pump and a turbine
CN102072103A (en) * 2010-05-07 2011-05-25 袁宏 Hot wind power generation device
JP2011530031A (en) * 2008-08-01 2011-12-15 リヴィオ・ビアジーニ Improved wind power equipment
RU2504685C1 (en) * 2012-12-04 2014-01-20 Александр Александрович Перфилов Wind-driven electric power plant
JP5635652B1 (en) * 2013-06-19 2014-12-03 株式会社落雷抑制システムズ Wind power generator
CN111456905A (en) * 2020-05-29 2020-07-28 叶炳极 Closed tower type suction wind generating set
WO2021014283A1 (en) * 2019-07-24 2021-01-28 Tulino Research & Partners Ltd Compact-combined solar-wind system with whirling uptake of winds at altitude for electricity production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124433A (en) * 1974-08-23 1976-02-27 Hitachi Ltd Taiyonetsu furyokufukugohatsudensochi
JPS562477A (en) * 1979-06-20 1981-01-12 Meidensha Electric Mfg Co Ltd Spiral power generating device
JPS5685650A (en) * 1979-12-12 1981-07-11 Shoichi Haga Boiler with light collector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124433A (en) * 1974-08-23 1976-02-27 Hitachi Ltd Taiyonetsu furyokufukugohatsudensochi
JPS562477A (en) * 1979-06-20 1981-01-12 Meidensha Electric Mfg Co Ltd Spiral power generating device
JPS5685650A (en) * 1979-12-12 1981-07-11 Shoichi Haga Boiler with light collector

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149238A (en) * 1991-11-27 1993-06-15 Masanori Nakayama Method and device for wind power generation using waste fuel
WO2003004868A2 (en) * 2001-07-05 2003-01-16 Vida, Nikolaus Tornado-type wind turbine
WO2003004868A3 (en) * 2001-07-05 2004-07-15 Vida Nikolaus Tornado-type wind turbine
US7331752B2 (en) 2001-07-05 2008-02-19 Inventors Network Gmbh Method of conversion of continuous medium flow energy and device for conversion of continuous medium flow energy
WO2003025387A1 (en) * 2001-09-18 2003-03-27 Makoto Yanagita Generating unit relying upon composite ascending force of air and utilizing stack
ES2247948A1 (en) * 2005-05-11 2006-03-01 Jose Maria Martinez-Val Peñalosa Suction type wind converter for converting wind energy into kinetic energy in vertical tube, has resistant structure separated from aerodynamic machine, and air exhaust unit provided on wind suction inductor
WO2008142459A2 (en) * 2007-05-17 2008-11-27 Emmanuil Dermitzakis Composite solar tower chimney
WO2008142459A3 (en) * 2007-05-17 2009-05-28 Emmanuil Dermitzakis Composite solar tower chimney
JP2011530031A (en) * 2008-08-01 2011-12-15 リヴィオ・ビアジーニ Improved wind power equipment
WO2010005337A1 (en) 2008-12-29 2010-01-14 Kiknadze Gennady Iraklievich Converter and an energy conversion method, a torque flow pump and a turbine
CN102072103A (en) * 2010-05-07 2011-05-25 袁宏 Hot wind power generation device
RU2504685C1 (en) * 2012-12-04 2014-01-20 Александр Александрович Перфилов Wind-driven electric power plant
JP5635652B1 (en) * 2013-06-19 2014-12-03 株式会社落雷抑制システムズ Wind power generator
WO2021014283A1 (en) * 2019-07-24 2021-01-28 Tulino Research & Partners Ltd Compact-combined solar-wind system with whirling uptake of winds at altitude for electricity production
CN111456905A (en) * 2020-05-29 2020-07-28 叶炳极 Closed tower type suction wind generating set

Similar Documents

Publication Publication Date Title
US6365985B1 (en) Electricity generation from air conditioning exhaust
US6532740B1 (en) Generator employing the Coriolis effect
US8961103B1 (en) Vertical axis wind turbine with axial flow rotor
JPS5925091A (en) Tornado type wind power generating apparatus
US20110266802A1 (en) Tunnel power turbine system to generate potential energy from waste kinetic energy
US4406579A (en) Airflow converter
US5103646A (en) Solar and wind powered generator
CN104806459B (en) Tower barrel-type wind power generation device
CN103670918B (en) A kind of fan blade and wind wheel
CN112514243B (en) Solar collector with tree structure
US4491740A (en) Windmill power system
CN203892122U (en) Cyclone type air pipe power generator
CN105909298A (en) Tunnel ventilating device
US20120049528A1 (en) Energy Converting System
CN206329445U (en) Whirlpool can wind power generating set
CN103644075A (en) Wind power generation system for speed regulating by using solar energy
CN101315065A (en) Solar energy integration wind power generation device
CN106481511A (en) Whirlpool can wind power generating set
GB2471710A (en) Energy converting system comprising a windmill and a sunlight focusing device
TWI510711B (en) Heat convention power generation system
CN107178472A (en) A kind of electricity generation system
CN103195649B (en) Novel wind-power generator
RU2147079C1 (en) Wind-power plant
TWI736282B (en) Wind guide improvement device of wind generator
US20230132257A1 (en) A convection-driven power generator