JPS5924819A - Mechanism for aligning optical axis of interference measuring device - Google Patents

Mechanism for aligning optical axis of interference measuring device

Info

Publication number
JPS5924819A
JPS5924819A JP57134650A JP13465082A JPS5924819A JP S5924819 A JPS5924819 A JP S5924819A JP 57134650 A JP57134650 A JP 57134650A JP 13465082 A JP13465082 A JP 13465082A JP S5924819 A JPS5924819 A JP S5924819A
Authority
JP
Japan
Prior art keywords
sample
optical axis
light
receiving element
sample surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57134650A
Other languages
Japanese (ja)
Other versions
JPS6313121B2 (en
Inventor
Junichi Kitabayashi
淳一 北林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP57134650A priority Critical patent/JPS5924819A/en
Publication of JPS5924819A publication Critical patent/JPS5924819A/en
Publication of JPS6313121B2 publication Critical patent/JPS6313121B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means

Abstract

PURPOSE:To facilitate adjustment operation by using a photodetector having quadrisected photodetection surfaces for the spot imaging face of the beams reflected by a reference plane and a sample plane, and controlling a means for driving an adjustment mechanism for the inclination of the sample plane in accordance with the output signal thereof. CONSTITUTION:The position over the entire part of a quadrisected photodetector is adjusted so that the spot 12 by the beam reflected from a reference plane 4 is projected to the central part of the respective photodetectors I , II, III, IV of said photodetector. When a sample 5 is installed, the spot by the beam reflected from the sample plane owing to the inclination of the plane is projected onto any photodetector surface among I , II, III, IV. A control part CPU compares the four outputs of the quadrisected photodetectors, judges the direction and the extent of the rotation where and which the driving motors at fulcrum points A, B, C for adjustment need be rotated and outputs the results thereof to said motors. The inclination of the sample 5 is adjusted by the fine adjusting feed in the optical axis direction of an adjusting screw 17 rotated by the motors 22. The optical axes of the reference plane and the sample plane are easily aligned with good accuracy.

Description

【発明の詳細な説明】 本発明は、レンズ、ミラー等の光学素子の面状態の測定
に利用される干渉測定装置における試料面の光軸合せ機
構、特に自動光軸合せ機構に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical axis alignment mechanism for a sample surface in an interference measurement apparatus used for measuring the surface state of optical elements such as lenses and mirrors, and particularly to an automatic optical axis alignment mechanism.

上記の干渉測定装置は一般に干渉計と呼ばれるが、その
原理は基準面と試料面の光軸を一致させて配置し、これ
らをレーザビームで照射して夫々による反射ビームの光
路に結像レンズを設け、基準面と試料面との間で生ずる
干渉縞をスクリーンに投影して試料面の面状態を測定す
るものである。
The above-mentioned interference measurement device is generally called an interferometer, and its principle is to align the optical axes of the reference surface and the sample surface, irradiate them with a laser beam, and place an imaging lens in the optical path of the reflected beam from each. The surface condition of the sample surface is measured by projecting interference fringes generated between the reference surface and the sample surface onto a screen.

したがって、精確な測定には試料面と基準面との光軸を
正確に合せることが不可欠の条件になる。
Therefore, for accurate measurements, it is essential to accurately align the optical axes of the sample surface and the reference surface.

従来の干渉計における試料面の光軸合せは、干渉縞を出
す前に基準面及び試料面による反射ビームのスポットを
スクリーン上に投影し、2つのスポットを肉眼で見なが
ら、基準面による反射スポット位置に試料面による反射
スポ47 )が合致するように、手動で調整ダイアルを
操作して試料面の傾きを調整して行なっていた。ダイア
ルは一般に3個以上あり、傾き調整過程でのスポットの
移動方向と調整ダイアルの回転力向とは一般に一致せず
、調整は専ら操作者の慣れに頼っていた。また、スポッ
トはある大きさの直径を持ち、肉眼による観察では精度
の高い重ね合せは不可能であった。又、試料の置き力に
よっては、合せるべきスポットがスクリーンから外れて
現われない場合もしばしばあり、このような時には光軸
合せに非常に時間が掛っていた。
To align the optical axis of the sample surface in a conventional interferometer, before producing interference fringes, the spots of the beam reflected by the reference surface and the sample surface are projected onto a screen, and while the two spots are viewed with the naked eye, the spots reflected by the reference surface are adjusted. This was done by manually operating an adjustment dial to adjust the inclination of the sample surface so that the reflected spot 47) by the sample surface coincided with the position. Generally, there are three or more dials, and the direction of movement of the spot during the tilt adjustment process generally does not match the direction of the rotational force of the adjustment dial, so that adjustment depends solely on the operator's experience. In addition, the spots have a certain diameter, making it impossible to superimpose them with high precision through observation with the naked eye. Furthermore, depending on the force with which the sample is placed, the spot to be aligned often moves off the screen and does not appear, and in such cases it takes a very long time to align the optical axes.

このような理由から、干渉測定装置は非常に精度の高い
面状態測定が可能でありながら、工場ラインなどでの製
品検査に使われることはまれであった。しかし、近年超
精密な面形状が要求され、製造ラインの検査手段として
干渉測定装置を使用したいと云う要望が高まって来た。
For these reasons, although interference measurement devices are capable of measuring surface conditions with extremely high precision, they have rarely been used for product inspection on factory lines. However, in recent years, ultra-precise surface shapes have been required, and there has been an increasing desire to use interference measuring devices as inspection means for production lines.

この発明は、この要請にかんがみ、従来の干渉測定装置
の光軸合せに関する上述の問題点を解決した、熟練者で
なくとも短時間で試料面の光軸を精度高く合せることが
出来、又レーザプリンタ等の偏向器として一般に用いら
れる回転多面鏡の如く、一つの試料に複数個の測定面が
ある場合には、夫々の測定面の相互間の位置関係を簡単
に測定することの出来る光軸合せ機構、特に自動光軸合
せ機構を提供することを目的とする。
In view of this need, the present invention solves the above-mentioned problems regarding the optical axis alignment of conventional interference measuring devices, allows even non-skilled personnel to align the optical axis of the sample surface with high precision in a short time, and also uses a laser beam. When a single sample has multiple measurement surfaces, such as a rotating polygon mirror commonly used as a deflector in printers, etc., the optical axis can be used to easily measure the relative position of each measurement surface. The object is to provide an alignment mechanism, especially an automatic optical axis alignment mechanism.

以下、本発明を、その実施例を示す図面にもとづいて詳
細に説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the present invention will be described in detail based on drawings showing embodiments thereof.

第1図は、本発明をフィゾー型干渉型に適用した実施例
を示す図である。
FIG. 1 is a diagram showing an embodiment in which the present invention is applied to a Fizeau type interference type.

レーザ光源lより発するレーザビームの光路にはビーム
拡散レンズ2、ビームスプリッタ3及び基準面4が順次
−@線上に設けられている。ビームスプリッタ3は光源
lより発せられたビームを透過させて基準面4に達せし
めるが、基準面4で反射したビームはこれにより反射し
て90°曲げられる。ビームスプリッタ3による反射ビ
ームの光路上には結像レンズ6及びその結像面にスクリ
ーン7が設けられている。基準面4に近接してこれと光
軸を合せて試料5が装着される。ビームスプリッタ3と
結像レンズ6との間には光路に対して45°の方向に第
2のビームスプリッタ8が設けられ、これにより分割さ
れてもとの光路に対して直角方向に進むビームの径路に
はレンズ9及びこれによる結像面に4分割受光素子(ホ
トダイオード等)10が設けられている。
In the optical path of the laser beam emitted from the laser light source 1, a beam diffusing lens 2, a beam splitter 3, and a reference plane 4 are sequentially provided on the -@ line. The beam splitter 3 transmits the beam emitted from the light source 1 and makes it reach the reference surface 4, but the beam reflected by the reference surface 4 is thereby reflected and bent by 90 degrees. An imaging lens 6 and a screen 7 are provided on the imaging surface of the imaging lens 6 on the optical path of the beam reflected by the beam splitter 3. A sample 5 is mounted close to the reference plane 4 with its optical axis aligned therewith. A second beam splitter 8 is provided between the beam splitter 3 and the imaging lens 6 in a direction of 45 degrees with respect to the optical path, and this splits the beam to proceed in a direction perpendicular to the original optical path. A lens 9 and a four-part light-receiving element (photodiode or the like) 10 are provided on the image forming surface of the lens 9 along the path.

−に記構酸の装置において、レーザ光源1から出射され
たレーザビームはビーム拡散レンズ2によつ−r拡散さ
れ、ビームスプリッタ3を透過し、基準面4及び試料面
5で反射され、それらの間における光路差により干渉を
起しながら再びビームスプリッタ3に至り、これにより
直角方向に反射され、結像レンズ6を介して干渉縞がス
クリーン7の面」二に投影される。
- In the structure described above, a laser beam emitted from a laser light source 1 is diffused by a beam diffusing lens 2, transmitted through a beam splitter 3, reflected by a reference surface 4 and a sample surface 5, and then The light reaches the beam splitter 3 again while causing interference due to the optical path difference between the two, where it is reflected in the right angle direction, and interference fringes are projected onto the surface of the screen 7 via the imaging lens 6.

干渉測定に先立って行う試料面の光軸合せは次のように
行なわれる。
The optical axis alignment of the sample surface, which is performed prior to interference measurement, is performed as follows.

基準面4で反射されたビーム(第1図中に実線で示す)
と試料面5で反射されたビーム(破線で示す)は第2の
ビームスプリッタ8で反射され、レンズ9を介して4分
割受光素子lOの面上に夫々側のスポットとして結像さ
れる。一般にこのスポットは基準面と試料面の間の多重
反射により、試料面5の傾き方向に複数本のビーム(第
1図中に矢印で示す)が反射し、これによって受光素子
10上に複数個のスポットが形成される。
Beam reflected from reference surface 4 (shown by solid line in Figure 1)
The beam reflected by the sample surface 5 (indicated by a broken line) is reflected by the second beam splitter 8, and is imaged as spots on each side on the surface of the 4-split light-receiving element 1O via the lens 9. Generally, this spot is caused by multiple reflections between the reference surface and the sample surface, in which a plurality of beams (indicated by arrows in FIG. 1) are reflected in the direction of the inclination of the sample surface 5. spots are formed.

本発明の装置では、これらのスポットを肉眼で見ながら
、試料面によるスポットを基準面によるスポットに一致
するように試料面の傾きを調整する代りに4分割受光素
子10の出力信号を利用して試料面の傾き調整のための
駆動手段を制御することが特徴である。
In the apparatus of the present invention, instead of viewing these spots with the naked eye and adjusting the inclination of the sample surface so that the spot on the sample surface coincides with the spot on the reference surface, the output signal of the 4-split light receiving element 10 is used. The feature is that the driving means for adjusting the inclination of the sample surface is controlled.

第2図は、試料面5の傾き調整機構の一例を示すもので
あって、図に示す如く、試料5は周辺部の3点■、■、
0を、リング状の基板11にスプリング15を介して弾
性的に軸方向に変位可能な支持ピン16の先端と、これ
と対向して設けられた調整ねじ17の先端によって挾持
される。
FIG. 2 shows an example of the inclination adjustment mechanism for the sample surface 5. As shown in the figure, the sample 5 is placed at three points on the periphery: ■, ■,
0 is held between the tip of a support pin 16 which is elastically movable in the axial direction via a spring 15 on a ring-shaped base plate 11, and the tip of an adjustment screw 17 provided opposite to the support pin 16.

(bl図はその挾持部の詳細を示すもので、調整ねじ1
7は基準面4と平行に装置に固定された板部材18に穿
設されたねじ孔19に軸力向に円滑に移動出来るように
螺合されており、ギヤ列20゜21を介して調整モータ
22によυ回動され、軸方向に微動送りできるようにな
っている。したがって、3つのモータを適当に回動させ
ることによって、試料5の傾斜をどの方向にも任意に調
整することができる。
(The figure BL shows the details of the gripping part, and the adjustment screw 1
7 is screwed into a screw hole 19 drilled in a plate member 18 fixed to the device parallel to the reference plane 4 so as to be able to move smoothly in the direction of the axial force, and is adjusted via gear trains 20 and 21. It is rotated υ by the motor 22 and can be finely moved in the axial direction. Therefore, by appropriately rotating the three motors, the inclination of the sample 5 can be adjusted in any direction.

次に、4分割受光素子10の出力信号、換言すれば受光
素子面での反射ビームによるスポットの位置と、上記の
3点■、■、◎で支持された試料の傾きの調整の関連を
第3図により説明する。
Next, we will discuss the relationship between the output signal of the 4-split photodetector 10, in other words, the position of the spot by the reflected beam on the photodetector surface, and the adjustment of the inclination of the sample supported at the three points ■, ■, and ◎. This will be explained with reference to Figure 3.

第3図の(alは4分割受光素子10の受光面を示して
おり、受光素子1. Il、 IIl、 IVの面の中
央部に基準面4からの反射ビームによるスポット12が
投影されるように受光素子全体の位置を調整する。試料
5を前述の方法で設置すると、その面の傾きによって、
試料面からの反射ビームによるスポットがlo n、m
、rvのいずれかの受光素子面上に投影される。
In FIG. 3, (al indicates the light-receiving surface of the four-split light-receiving element 10, and the spot 12 by the reflected beam from the reference surface 4 is projected onto the center of the surface of the light-receiving element 1.Il, IIl, IV. Adjust the position of the entire light-receiving element to
The spot due to the reflected beam from the sample surface is lon, m
, rv onto the light receiving element surface.

第3図の(blは試料5の支持点の、■、■の西装置を
示すものであって、支持点■、■、0は直角二等辺三角
形の3頂点に設けられており、■0を結ぶ直線の方向は
4分割受光素子10のl、■と■。
In Fig. 3 (bl shows the west device of the supporting points of sample 5, ■, ■, where the supporting points ■, ■, 0 are provided at the three vertices of a right-angled isosceles triangle, and ■0 The direction of the straight line that connects is l, ■, and ■ of the four-division light-receiving element 10.

■の境界線の方向に対応し、■0を結ぶ直線の方向は4
分割受光素子の■、■と1.lVの境界線の方向に対応
するように設けられている。
Corresponding to the direction of the boundary line of ■, the direction of the straight line connecting ■0 is 4
■,■ and 1. of the split light receiving element. It is provided so as to correspond to the direction of the boundary line of lV.

今、試料面5からの反射ビームによるスポット13.1
4が受光素子Iの面に投影されているものとする。この
時受光素子1からの受光出力は他の受光素子n、m、t
vからの出力よりも大きくなる。■点を調整ねじて駆動
することにより試料面は■−0を軸として傾動する。そ
れに従って受光素子I上のスポラ)13,1.4は反時
計方向に円周方向に移動する。受光素子Iと■の出力が
等しくなった時、即ちスポラ)13.14が1と■の境
界線上に来た所でA点の駆動を停止する。この時試料5
上の直線■0は基準面に対して平行となっている(中央
の図参照)。続いて0点を調整ねじにより前後に駆動す
ることにより、スポット列は受光素子の中心に集中し、
受光素子1.II、In。
Now, the spot 13.1 due to the reflected beam from the sample surface 5
4 is projected onto the surface of the light receiving element I. At this time, the light receiving output from light receiving element 1 is the same as that of other light receiving elements n, m, t.
It becomes larger than the output from v. By driving the point (■) with an adjusting screw, the sample surface is tilted around -0 as the axis. Accordingly, the spora) 13, 1.4 on the light receiving element I move counterclockwise in the circumferential direction. When the outputs of the light-receiving elements I and 2 become equal, that is, when the spora) 13 and 14 are on the boundary line between 1 and 2, the drive at point A is stopped. At this time, sample 5
The upper straight line ■0 is parallel to the reference plane (see the diagram in the center). Next, by moving the zero point back and forth with the adjustment screw, the spot row is concentrated at the center of the light receiving element,
Light receiving element 1. II, In.

■の出力が等しくなった時に■の駆動を停止させる。こ
の時、試料面は基準面に対して平行になっている(右図
)。■、■の、駆動力向(モーターの回転力向)は最初
スポット列がどの受光面に投影されているかによって調
整所要時間が最小時間になるように制御部によって決定
される。たとえば、第3図中央の図で分割線のたて軸に
スポット列を合わせたが、横軸の力が近い時には■の5
駆動力向を逆にする。また、受光素子分割線と調整機構
の支点を結ぶ直線の方向を図示の如く対応させたことに
より1、駆動のアルゴリズムを簡略化することができる
。精密な試料によっては支点位置を特定される場合も多
いが、この場合には、試料の支点と、調整のための支点
を二段にするか、あるいは特定された支点における調整
方向を制御部において考慮すると良い。
Stop the drive of ■ when the outputs of ■ become equal. At this time, the sample surface is parallel to the reference surface (right figure). The driving force direction (rotational force direction of the motor) in (1) and (2) is determined by the control unit so that the required adjustment time becomes the minimum time depending on which light-receiving surface the spot row is initially projected onto. For example, in the center diagram of Figure 3, the spot row is aligned with the vertical axis of the dividing line, but if the horizontal axis forces are close, 5
Reverse the driving force direction. Furthermore, by making the directions of the straight lines connecting the light-receiving element dividing line and the fulcrum of the adjustment mechanism correspond as shown, 1. The driving algorithm can be simplified. Depending on the precision of the sample, the fulcrum position is often specified, but in this case, the fulcrum of the sample and the fulcrum for adjustment should be placed in two stages, or the direction of adjustment at the specified fulcrum should be determined by the controller. Good to consider.

第4図は傾き調整機構のブロック図である。4分割受光
素子の1.Il、[1,■の各出力はマルチプレックサ
MPXに入力され制御部CPUにより選択されたその中
の1つがA/D変換されてCPUに取込まれる。CPU
は次々に選択素子を変えて全出力を取込む。CPU内部
では4出カを比較して調整支点部の駆動モータ22 (
MA、 MB、MC’ンの夫々にどちら方向にいくら回
転すべきかを判断して出力する。CPUはこの動作を前
記のアルゴリズムに従って行々う。
FIG. 4 is a block diagram of the tilt adjustment mechanism. 1 of the 4-split light receiving element. The respective outputs of Il, [1, ■ are input to the multiplexer MPX, and one of them selected by the control unit CPU is A/D converted and taken into the CPU. CPU
changes the selection elements one after another and takes in the entire output. Inside the CPU, the four outputs are compared and the drive motor 22 (
It determines which direction and how much rotation should be made for each of MA, MB, and MC'n, and outputs the result. The CPU performs this operation according to the algorithm described above.

第5図は、レーザプリンタ等におけるレーザビームの偏
向器として用いられる回転多面鏡の面状態測定のための
干渉測定装置に本発明を適用した実施例における光軸傾
き調整機構を示すものである。回転多面鏡101は回転
軸102に取付けられる。回転多面鏡の鏡面のうち基準
面103と略々平行になった面のみが測定される。筐体
104の内部には、支点107を中心として矢印Aの方
向の傾き調整を行なう傾き調整機構108が設けられて
いる。その構成は第2図(blに示した調整機構と同様
モータMAの回転を歯車列109.110を介して筐体
に穿設されたねじ孔に螺合する調整ねじ111を微動送
りして行なうようになっている。傾き調整機構108に
より傾動される第2筐体105の内部には回転軸102
を中心として矢印B方向の傾きを調整するとともに試料
の被測定面を切換えるための回転機構112が設けられ
ている。この回転機構112はモータMB、モータ軸に
設けられたウオーム113及びウオームギヤ106から
成る。この2つの傾き調整機構108,112  によ
り被測定面を基準面103と平行にすることが出来る。
FIG. 5 shows an optical axis tilt adjustment mechanism in an embodiment in which the present invention is applied to an interference measuring device for measuring the surface condition of a rotating polygon mirror used as a laser beam deflector in a laser printer or the like. Rotating polygon mirror 101 is attached to rotating shaft 102 . Of the mirror surfaces of the rotating polygon mirror, only those surfaces that are approximately parallel to the reference surface 103 are measured. Inside the housing 104, a tilt adjustment mechanism 108 is provided that adjusts the tilt in the direction of arrow A about the fulcrum 107. Its configuration is similar to the adjustment mechanism shown in FIG. A rotating shaft 102 is located inside the second housing 105 that is tilted by the tilt adjustment mechanism 108.
A rotation mechanism 112 is provided for adjusting the inclination in the direction of arrow B with the center at , and for switching the surface to be measured of the sample. This rotation mechanism 112 includes a motor MB, a worm 113 provided on the motor shaft, and a worm gear 106. These two tilt adjustment mechanisms 108 and 112 make it possible to make the surface to be measured parallel to the reference surface 103.

モータ凧MBの駆動は4分割受光素子のスポット受光出
力を用いて行なわれることは云う迄もない。
Needless to say, the motor kite MB is driven using the spot light receiving output of the four-division light receiving element.

−面の測定が終了するとCPUからモータMBに回転多
面鏡の分割角だけ回転するための信号が出力され、隣接
する而が測定位置にもたらされる。
- When the measurement of the surface is completed, the CPU outputs a signal to the motor MB to rotate the rotating polygon mirror by the division angle, and the adjacent surface is brought to the measurement position.

回転多面鏡において重要なのは、各面相互の傾き角度の
差であり、各面の面倒れ角度に差があると偏向されたビ
ームによる走査線が連続した一直線にならない。
What is important in a rotating polygon mirror is the difference in inclination angle between each surface, and if there is a difference in the inclination angle of each surface, the scanning line by the deflected beam will not form a continuous straight line.

そこで、全測定面について、それぞれの面に対する調整
時の送出制御信号量(モータに与えたパルス数)を記憶
しておけば容易に各面の而倒れ等全測定することができ
る。
Therefore, if the amount of control signals sent out (the number of pulses given to the motor) during adjustment for each surface is memorized for all measurement surfaces, it is possible to easily measure all the tilting, etc. of each surface.

ところで、一般に4分割受光素子にはあまり大きなサイ
ズのものは市販されていないので、第6図に示す如く4
個の単独の受光素子を「田」の字形に並べることにより
スポットの許容移動範囲を広げることが出来、試料を最
初に取付けた時にスポットが受光面から外れることを防
止することができる。
By the way, in general, there are not very large sizes of 4-split light-receiving elements on the market, so there are 4-split light receiving elements as shown in Figure 6.
By arranging individual light-receiving elements in a ``field'' shape, the permissible movement range of the spot can be expanded, and it is possible to prevent the spot from coming off the light-receiving surface when the sample is first attached.

上記の2つの実施例では、4分割受光素子のスポット受
光出力をCPUに入力してその出力で傾き調整機構の駆
動モータを制御して自動的に光軸合せを行なう例を説明
したが、4分割受光素子のスポット受光出力を用いて、
光軸を合致させるために人手で試料面を移動させるのに
必要な情報を出力するようにすれば、手動で調整する場
合にも迷うことなく調整可能となる。
In the above two embodiments, an example was explained in which the spot light reception output of the 4-split light receiving element is input to the CPU and the drive motor of the tilt adjustment mechanism is controlled by the output to automatically align the optical axis. Using the spot light receiving output of the split light receiving element,
By outputting the information necessary to manually move the sample surface to align the optical axes, manual adjustment can be made without hesitation.

なお、第1図にはフィゾー型干渉計に本発明を適用した
実施例を示したが、本発明はそれ以外のトワイマングリ
ーン型干渉計等の各種の干渉測定装置に適用することが
出来る。
Although FIG. 1 shows an embodiment in which the present invention is applied to a Fizeau type interferometer, the present invention can be applied to various interference measuring devices such as a Twyman-Green type interferometer.

以上の如く、本発明によれば、短時間で試料面と基準面
の光軸を精度よく合致させることができるので、工場で
の生産ラインガどの多数の試料が流れている現場での製
品検査に干渉測定装置を使用することが可能となり、検
査精度の向上、作業能率の向上に顕著な効果を得ること
が出来る。
As described above, according to the present invention, it is possible to align the optical axes of the sample surface and the reference surface with high precision in a short time, making it suitable for product inspection at sites where many samples are flowing, such as on a production line in a factory. It becomes possible to use an interference measurement device, and a remarkable effect can be obtained in improving inspection accuracy and work efficiency.

又、調整量を記憶させることにより、回転多面鏡などの
各面相互の面倒れ、回転誤差等を同時に測定することが
できるので、レーザビームの偏向精度が向上し、レーザ
プリンタの画質向上にも寄与する。
In addition, by memorizing the amount of adjustment, it is possible to simultaneously measure the mutual surface tilt and rotation error of each surface of a rotating polygon mirror, etc., which improves the deflection accuracy of the laser beam and improves the image quality of laser printers. Contribute.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した干渉測定装置の実施例の光学
系の図、第2図(atはその試料支持部の全体を示す斜
視図、(b)はその傾き調整機構を示す断面図、第3図
は4分割受光素子の分割線の方向と試料傾き調整機構支
点の配置の関係並びに傾き調整力法を説明する図式図、
第4図はその傾き調整機構の制御ブロック図、第5図は
本発明の他の実施例における傾き調整機構を示す断面図
、第6図は4分割受光素子の他の構成の例を示す平面図
である。 1・・・レーザ光源 2・・・ビーム拡散レンズ 3・・・ビームスプリッタ 4・・・基準面 5・・・試料 61・〒結像レンズ 7・・・スクリーン lO・・・4分割受光素子 11・・・試料支持基板 17〜22・・・試料面傾き調整駆動手段101・・・
試料 103・・・基準面 108.112・・・試料面傾き調整駆動手段第1図 (a’)     (b) 第3図 第5図 第6図
Fig. 1 is a diagram of an optical system of an embodiment of an interferometric measuring device to which the present invention is applied, Fig. 2 (at is a perspective view showing the entire sample support part, and (b) is a sectional view showing its tilt adjustment mechanism. , FIG. 3 is a schematic diagram illustrating the relationship between the direction of the dividing line of the 4-split light receiving element and the arrangement of the fulcrum of the sample tilt adjustment mechanism, as well as the tilt adjustment force method.
FIG. 4 is a control block diagram of the tilt adjustment mechanism, FIG. 5 is a sectional view showing the tilt adjustment mechanism in another embodiment of the present invention, and FIG. 6 is a plane view showing another example of the configuration of the 4-split light receiving element. It is a diagram. 1...Laser light source 2...Beam diffusion lens 3...Beam splitter 4...Reference surface 5...Sample 61...Imaging lens 7...Screen lO...4-division light-receiving element 11 ...Sample support substrates 17-22...Sample surface tilt adjustment drive means 101...
Sample 103...Reference surface 108.112...Sample surface tilt adjustment drive means Fig. 1 (a') (b) Fig. 3 Fig. 5 Fig. 6

Claims (1)

【特許請求の範囲】 (1)  レーザ光源と、レーザ光源からのビームを拡
散するビーム拡散レンズと、拡散されたビームを透過し
その反対力向より来るビームを反射させるビームスプリ
ッタと、該ビームスプリッタを透過したビームを反射さ
せる基準面と、該基準面と光軸を合せて配置される試料
面と前記基準面との夫々による反射ビームの前記ビーム
スプリッタ−による反射ビームの光路に設けた結像レン
ズと、基準面と試料面との間で生ずる干渉縞を投影する
スクリーンとを有する干渉測定装置の試料面と基準面と
の光軸合せ機構において、前記の基準面及び試料面の夫
々による反射ビームのスポット結像面に受光面が四分割
された受光素子を設けるとともに、試料面の傾き調整の
ための駆動手段を設け、該駆動手段の制御に王妃受光素
子の出力信号を利用することを特徴とする光軸合せ機構
。 (2)上記の受光素子の分割線の方向と、試料面の傾き
調整機構の傾き調整の際の傾動軸の方向とを対応させた
ことを特徴とする特許請求の範囲第1項に記載の光軸合
せ機構。 (3)上記の4分割受光素子を4個の単独の受光素子を
「田」の字形に配置して構成したことを特徴とする特許
請求の範囲第1項又は第2項に記載の光軸合せ機構。 (4)  試料面の傾き調整機構駆動手段を制御するた
めの制御部を有し、4分割受光素子の出力を該制御部に
入力し、その出力により上記傾き調整機構駆動手段を制
御するようにしたことを特徴とする特許請求の範囲第1
項乃至第3項のいずれかに記載の自動光軸合せ機構。 (51試料面の傾き調整機構駆動手段を手動で駆動して
試料面の傾き調整を行なうに必要な情報を、上記の4分
割受光素子を用いて出力する手段を設けたことを特徴と
する特許請求の範囲第1項に記載の手動光軸合せ機構。 (6)  複数個の測定面を有する試料の面の測定を行
う場合、各面の傾き調整量を記憶する手段を備えたこと
を特徴とする特許請求の範囲第1項乃至第5項のいずれ
かに記載の光軸合せ機構。
[Claims] (1) A laser light source, a beam diffusing lens that diffuses a beam from the laser light source, a beam splitter that transmits the diffused beam and reflects a beam coming from the opposite direction, and the beam splitter. a reference surface that reflects the beam transmitted through the reference surface, a sample surface arranged with its optical axis aligned with the reference surface, and an image formed in the optical path of the reflected beam by the beam splitter. In an optical axis alignment mechanism between a sample surface and a reference surface of an interference measurement apparatus having a lens and a screen for projecting interference fringes generated between the reference surface and the sample surface, reflection by each of the reference surface and the sample surface is used. A light-receiving element having a light-receiving surface divided into four parts is provided on the beam spot imaging plane, and a driving means for adjusting the inclination of the sample surface is provided, and the output signal of the queen light-receiving element is used to control the driving means. Features optical axis alignment mechanism. (2) The method according to claim 1, characterized in that the direction of the dividing line of the light-receiving element is made to correspond to the direction of the tilt axis when adjusting the tilt of the sample surface tilt adjustment mechanism. Optical axis alignment mechanism. (3) The optical axis according to claim 1 or 2, characterized in that the above-mentioned four-division light-receiving element is constructed by arranging four individual light-receiving elements in the shape of a square. Matching mechanism. (4) It has a control section for controlling the tilt adjustment mechanism driving means for the sample surface, and the output of the four-divided light receiving element is input to the control section, and the tilt adjustment mechanism driving means is controlled by the output. Claim 1 characterized in that
The automatic optical axis alignment mechanism according to any one of items 1 to 3. (51) A patent characterized in that a means is provided for outputting information necessary for adjusting the inclination of the sample surface by manually driving the inclination adjustment mechanism driving means of the sample surface using the above-mentioned four-division light-receiving element. The manual optical axis alignment mechanism according to claim 1. (6) When measuring a surface of a sample having a plurality of measurement surfaces, it is characterized by comprising means for storing the amount of tilt adjustment of each surface. An optical axis alignment mechanism according to any one of claims 1 to 5.
JP57134650A 1982-08-03 1982-08-03 Mechanism for aligning optical axis of interference measuring device Granted JPS5924819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57134650A JPS5924819A (en) 1982-08-03 1982-08-03 Mechanism for aligning optical axis of interference measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57134650A JPS5924819A (en) 1982-08-03 1982-08-03 Mechanism for aligning optical axis of interference measuring device

Publications (2)

Publication Number Publication Date
JPS5924819A true JPS5924819A (en) 1984-02-08
JPS6313121B2 JPS6313121B2 (en) 1988-03-24

Family

ID=15133325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57134650A Granted JPS5924819A (en) 1982-08-03 1982-08-03 Mechanism for aligning optical axis of interference measuring device

Country Status (1)

Country Link
JP (1) JPS5924819A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129711A (en) * 1985-11-29 1987-06-12 Toshiba Corp Method and apparatus for measuring configurational error of object
JPS63252207A (en) * 1987-04-08 1988-10-19 Olympus Optical Co Ltd Stage
JPS6416904A (en) * 1987-07-10 1989-01-20 Fujitsu Ltd Inspection instrument for surface waviness
JPH0238807A (en) * 1988-07-27 1990-02-08 Tokyo Seimitsu Co Ltd Apparatus for automatically measuring flatness
JP2004354283A (en) * 2003-05-30 2004-12-16 Miyota Kk Lighting unit of imaging device for surface inspection and its control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661935U (en) * 1991-10-16 1994-09-02 クラレケミカル株式会社 Athlete's foot remedy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129711A (en) * 1985-11-29 1987-06-12 Toshiba Corp Method and apparatus for measuring configurational error of object
JPS63252207A (en) * 1987-04-08 1988-10-19 Olympus Optical Co Ltd Stage
JPS6416904A (en) * 1987-07-10 1989-01-20 Fujitsu Ltd Inspection instrument for surface waviness
JPH0238807A (en) * 1988-07-27 1990-02-08 Tokyo Seimitsu Co Ltd Apparatus for automatically measuring flatness
JP2004354283A (en) * 2003-05-30 2004-12-16 Miyota Kk Lighting unit of imaging device for surface inspection and its control method

Also Published As

Publication number Publication date
JPS6313121B2 (en) 1988-03-24

Similar Documents

Publication Publication Date Title
US5459564A (en) Apparatus and method for inspecting end faces of optical fibers and optical fiber connectors
CN1644296B (en) Laser machining apparatus
US5307368A (en) Laser apparatus for simultaneously generating mutually perpendicular planes
KR101257586B1 (en) Optical axis adjusting apparatus, optical axis adjusting method, and projection type display apparatus
US20100097619A1 (en) Optical wave interference measuring apparatus
JPH01245104A (en) Microscope having device for measuring microscopic construction
EP2177872A1 (en) Optical wave interference measuring apparatus
US5076689A (en) Off axis mirror alignment
US5289254A (en) Process and apparatus for testing optical components or systems
JPS5924819A (en) Mechanism for aligning optical axis of interference measuring device
US7145659B2 (en) Light interference measurement method using computer-generated hologram, and interferometer using this method
JP3224718B2 (en) Interferometer
JPS63174012A (en) Inclination adjusting device for optical element or the like
JPH063219A (en) Interferometer
US4653911A (en) Autocollimation method and apparatus
JP3365884B2 (en) Scanning optical microscope
CN111024000B (en) Long-range surface shape detector and detection method
JPH0613999B2 (en) Deviation measuring device for optical components
JPH11211426A (en) Surface form measuring device
CN110926367B (en) Long-range optical surface shape detection device and detection method
JP3341779B2 (en) Alignment device for interferometer
RU2018792C1 (en) Method and device for aligning fabric-perot interferometer
JPH0783609A (en) Device for aligning body to be examined of interferometer
JPH0323883B2 (en)
JP3003453B2 (en) Optical device module assembly equipment