JPS5925026B2 - mold steel - Google Patents

mold steel

Info

Publication number
JPS5925026B2
JPS5925026B2 JP54153538A JP15353879A JPS5925026B2 JP S5925026 B2 JPS5925026 B2 JP S5925026B2 JP 54153538 A JP54153538 A JP 54153538A JP 15353879 A JP15353879 A JP 15353879A JP S5925026 B2 JPS5925026 B2 JP S5925026B2
Authority
JP
Japan
Prior art keywords
steel
mold
toughness
hardness
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54153538A
Other languages
Japanese (ja)
Other versions
JPS5677365A (en
Inventor
英一 小畑
彰一 福井
一夫 伊藤
直行 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP54153538A priority Critical patent/JPS5925026B2/en
Publication of JPS5677365A publication Critical patent/JPS5677365A/en
Publication of JPS5925026B2 publication Critical patent/JPS5925026B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Description

【発明の詳細な説明】 本発明は、冷間、温間および熱間加工用金型に用いら
れる高硬度強靭性金型用鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high hardness and toughness mold steel used for cold, warm and hot working molds.

従来、HRC50〜63程度の硬さで使用される冷間
並びに温間用金型製造のための鋼材料としては、高速度
工具鋼のSKH9、55、57あるいはこれらを低合金
化した鋼が使用されて来たが、このような鋼では靭性不
足のため早期割れが生じやすく、金型寿命の向上を計る
ことは困難であった。
Conventionally, high-speed tool steels SKH9, 55, and 57 or low-alloyed steels are used as steel materials for manufacturing cold and warm molds that have a hardness of about HRC 50 to 63. However, such steels tend to crack prematurely due to their lack of toughness, making it difficult to improve mold life.

しかもこのような鋼は焼入性が悪く一般に塩浴炉焼入れ
をする必要があり、そのため局部的変形が起りやすい欠
点があった。 そこで、本発明者等は真空炉で光輝焼入
れができるような焼入性に優れ、しかも高硬度強靭性を
有する金型用鋼を開発するために、各種合金元素の影響
を詳細に調べ、その結果に基すき先に「高硬度強靭金型
用鋼」(特願昭54−814760特公昭58−537
14号参照。
Moreover, such steel has poor hardenability and generally requires quenching in a salt bath furnace, which has the disadvantage that local deformation tends to occur. Therefore, in order to develop a mold steel with excellent hardenability that can be bright hardened in a vacuum furnace and also has high hardness and toughness, the present inventors investigated in detail the effects of various alloying elements, and Based on the results, the plow tip was designated as "high hardness and toughness steel for molds" (Japanese Patent Application No. 54-814760;
See No. 14.

)を出願した。しかしその後、先願鋼に対して微量の稀
土類元素を添加することにより、他の特性を損なうこと
なく硬さや靭性がさらに向上されることを見いだし本発
明に到った。 すなわち、本発明の要旨とするところは
下記のとおりである。
) was filed. However, they subsequently discovered that by adding a small amount of rare earth elements to the steel of the prior application, the hardness and toughness could be further improved without impairing other properties, leading to the present invention. That is, the gist of the present invention is as follows.

(1)C■ 0.4〜1.0%、5i0.4〜1.5%
、Mn: 0.4〜1.5%、Ni■ 0.3〜2.0
%、Cr: 2.0〜6.0%、2Mo+W ■ 2.
0〜15.0%、 V:0.5〜205%と、さらに希
土類元素の1種 または2種以上を合計量で0.005
〜0960% 含有し残余が実質的にFeからなること
を特徴とする高硬度強靭性金型用鋼。
(1) C■ 0.4-1.0%, 5i0.4-1.5%
, Mn: 0.4-1.5%, Ni■ 0.3-2.0
%, Cr: 2.0-6.0%, 2Mo+W ■ 2.
0 to 15.0%, V: 0.5 to 205%, and one or more rare earth elements in a total amount of 0.005%.
A high-hardness, strong-toughness steel for molds, characterized in that it contains Fe in an amount of 0.0960%, with the remainder essentially consisting of Fe.

(2)C:0.4〜1.0%、Si:0.4〜15%、
Mn: 0.4〜1.5%、Ni: 0.3〜2.0%
、Cr: 2.C)〜6.0%、2M0+W : 2。
(2) C: 0.4-1.0%, Si: 0.4-15%,
Mn: 0.4-1.5%, Ni: 0.3-2.0%
, Cr: 2. C) ~6.0%, 2M0+W: 2.

0〜15.0%、V:0.5〜2.5%、B:0.00
1〜0.050%と、さらに希土類元素の1種または2
種以上を合計量で0.005〜0.60%含有し残余が
実質的にFeからなることを特徴とする高硬度強靭性金
型用鋼。
0-15.0%, V: 0.5-2.5%, B: 0.00
1 to 0.050%, and one or two rare earth elements
A high-hardness, strong-toughness steel for molds, characterized in that it contains 0.005 to 0.60% in total of at least one of the following elements, with the remainder essentially consisting of Fe.

(3) C : 0.4〜1.0%,Si: 0.4
〜1.5%、Mn:0.4〜1.5%、Ni: 0.3
〜2.0%、Cr:20〜6.0%、2M0+W:2。
(3) C: 0.4-1.0%, Si: 0.4
~1.5%, Mn: 0.4~1.5%, Ni: 0.3
~2.0%, Cr:20~6.0%, 2M0+W:2.

0〜15.0%、v:0.5〜′2.5%、B : 0
.001−0.050%、CO:01〜12.0%と、
さらに希土類元素から選んだ元素の1種または2種以上
を合計量で0.005〜0.60%含有し残余が実質的
にFeからなることを特徴とする高硬度強靭性金型用鋼
0-15.0%, v: 0.5-'2.5%, B: 0
.. 001-0.050%, CO: 01-12.0%,
A high-hardness, strong-toughness steel for molds, further comprising a total amount of 0.005 to 0.60% of one or more elements selected from rare earth elements, with the remainder essentially consisting of Fe.

なお本発明における希土類元素とは、La、Ce,Nd
,Sc,Y,Smおよびその他の希土類元素のことを云
う。
Note that the rare earth elements in the present invention include La, Ce, and Nd.
, Sc, Y, Sm and other rare earth elements.

次に本発明鋼の化学成分組成範囲限定理由を以下に述べ
る。
Next, the reason for limiting the chemical composition range of the steel of the present invention will be described below.

C:0.4〜1.0% Cは、Cr,MO,W,V、Nb、Zrなどの炭化物形
成元素と結合して硬い複合炭化物を生成すると同時に基
地中にも固溶し所要の硬さを付与し、強さと耐摩耗性の
向上に必要な成分元素である。
C: 0.4 to 1.0% C combines with carbide-forming elements such as Cr, MO, W, V, Nb, and Zr to form a hard composite carbide, and at the same time dissolves in the base to achieve the required hardness. It is a component element necessary for imparting strength and improving strength and wear resistance.

鍛造用あるいはプレス用金型として必要な硬さを確保す
るためには、少くとも0.40%以上含有する必要があ
る。しかしながら、Cを1.0%を超えて含有させると
靭性や耐熱衝撃特性が著しく劣化し金型の早期破壊の原
因になるので1.0%以下に限定した。Si:0.4〜
1.5% 主に脱酸剤として添加するが、0.4%以上添加すれば
炭化物や基地中に固溶して焼入性の向上や耐力の増加に
寄与する元素である。
In order to ensure the hardness required for a forging or press mold, it is necessary to contain at least 0.40% or more. However, if C is contained in an amount exceeding 1.0%, the toughness and thermal shock resistance properties will be significantly deteriorated, causing premature failure of the mold, so the content is limited to 1.0% or less. Si: 0.4~
1.5% It is mainly added as a deoxidizing agent, but if added in an amount of 0.4% or more, it is an element that dissolves solidly in carbides and matrix and contributes to improving hardenability and increasing yield strength.

ただし多量に添加すると熱伝導度の低下による金型寿命
の劣化を引き起こすので1.5%以下に限定した。Mn
: 0.4〜1.5%Siと同様に脱酸剤として添加す
るが0.4以上添加すれば焼入性の向上に対して効果が
あるが、多量に添加すると焼もどし硬さや耐軟化抵抗性
あるいは被剛性が低下するので1.5%以下に限定した
However, if added in a large amount, the life of the mold would be deteriorated due to a decrease in thermal conductivity, so it was limited to 1.5% or less. Mn
: 0.4 to 1.5% It is added as a deoxidizing agent like Si, but if it is added at 0.4% or more, it is effective in improving hardenability, but if it is added in a large amount, it will reduce tempering hardness and softening resistance. The content was limited to 1.5% or less since resistance or rigidity would decrease.

Ni:0.3〜2.0% 焼入性の向上や結晶粒微細化による靭性向上に太き《寄
与する元素であり、少くとも0.30%以上含有する必
要がある。
Ni: 0.3 to 2.0% This is an element that significantly contributes to improving hardenability and improving toughness through grain refinement, and must be contained at least 0.30%.

ただし、多量に含有すると残留オーステナイト量が急激
に増加し、焼もどし軟化抵抗性および靭件の低下をきた
すと同時に金型加工時の被削性が悪くなるという難点が
あるため2.0%以下に限定した。Cr: 2.C)−
6.0% Cと結合して微細な複合炭化物を形成し、耐摩耗性の向
上に大きく寄与する元素である。
However, if it is contained in a large amount, the amount of retained austenite will increase rapidly, resulting in a decrease in tempering softening resistance and toughness, and at the same time, machinability during mold machining will deteriorate, so it should not exceed 2.0%. limited to. Cr: 2. C)-
6.0% It is an element that combines with C to form fine composite carbides and greatly contributes to improving wear resistance.

また基地中にも多量に固溶して焼入性を向上させるとと
もに耐酸化性の向上にも大きく寄与する元素であるが、
20%以上含有しなければその効果が達成されない。他
方、多量に含有すると、巨大な共晶炭化物を形成し靭件
の著しい劣化を引き起こし、焼もどし軟化抵抗性を減少
させるため6.0%以下に限定した。2M0+W :
2.0〜15.0% MOおよびWは、Cと結合して微細なM2C型あるいは
M6C型複合炭化物を生成させ、耐摩耗性や高温硬さを
高めると共に焼もどし軟化抵抗性の向上に大きく寄与す
る元素である。
It is also an element that dissolves in large amounts in the matrix, improving hardenability and greatly contributing to improving oxidation resistance.
The effect cannot be achieved unless the content is 20% or more. On the other hand, if it is contained in a large amount, it will form huge eutectic carbides and cause significant deterioration of the toughness, reducing temper softening resistance, so the content is limited to 6.0% or less. 2M0+W:
2.0 to 15.0% MO and W combine with C to form fine M2C type or M6C type composite carbides, which greatly improves wear resistance and high temperature hardness, as well as tempering softening resistance. It is a contributing element.

鍛造用あるいはプレス用金型などは質量が太きいために
焼入性に優れていることが必要条件となる。最大100
mm厚さの金型材料の中心部まで同一の硬さが得られる
ようなMOとWの量はSi,Mn,Ni、Cr,B、希
土類元素の効果を考慮すると、2M0+Wは2.0〜1
50%の範囲が好ましいことが確かめられた。すなわち
2M0+Wが2.0%未満では焼入性および高温硬さ等
が不充分となり、また15.0%をこえて多量に含有す
ると炭化物の量および大きさが過犬となり、靭性および
熱衝撃特性が大きく劣化するため、2M0+Wは2.0
〜15.0%に限定した。なお2M0+Wを上記範囲に
設定することによって焼入性、強度、靭性および高温特
性などのバランスを最適なものとした点も本発明の特徴
のひとつである。
Because forging or press dies have a large mass, they must have excellent hardenability. Maximum 100
Considering the effects of Si, Mn, Ni, Cr, B, and rare earth elements, the amount of MO and W to obtain the same hardness up to the center of the mm-thick mold material is 2M0 + W is 2.0 ~ 1
A range of 50% has been found to be preferred. In other words, if 2M0+W is less than 2.0%, hardenability and high-temperature hardness will be insufficient, and if it is contained in a large amount exceeding 15.0%, the amount and size of carbides will be excessive, resulting in poor toughness and thermal shock properties. 2M0+W is 2.0 because
It was limited to ~15.0%. Note that one of the features of the present invention is that by setting 2M0+W within the above range, the balance of hardenability, strength, toughness, high temperature properties, etc. is optimized.

V:0.5〜2.5% Cと結合して非常に硬くしかも固溶しにくいMC型炭化
物を形成し、耐摩耗性の向上に大きく寄与し、かつ結晶
粒の微細化により靭性を向上させる効果がある。
V: 0.5-2.5% Combines with C to form MC-type carbides that are extremely hard and difficult to form solid solutions, greatly contributing to improving wear resistance and improving toughness by making crystal grains finer. It has the effect of

しかしながら、2.5%を超えて多量に含有すると、巨
大なMC型炭化物を生成するので研削性あるいは鏡面仕
上性を減じ金型として使用した場合に型離れ性が低下す
る。他方、0.5%未満では耐摩耗性が劣化するのでV
の添加量を05〜2.5%に限定した。希土類元素:1
種または2種以上合計量で0.005〜0.60% 希土類元素は、焼入処理における冷却過程において、オ
ーステナイト結晶粒界への初析炭化物の析出およびパー
ライト変態、ペイナイト変態を抑制する効果が多大であ
り、本発明鋼において焼入性や靭性を著しく向上させる
最も重要な添加元素である。
However, if it is contained in a large amount exceeding 2.5%, huge MC-type carbides are produced, which reduces the grindability or mirror finish properties and reduces the mold release property when used as a mold. On the other hand, if it is less than 0.5%, wear resistance deteriorates, so V
The amount added was limited to 0.05 to 2.5%. Rare earth elements: 1
0.005 to 0.60% in total amount of a species or two or more rare earth elements have the effect of suppressing the precipitation of pro-eutectoid carbides at austenite grain boundaries, pearlite transformation, and paynite transformation during the cooling process of quenching treatment. It is the most important additive element that significantly improves the hardenability and toughness of the steel of the present invention.

すなわち、希土類元素は炭化物形成元素と結合し、炭化
物形成元素の基地中への固溶度を低下させる効果がある
。したがって焼入冷却過程において、オーステナイト結
晶粒界への炭化物の析出(特にMC型炭化物)が抑制さ
れ結晶粒界を強化すると共に、パーライト変態およびペ
イナイト変態が遅滞されるので衝撃値の低下や硬度低下
を著しく防止できる。上記効果を有効に発揮させるため
には、希土類元素の1種または2種以上を合計量で少く
とも0.005%以上含有する必要がある。
That is, the rare earth element combines with the carbide-forming element and has the effect of reducing the solid solubility of the carbide-forming element in the matrix. Therefore, during the quenching and cooling process, precipitation of carbides (especially MC type carbides) at austenite grain boundaries is suppressed, strengthening the grain boundaries, and pearlite transformation and paynite transformation are delayed, resulting in a decrease in impact value and hardness. can be significantly prevented. In order to effectively exhibit the above effects, it is necessary to contain one or more rare earth elements in a total amount of at least 0.005%.

ただし多量に添加すると凝固時にMC型の巨大な炭化物
が多量に形成され、鍛造性が著しく劣化するため、上記
元素の合計量は0.60%以下に限定した。また不純物
元素としてのAI,Nb,TilZr,Hfなとの脱酸
、脱窒元素は、希土類元素の効果を軽減させる作用があ
るため、それぞれ0.5%以下にする必要がある。さら
にNについては、多量に含有されていると希土類元素と
窒化物を形成し、希土類元素の効果を阻害するため0.
06%以下にすることが望ましい。以上の合金組成によ
り焼入性の良好な高硬度強靭性金型用鋼が得られるが、
さらに高い焼入性や優れた金型寿命が要求されるような
場合には、以下の元素を適当量添加することが望ましい
However, if a large amount is added, a large amount of MC-type huge carbides will be formed during solidification, and the forgeability will be significantly deteriorated, so the total amount of the above elements was limited to 0.60% or less. Further, since deoxidizing and denitrifying elements such as AI, Nb, TilZr, and Hf as impurity elements have the effect of reducing the effect of rare earth elements, they each need to be kept at 0.5% or less. Furthermore, if N is contained in a large amount, it will form nitrides with rare earth elements and inhibit the effects of rare earth elements.
It is desirable to make it 0.6% or less. With the above alloy composition, a high hardness, strong toughness mold steel with good hardenability can be obtained.
In cases where even higher hardenability and excellent mold life are required, it is desirable to add appropriate amounts of the following elements.

B:0.001〜0.050%極微量の添加で焼入性や
強さを著しく向上させる元素であり、焼入冷却過程にお
いて、オーステナイト結晶粒界への初析炭化物の析出を
抑制して、靭性の劣化を防止する効果がある。
B: 0.001-0.050% An element that significantly improves hardenability and strength when added in a very small amount, and suppresses the precipitation of pro-eutectoid carbides at austenite grain boundaries during the quenching and cooling process. , has the effect of preventing deterioration of toughness.

上記効果を有効に発揮させるためには、少くとも0.0
01%以上含有する必要がある。ただし、多量に含有す
るとほう化物が多量に形成され、鍛造性が著しく劣化す
るので0.050%以下に限定した。
In order to effectively exhibit the above effect, at least 0.0
It is necessary to contain 0.01% or more. However, if it is contained in a large amount, a large amount of borides will be formed and the forgeability will be significantly deteriorated, so the content was limited to 0.050% or less.

CO: 0.1〜12.0% 基地中に固溶し基地を強化し、炭化物の析出および凝集
をおくらせ、高温における硬さや耐力を著しく向上させ
る元素である。
CO: 0.1 to 12.0% This is an element that forms a solid solution in the matrix, strengthens the matrix, delays precipitation and aggregation of carbides, and significantly improves hardness and yield strength at high temperatures.

また金型使用時の昇温に際して、緻密で滑らかな酸化皮
膜を表面に形成し、金型表面が酸化するのを保護する。
さらに耐ヒートチェック性を向上させる効果がある。し
かしながら0.1%未満の含有では、これらの効果が期
待できず、また多量に含有すると固溶による内部歪が犬
となり靭性が低下し、残留オーステナイトが高温まで安
定な結果、早期破損の原因となる。したがってCOは0
.1〜12,0%に限定した。以上に説明したとおり本
発明鋼は、高い焼入性と、高強度、高靭性を有し、冷間
並びに温間加工用金型材としてきわめて優れたものであ
るが、高温強度、耐酸化性など高温特性にも優れ、熱間
加工用金型材としても有用である。
Also, when the temperature rises during use of the mold, a dense and smooth oxide film is formed on the surface to protect the mold surface from oxidation.
Furthermore, it has the effect of improving heat check resistance. However, if the content is less than 0.1%, these effects cannot be expected, and if the content is too large, internal strain due to solid solution will occur, reducing toughness, and retained austenite remains stable up to high temperatures, which may cause early failure. Become. Therefore, CO is 0
.. It was limited to 1-12.0%. As explained above, the steel of the present invention has high hardenability, high strength, and high toughness, and is extremely excellent as a mold material for cold and warm working. It also has excellent high-temperature properties and is useful as a mold material for hot processing.

次に本発明鋼の特徴を実施例により詳細に説明する。Next, the characteristics of the steel of the present invention will be explained in detail using examples.

実施例 第1表に示すごとき成分組成の各種金型用鋼を溶製した
Examples Various mold steels having the compositions shown in Table 1 were melted.

供試材/461〜5、9〜11は本発明の高硬度強靭金
型用鋼であり、供試材//66、7、12、13は、従
来から用いられている高合金金型用鋼である。第1表の
供試材を用いて各種特性値の試験をおこなった。
Test materials /461-5, 9-11 are high hardness and tough mold steels of the present invention, and test materials //66, 7, 12, 13 are conventional high alloy mold steels. It is steel. Various characteristic values were tested using the sample materials shown in Table 1.

(1)焼入性 第1表の供試材から試験片を採取して、恒温変態曲線を
求め、該曲線よりパーライト変態およびペイナイト変態
開始線のノーズの温度と時・間を調べた。
(1) Hardenability Test pieces were taken from the test materials shown in Table 1, and isothermal transformation curves were determined. From the curves, the temperature and time at the nose of the start line of pearlite transformation and paynite transformation were investigated.

その結果を第2表に示した。同表にみられるごとく、本
発明鋼は比較鋼にくらべてパーライトおよびベイナイ1
・変態が生じるまでの時間はいずれも長く、容易に変態
しないことを示している。
The results are shown in Table 2. As seen in the same table, the steel of the present invention has higher pearlite and bainis content than the comparative steel.
・The time it takes for metamorphosis to occur is long, indicating that metamorphosis does not occur easily.

この結果は、本発明鋼はオーステナイト化温度からの冷
却速度が遅くても、冷却途中でパーライトまたはペイナ
イト組織が生じにくく、同時に炭化物析出線も長時間側
に移行することとなり、したがって焼入性が良好である
ことを示している。(2)焼入、焼もどし後の衝撃値 第1表の供試材を、それぞれの焼入温度に加熱した後、
800℃/Hr(直径70龍の丸棒を焼入温度から空冷
したときの中心部の冷却速度に相当する)の冷却速度で
焼入、つづいてHRC6Oの硬さとなるように焼もどし
処理を行なった。
This result shows that even if the cooling rate from the austenitizing temperature is slow in the steel of the present invention, pearlite or paynite structures are less likely to form during cooling, and at the same time, the carbide precipitation line shifts to the long-term side, resulting in poor hardenability. It shows that it is good. (2) Impact value after quenching and tempering After heating the test materials in Table 1 to their respective quenching temperatures,
Quenching was performed at a cooling rate of 800°C/Hr (corresponding to the cooling rate of the center when a round bar with a diameter of 70 mm was air cooled from the quenching temperature), and then tempered to a hardness of HRC6O. Ta.

上記の焼入、焼もどし処理を施した素材からシャルピ一
衝撃試験片(ノッチ深さ:2mm1ノツチ底R:10m
m)を採取し、試験に供した。その結果を第3表に示す
。同表にみられるごとく、本発明鋼は比較鋼にくらべて
いずれも優れた衝撃特性を示している。
Charpy impact test piece (notch depth: 2mm, 1 notch bottom R: 10m) made from the above-mentioned hardened and tempered material.
m) was collected and used for testing. The results are shown in Table 3. As seen in the same table, the steels of the present invention all exhibit superior impact properties compared to the comparative steels.

すなわち、比較鋼では遅い冷却速度で焼入処理を行うと
、冷却過程でオーステナイト結晶粒界に薄膜状の炭化物
が多量に析出するため、衝撃特性を低下させる大きな原
因となり、一方本発明鋼では焼入加熱温度からの冷却速
度が遅くても結晶粒界への炭化物析出がほとんどないた
め衝撃特性の低下はみられないものと考えられる。(3
)圧縮特性 )第1表
の供試材のうち、本発明鋼の/W;. 1 、/161
0および比較鋼/I67、A6l2から圧縮試験片(直
径6mm×平行部長さ10mi)を採取し、それぞれの
温度で焼入、焼もどし処理を行って硬さをHRC6Oに
調整した。なお焼入加熱後の冷却速度は、直径70龍の
丸棒を焼入温度から空冷したときの中心部の冷却速度に
相当する800℃/ Hrとした。第4表に焼入、焼も
どし処理条件および圧縮特性を示す。
In other words, when the comparison steel is quenched at a slow cooling rate, a large amount of thin film-like carbides precipitates at the austenite grain boundaries during the cooling process, which is a major cause of deterioration of impact properties. Even if the cooling rate from the input heating temperature is slow, there is almost no precipitation of carbides at grain boundaries, so it is thought that no deterioration in impact properties is observed. (3
) Compressive properties ) Among the test materials in Table 1, the /W of the steel of the present invention; 1, /161
Compression test pieces (6 mm in diameter x 10 mm in parallel length) were taken from Comparative Steel/I67 and A6l2, and hardened and tempered at the respective temperatures to adjust the hardness to HRC6O. The cooling rate after quenching heating was set to 800°C/Hr, which corresponds to the cooling rate at the center when a round bar with a diameter of 70 mm was air-cooled from the quenching temperature. Table 4 shows the quenching and tempering treatment conditions and compression characteristics.

同表にみられるごとく、本発明鋼は比較鋼にくらべてい
ずれもすぐれた圧縮特性を示していることかわかる。
As seen in the same table, it can be seen that the steels of the present invention exhibit superior compressive properties compared to the comparative steels.

1)疲労特性 第1表の供試材のうち本発明鋼のAI、/16r.10
および比較鋼の7467、A6l2を用いてシエンク式
および小野式疲労試験片を製造し、シエク式は室温で小
野式は700℃の高温度で試験した。
1) Fatigue properties Among the test materials in Table 1, the AI of the steel of the present invention was /16r. 10
Sieck type and Ono type fatigue test pieces were manufactured using comparative steels 7467 and A6l2, and the Sieck type was tested at room temperature and the Ono type was tested at a high temperature of 700°C.

この結果を第1図(シエンク式疲労特性)および第2図
(小野式疲労特性)に示す。なお試験片は、それぞれ第
5表に示す焼入温度に加熱後800℃/Hr(直径70
mm材を空冷した時の中心部の冷却速度に相当する)の
冷却速度で焼入れし、硬さHRC6Oに焼もどし処理を
ほどこした。同図にみられるように本発明鋼の疲労特性
は、同様な熱処理を施した比較鋼にくらべて明らかに優
れた疲労特性を示しており、特に高温度における疲労特
性が向上している。
The results are shown in FIG. 1 (Sienck type fatigue characteristics) and FIG. 2 (Ono type fatigue characteristics). The test pieces were heated at 800°C/Hr (diameter 70°C) after being heated to the quenching temperature shown in Table 5.
The material was quenched at a cooling rate of (corresponding to the cooling rate of the center when air-cooling a mm material) and tempered to a hardness of HRC6O. As can be seen in the figure, the fatigue properties of the steel of the present invention are clearly superior to those of comparative steels subjected to similar heat treatment, and the fatigue properties are particularly improved at high temperatures.

なお本願の実施例に示した以外の希土類元素についても
同様の優れた効果の得られることを確認している。
It has been confirmed that similar excellent effects can be obtained with rare earth elements other than those shown in the Examples of the present application.

以上説明したごとく本発明鋼は、2M0+Wを適正にバ
ランスさせるとともに、BとLa,Ce、Nd、その他
の希土類元素を微量添加した高硬度強靭金型用鋼であっ
て、従来の高合金の金型用鋼にくらべて、靭性、耐力お
よび常温、高温の疲労特性などに優れており、冷間、温
問および熱間鍛造用金型材として好適であることが判る
As explained above, the steel of the present invention is a high-hardness, strong mold steel with an appropriate balance of 2M0+W and the addition of trace amounts of B, La, Ce, Nd, and other rare earth elements. Compared to mold steel, it has superior toughness, yield strength, and fatigue properties at room and high temperatures, and is found to be suitable as a mold material for cold, warm, and hot forging.

また特に本発明金型材は焼入性が大きいので大型の鍛造
用金型材として最適である。
In particular, the mold material of the present invention has high hardenability, so it is most suitable as a mold material for large-sized forging.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜2図は、本発明鋼と比較鋼の疲労特性を示す図で
ある。
Figures 1 and 2 are diagrams showing the fatigue properties of the steel of the present invention and comparative steel.

Claims (1)

【特許請求の範囲】 1 C:0.4〜1.0%、Si:0.4〜1.5%、
Mn:0.4〜1.5%、Ni:0.3〜2.0%、C
r:2.0〜6.0%、2Mo+W:2.0〜15.0
%、V:0.5〜2.5%と、さらに希土類元素の1種
または2種以上を合計量で0.005〜0.60%含有
し残余が実質的にFeからなることを特徴とする高硬度
強靭性金型用鋼。 2 C:0.4〜1.0%、Si:0.4〜1.5%、
Mn:0.4〜1.5%、Ni:0.3〜2.0%、C
r:2.0〜6.0%、2Mo+W:2.0〜15.0
%、V:0.5〜2.5%、B:0.001〜0.05
0%と、さらに希土類元素の1種または2種以上を合計
量で0.005〜0.60%含有し残余が実質的にFe
からなることを特徴とする高硬度強靭性金型用鋼。 3 C:0.4〜1.0%、Si:0.4〜1.5%、
Mn:0.4〜1.5%、Ni:0.3〜2.0%、C
r:2.0〜6.0%、2Mo+W:2.0〜15.0
%、V:0.5〜2.5%、B:0.001〜0.05
0%、Co:0.1〜12.0%と、さらに希土類元素
の1種または2種以上を合計量で0.005〜0.60
%含有し残余が実質的にFeからなることを特徴とする
高硬度強靭性金型用鋼。
[Claims] 1 C: 0.4 to 1.0%, Si: 0.4 to 1.5%,
Mn: 0.4-1.5%, Ni: 0.3-2.0%, C
r: 2.0-6.0%, 2Mo+W: 2.0-15.0
%, V: 0.5 to 2.5%, and further contains one or more rare earth elements in a total amount of 0.005 to 0.60%, with the remainder substantially consisting of Fe. High hardness and toughness steel for molds. 2C: 0.4-1.0%, Si: 0.4-1.5%,
Mn: 0.4-1.5%, Ni: 0.3-2.0%, C
r: 2.0-6.0%, 2Mo+W: 2.0-15.0
%, V: 0.5-2.5%, B: 0.001-0.05
0% and further contains one or more rare earth elements in a total amount of 0.005 to 0.60%, with the remainder being substantially Fe.
High hardness and toughness steel for molds. 3C: 0.4-1.0%, Si: 0.4-1.5%,
Mn: 0.4-1.5%, Ni: 0.3-2.0%, C
r: 2.0-6.0%, 2Mo+W: 2.0-15.0
%, V: 0.5-2.5%, B: 0.001-0.05
0%, Co: 0.1 to 12.0%, and one or more rare earth elements in a total amount of 0.005 to 0.60.
%, with the remainder essentially consisting of Fe.
JP54153538A 1979-11-29 1979-11-29 mold steel Expired JPS5925026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54153538A JPS5925026B2 (en) 1979-11-29 1979-11-29 mold steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54153538A JPS5925026B2 (en) 1979-11-29 1979-11-29 mold steel

Publications (2)

Publication Number Publication Date
JPS5677365A JPS5677365A (en) 1981-06-25
JPS5925026B2 true JPS5925026B2 (en) 1984-06-13

Family

ID=15564699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54153538A Expired JPS5925026B2 (en) 1979-11-29 1979-11-29 mold steel

Country Status (1)

Country Link
JP (1) JPS5925026B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170240A (en) * 1983-03-18 1984-09-26 Nippon Koshuha Kogyo Kk Alloy tool steel
JPS61264163A (en) * 1985-05-20 1986-11-22 Daido Steel Co Ltd Cast tool for manufacturing seamless pipe
JP5076683B2 (en) * 2007-06-29 2012-11-21 大同特殊鋼株式会社 High toughness high speed tool steel
CN101392354B (en) * 2008-10-24 2010-09-08 宁波禾顺新材料有限公司 High alloy cold-work die steel
CN104004967B (en) * 2014-05-20 2017-01-25 滁州迪蒙德模具制造有限公司 Manufacturing method of metal mold

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50102517A (en) * 1974-01-16 1975-08-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50102517A (en) * 1974-01-16 1975-08-13

Also Published As

Publication number Publication date
JPS5677365A (en) 1981-06-25

Similar Documents

Publication Publication Date Title
JP5076683B2 (en) High toughness high speed tool steel
JP2004285444A (en) Low-alloy high-speed tool steel showing stable toughness
EP3550051B1 (en) Steel for mold, mold, use of a steel for manufacturing a mold, and a process of manufacturing a mold
JP4629816B2 (en) High strength bolt excellent in delayed fracture resistance and method for producing the same
JPS6121299B2 (en)
JPS59179762A (en) Cold tool steel
EP1024208B1 (en) Blade material of a metallic band saw and metallic band saw made therefrom
JPH0555585B2 (en)
JPS5925026B2 (en) mold steel
JPS6048582B2 (en) Stainless steel for razor blades with high heat treatment hardness
JP3342501B2 (en) High strength and high toughness stainless steel and method for producing the same
JPS59129724A (en) Production of thick walled ultra high tension steel
JP2768062B2 (en) Manufacturing method of high strength tough steel
JPH0853735A (en) Steel for bearing
JPS62149852A (en) Tool steel for hot working
JP4665327B2 (en) Method for producing B-containing high carbon steel with excellent cold workability in hot work
JP3273391B2 (en) Manufacturing method of good workability wear-resistant steel plate
JPS6366386B2 (en)
JP3552286B2 (en) Manufacturing method of machine structural steel having excellent machinability, cold forgeability and fatigue strength after quenching and tempering, and a method of manufacturing the member
JP3499425B2 (en) Manufacturing method of cold tool steel
JPS63162840A (en) Tool steel for hot working
JP2001234278A (en) Cold tool steel excellent in machinability
JPS62161942A (en) Tool steel for hot working
JPH0796696B2 (en) Alloy tool steel
JP2784128B2 (en) Precipitation hardening type hot work tool steel