JPS5924754B2 - Method for manufacturing silicon carbide molded body - Google Patents

Method for manufacturing silicon carbide molded body

Info

Publication number
JPS5924754B2
JPS5924754B2 JP52081222A JP8122277A JPS5924754B2 JP S5924754 B2 JPS5924754 B2 JP S5924754B2 JP 52081222 A JP52081222 A JP 52081222A JP 8122277 A JP8122277 A JP 8122277A JP S5924754 B2 JPS5924754 B2 JP S5924754B2
Authority
JP
Japan
Prior art keywords
molded body
sic
silicon carbide
weight
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52081222A
Other languages
Japanese (ja)
Other versions
JPS5416521A (en
Inventor
義雄 山中
晃 千田
繁 長沢
治男 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP52081222A priority Critical patent/JPS5924754B2/en
Publication of JPS5416521A publication Critical patent/JPS5416521A/en
Publication of JPS5924754B2 publication Critical patent/JPS5924754B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は炭化けい素成型体の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a silicon carbide molded body.

従来の反応焼結法による炭化けい素(以下SiCと呼ぶ
)成型体の製造方法は、SiC粉末、炭素粉末と有機質
の一時粘結剤を混練成型しくこれを以下−吹成型体と呼
ぶ)、加熱により粘結剤を揮発分と炭素に変化させた後
(これを以下二次成型体と呼ぶ)、この成型体に融解点
以上の温度の金属けい素を浸透させてSiCを生成させ
るものであった。
A conventional method for manufacturing a silicon carbide (hereinafter referred to as SiC) molded body using a reaction sintering method involves kneading and molding SiC powder, carbon powder, and an organic temporary binder (hereinafter referred to as a blow molded body), After the binder is changed into volatile matter and carbon by heating (hereinafter referred to as the secondary molded body), metallic silicon at a temperature above the melting point is infiltrated into this molded body to generate SiC. there were.

この方法はSiC粉末とマグネシアなどの混合粉末をホ
ットプレスを使用して成型するいわゆるホットプレス法
に比べて異型の製品を製造し易い長逝をもっているが、
有機質の一時粘結剤を使用しているため、一次成型体お
よび金属けい素浸透以前の二次成型体の強度が低く、こ
の段階で寸法精度の高い加工を施すことは不可能である
Compared to the so-called hot press method, in which mixed powders such as SiC powder and magnesia are molded using a hot press, this method has a long lifespan and allows for easier production of irregularly shaped products.
Since an organic temporary binder is used, the strength of the primary molded body and the secondary molded body before metal silicon infiltration is low, and it is impossible to perform processing with high dimensional accuracy at this stage.

さらに二次成型体に金属けい素を浸透させてSiCに変
化させた成型体は、ビッカース硬度が3200以上にも
なるため、その加工にはダイヤモンド工具しか使用でき
ず、加工費が高くつくという欠点がある。
Furthermore, the secondary molded product is transformed into SiC by infiltrating metallic silicon, and has a Vickers hardness of over 3200, so only diamond tools can be used for processing, which increases processing costs. There is.

本発明者らは、SiC化された最終の成型体についての
加工を不要にし、二次成型体の段階でその強度を向上さ
せて、切削加工を容易に、かつ精度よ〈実施できる方法
について鋭意検討の結果、前記従来の不利欠点を伴うこ
とのない新規な方法を見出し1本発明を完成した。
The present inventors have made efforts to eliminate the need for machining the final SiC molded body, improve its strength at the stage of the secondary molded body, and make cutting processing easier and more accurate. As a result of study, we found a new method that does not have the disadvantages of the conventional methods and completed the present invention.

すなわち、本発明は、SiC粉末10〜80重量%、炭
素粉末10〜70重量%、およびポリオルガノポリシラ
ンおよび/またはポリオルガノカルボシラン0.5〜6
0重量%からなる混合物を成型して成型体となし、つい
でこの成型体をポリオルガノポリシラン、ポリオルガノ
カルボシランの熱分解が生じる温度にまで加熱し、熱分
解後の成型体に切削加工を施こしてのち、溶融金属けい
素を浸透させることを特徴とする炭化けい素成型体の製
造方法に関するものである。
That is, the present invention contains 10 to 80% by weight of SiC powder, 10 to 70% by weight of carbon powder, and 0.5 to 6% of polyorganopolysilane and/or polyorganocarbosilane.
A mixture consisting of 0% by weight is molded to form a molded body, then this molded body is heated to a temperature at which thermal decomposition of polyorganopolysilane and polyorganocarbosilane occurs, and the molded body after thermal decomposition is subjected to cutting. The present invention relates to a method for manufacturing a silicon carbide molded body, which comprises straining and then impregnating molten metal silicon.

本発明に用いるSiC粉末は平均粒径が20μm以下、
好ましくは5μm以下のものがよく、結晶構造はαでも
βでもよいが好ましくはα−SiC構造に富むものがよ
い。
The SiC powder used in the present invention has an average particle size of 20 μm or less,
Preferably, the crystal structure is 5 μm or less, and the crystal structure may be α or β, but it is preferably rich in α-SiC structure.

炭素粉末は、その種類に関係なく使用でき、粒形は球状
に限らず針状でもよいが、平均粒径100μm以下、好
ましくは10μm以下の黒鉛粉末を用いると好都合であ
る。
Carbon powder can be used regardless of its type, and the particle shape is not limited to spherical but may be acicular. However, it is convenient to use graphite powder with an average particle size of 100 μm or less, preferably 10 μm or less.

ポリオルガノポリシランとしては、たとえばポリメチル
ポリシランのように有機基としてメチル基を有するもの
がよく、常温で液状もしくは加熱によって溶融するもの
であれば分子量には特に制限されないが、常温で液状の
比較的低分子量のものが好ましい。
The polyorganopolysilane is preferably one having a methyl group as an organic group, such as polymethylpolysilane, and there is no particular restriction on the molecular weight as long as it is liquid at room temperature or melts when heated. Those with low molecular weight are preferred.

このポリオルガノポリシランは主鎖がSi原子のみから
なる一般式 (Rは一価炭化水素基、mは正の整数)で示されるもの
であるが、これと同様に使用されるポリオルガノカルボ
シランは主鎖が である(特開昭51−126300号公報1%開昭53
−80500号公報参照)。
This polyorganopolysilane has a main chain consisting of only Si atoms and is represented by the general formula (R is a monovalent hydrocarbon group, m is a positive integer), but the polyorganocarbosilane used similarly to this is The main chain is (Japanese Patent Application Laid-Open No. 126300/1983
(Refer to Publication No.-80500).

本発明の方法では、SiCと炭素粉末、ポリオルガノポ
リシランおよび/またはポリオルガノカルボシランの混
合比を、炭素粉末lO〜70%、好ましくは、20〜5
0%、ポリオルガノポリシランおよば/またはポリオル
ガノポリシラン0.5〜60%、好ましくは20〜50
%、SiCが10〜80%、好ましくは20〜45%(
重量%、以下同じ)となるようにすると良好な結果が得
られる。
In the method of the present invention, the mixing ratio of SiC and carbon powder, polyorganopolysilane and/or polyorganocarbosilane is adjusted to 10 to 70%, preferably 20 to 5%.
0%, polyorganopolysilane and/or polyorganopolysilane 0.5-60%, preferably 20-50%
%, SiC is 10-80%, preferably 20-45% (
% by weight (the same applies hereinafter), good results can be obtained.

炭素粉末がこの範囲以下では、金属けい素の浸透が困難
になり、この範囲をこえると金属けい素の浸透時に成型
体に亀裂が生じることがある。
If the carbon powder is below this range, it becomes difficult for metal silicon to penetrate, and if it exceeds this range, cracks may occur in the molded body when metal silicon penetrates.

また、ポリオルガノポリシランおよび/またはポリオル
ガノカルボシランが少なすぎた場合、二次成型体がくず
れ易く、強度不足のため加工が困難となり、逆に多すぎ
た場合には切削工具の消耗が激しくなるので経済的では
ないが、加工は可能であるから適当な工具を選択限定す
る場合には上記範囲以上であってもよい。
In addition, if there is too little polyorganopolysilane and/or polyorganocarbosilane, the secondary molded product will easily collapse and will be difficult to process due to lack of strength, while if it is too much, cutting tools will be severely worn out. Therefore, it is not economical, but processing is possible, so if a suitable tool is selected and limited, it may be greater than the above range.

前記配合の混合物を十分に混練した後金型プレス、ラバ
プレス機で加圧成型して一次成型体とし、これを適当な
ふん囲気中で、前記オルガノポリシランおよび/または
ポリオルガノカルボシランがSiCに変化するまで加熱
すると強度の高い二次成型体が得られる。
After sufficiently kneading the mixture of the above formulation, the mixture is press-molded using a mold press or a rubber press machine to form a primary molded body, and the organopolysilane and/or polyorganocarbosilane is converted into SiC in an appropriate atmosphere. When heated until , a highly strong secondary molded body can be obtained.

この場合の加熱の効果はlOO°C以上で生じ500〜
600°Cとすれば十分な効果が速やかに得られるが、
それ以上は温度の上昇と共に強度が増加する傾向を示す
In this case, the heating effect occurs at temperatures above 100°C.
If the temperature is 600°C, a sufficient effect can be obtained quickly, but
Above this temperature, the strength tends to increase as the temperature increases.

ただし、急激な加熱によって成型体に亀裂を生じること
があるので注意が必要である。
However, care must be taken as rapid heating may cause cracks in the molded product.

この場合、400℃以上に加熱するとふん囲気中の酸素
による酸化反応が起るので、要すればふん囲気をアルゴ
ンなどの不活性ガスとするか真空とすればよい。
In this case, heating to 400° C. or higher causes an oxidation reaction due to oxygen in the surrounding air, so if necessary, the surrounding air may be replaced with an inert gas such as argon or a vacuum.

この加熱に要する時間は温度によって大巾に異なか、た
とえば500℃であれば約3時間で十分であり、成型体
が一定重量に達する。
The time required for this heating varies widely depending on the temperature, but for example, at 500° C., about 3 hours is sufficient, and the molded product reaches a certain weight.

この二次成型体は、高速度鋼系または超硬系、セラミッ
クス系の切削バイト、GO砥石、金切鋸、ダイヤモンド
工具等の一般的汎用工具で複雑な形状に加工を施すこと
ができる。
This secondary molded body can be processed into a complicated shape using a general purpose tool such as a cutting tool made of high-speed steel, carbide, or ceramic, a GO grindstone, a hacksaw, or a diamond tool.

加工後の二次成型体に常法により溶融金属けい素を浸透
させると、仕上加工を全く必要としないか、はとんど必
要としないような精度の高い寸法のち密なSiC成型体
が得られ、従来法では製作困難であった複雑な形状でし
かも高い寸法精度の成型体が容易に得られる。
By infiltrating the processed secondary molded body with molten silicon metal using a conventional method, a dense SiC molded body with highly accurate dimensions that does not require any or very little finishing processing can be obtained. This makes it possible to easily obtain a molded body with a complex shape and high dimensional accuracy, which was difficult to produce using conventional methods.

なお、二次成型体の比重はその配合によって1.75〜
2.00の範囲であるが、完成したSiC成型体の比重
はおおむね3.05〜3.15となる。
The specific gravity of the secondary molded product varies from 1.75 to 1.75 depending on its composition.
Although the range is 2.00, the specific gravity of the completed SiC molded body is approximately 3.05 to 3.15.

前記したように従来の技術ではSiCを作ってから切削
加工を施すため、(1)簡単な形状のものしかできない
、(2)ダイヤモンド工具しか使用できないので加工費
が高くつく(一般的に精密部品用セラミック製品はコス
トの大部分を加工費が占める)。
As mentioned above, in conventional technology, SiC is manufactured and then subjected to cutting, which results in (1) only simple shapes being possible; (2) only diamond tools can be used, resulting in high machining costs (generally for precision parts). Processing costs account for most of the cost of ceramic products for industrial use).

(3)二次成型体は強度が低く、加工がきわめて困難で
高い精度を得ることができないためこの段階での加工は
ほとんど行われない、等の欠点があるが、本発明では、
これらの問題点が一掃され、(1)複雑な形状の製品を
製造できる、(2)加工を汎用の工具で施すことができ
る、(3)二次成型体の状態で精度よく刀ロエできるの
で製品仕上加工をほとんど要しないか、全くしないです
ますことができる、したがって(4)製造加工のコスト
に占める割合は従来法に比べて著しく軽減できる。
(3) The secondary molded product has low strength and is extremely difficult to process, making it impossible to obtain high precision, so processing at this stage is rarely performed. However, in the present invention,
These problems have been eliminated, and (1) products with complex shapes can be manufactured, (2) machining can be performed using general-purpose tools, and (3) sword roe can be performed with high precision in the secondary molded state. (4) The proportion of manufacturing processing costs can be significantly reduced compared to conventional methods.

などのすぐれた利点が得られる。You will get great benefits such as:

以下本発明を実施例について説明する。The present invention will be described below with reference to Examples.

実施例 l α−3iC(#3000)、黒鉛粉末(平均粒径2μm
)、 で示されるポリメチルポリシラン(25℃における粘度
430センチストークス、平均分子量1400)を重量
パーセントで71.22.7の割合で混合し、金型プレ
スIt/iの圧で5鋸×5CTLX1(mの板状に成型
し、さらにラバプレスで2t/iの加圧下に成型して一
次成型体とした。
Example l α-3iC (#3000), graphite powder (average particle size 2 μm
), polymethylpolysilane (viscosity 430 centistokes at 25°C, average molecular weight 1400) was mixed in a weight percent ratio of 71.22.7, and the mixture was mixed with 5 saws x 5 CTL x 1 ( The molded product was molded into a plate shape of m in size, and further molded under pressure of 2t/i using a rubber press to obtain a primary molded product.

この一次成型体を炉内で10 ’mmHg、 1000
’C/3時間の速度で昇温し加熱した。
This primary molded body was heated in a furnace at 10'mmHg and 1000
The temperature was increased and heated at a rate of 'C/3 hours.

次に同一炉内のこの二次成型体の直下に置かれたるつぼ
中の金属けい素が融解した後は炉内に、アルゴンガスを
導入して圧力をIO−2mrILHgとし、1600°
Cまで加熱して、成型体の一端を溶融金属けい素中に浸
漬して金属けい素を浸透させ、SiC板材を製造した。
Next, after the metal silicon in the crucible placed directly below this secondary molded body in the same furnace is melted, argon gas is introduced into the furnace to set the pressure to IO-2mrILHg, and the temperature is set at 160°
The molded body was heated to C and one end of the molded body was immersed in molten metal silicon to allow the metal silicon to penetrate thereinto, thereby producing a SiC plate material.

板材の比重は3.IOであった。この板材中の音速を、
市販品の反応焼結法、ホットプレス法による比較試料と
同時測定した結果は表−1のとおりであった。
The specific gravity of the board is 3. It was IO. The speed of sound in this plate is
Table 1 shows the results of simultaneous measurements with comparative samples of commercially available products made by the reaction sintering method and the hot press method.

実施例 2 α−8iC(#3000)、黒鉛粉末(平均粒径5μm
)、 で示されるポリエチルポリシラン(25℃における粘度
430センチストークス、平均分子量1400)ヘキサ
ンを重量パーセントでそれぞれ32.30.18,20
になるように自己合し、十分混練した後、金型プレスで
350kg/iの加圧下に5CIrL×5cTLxlC
1rLの板状に成型した。
Example 2 α-8iC (#3000), graphite powder (average particle size 5 μm
), polyethylpolysilane (viscosity at 25°C 430 centistokes, average molecular weight 1400) hexane in weight percent 32, 30, 18, 20, respectively.
After kneading thoroughly, 5CIrL×5cTLxlC was formed under a pressure of 350 kg/i using a mold press.
It was molded into a 1rL plate shape.

この一次成型体をアルゴンふん囲気中で1時間当り10
0℃の昇温速度で500℃まで加熱した。
This primary molded body was heated at 10% per hour in an argon atmosphere.
It was heated to 500°C at a temperature increase rate of 0°C.

この二次成型体をGC異型砥石で物性試験用亜鈴型試験
片に加工し、その一端を1500°Cのアルゴンふん囲
気中で融解保持しである金属けい素に接触させ、SiC
成型体としたーところ、仕上加工なしで十分な精度をも
った物性試験用試験片が得られた。
This secondary molded body was processed into a dumbbell-shaped specimen for physical property testing using a GC amorphous grindstone, and one end of the specimen was melted and held in an argon atmosphere at 1500°C and brought into contact with silicon metal.
As for the molded product, a test piece for physical property testing with sufficient accuracy was obtained without any finishing processing.

このものの比重は3.05であった。比較のため、上記
組成中、ポリシランを同量のメチルセルロースに、ヘキ
サンを純水に代えた混練物を金型プレスを用いて350
kg/fflで成型しアルゴンふん囲気中で500°C
まで加熱したものは、GO異型砥石での加工は全く不可
能であった。
The specific gravity of this product was 3.05. For comparison, a kneaded product of the above composition in which polysilane was replaced with the same amount of methylcellulose and hexane was replaced with pure water was prepared using a mold press at 350°C.
kg/ffl and molded at 500°C in an argon atmosphere.
It was completely impossible to process with the GO special type grindstone.

実施例 3 α−8iC(#3000)、黒鉛粉末(平均粒径2μm
)、 で示されるポリメチルポリシラン(25℃における粘度
1700センチストークス、平均分子量3800)、 の連鎖からなる(nは正の整数)ポリカルボシラン(2
5℃における粘度130センチストークス、平均分子量
500)、ヘキサンを重量パーセントでそれぞれ56.
28.3.3.10になるように配合し、十分混練した
後、ラバプレスを用い、圧力41/dで直径10iMJ
長さ100mmの棒状に成型したものをアルゴンふん囲
気中、1時間当り300°Cの速度で昇温し、1000
℃まで加熱した。
Example 3 α-8iC (#3000), graphite powder (average particle size 2 μm
), polymethylpolysilane (viscosity at 25°C: 1700 centistokes, average molecular weight 3800), polycarbosilane (n is a positive integer) consisting of a chain of (n is a positive integer)
The viscosity at 5° C. is 130 centistokes, the average molecular weight is 500), and the weight percent of hexane is 56.
28.3.3.10, and after thorough kneading, using a rubber press, the diameter was 10 iMJ at a pressure of 41/d.
It was molded into a rod shape with a length of 100 mm and heated at a rate of 300°C per hour in an argon atmosphere.
Heated to ℃.

このものを旋盤に取り付は超硬合金K −20のバイト
を使用し、側面を加工し芯出しを行い、次いで中心部に
ドリルで直径5iiの穴をくり抜き、精度の高い二次成
型体のパイプを製造した。
To install this on a lathe, use a carbide K-20 bit to machine the sides and center it, then drill a 5II diameter hole in the center to create a highly accurate secondary molded body. Manufactured pipes.

これを実施例2したがって、シリコンを浸透させ比重3
.00のSiCパイプを作ったが、その寸法精度は二次
成型体とほとんど同じであった。
This was carried out in Example 2. Therefore, silicon was infiltrated and the specific gravity was 3.
.. A 00 SiC pipe was made, and its dimensional accuracy was almost the same as that of the secondary molded product.

なお、上記混線組成中ポリシラン、ポリカルボシランを
同量のメチルセルロースに、ヘキサンを純水に代えて同
一条件で同時比較を行ったところ強度が不足し、旋盤に
取付けることが不可能であった。
In addition, when a simultaneous comparison was made under the same conditions with the same amounts of methylcellulose replacing polysilane and polycarbosilane in the above crosstalk composition and pure water replacing hexane, the strength was insufficient and it was impossible to install on a lathe.

実施例 4 実施例1と同じ配合の混合物を金型プレスを使用して3
50kg/cr?Lの圧力で成型し、ラバプレスで3t
/fflの圧力でプレスを行い、lo″mmHgの真空
中で実施例1と同一の昇温速度で500’Cまで加熱し
た二次成型体を切削加工を施し、8mmX 60 mm
X 5@771の形状にした後、No”miHgの真空
中で溶融金属けい素を浸透させてSiCを生成させ、物
性測定用試験片Aを作った。
Example 4 A mixture with the same composition as in Example 1 was prepared using a mold press.
50kg/cr? Molded with a pressure of L and 3t with a rubber press.
The secondary molded body was pressed at a pressure of /ffl and heated to 500'C in a vacuum of lo'' mmHg at the same temperature increase rate as in Example 1, and then cut into 8 mm x 60 mm.
After shaping into the shape of X5@771, molten metal silicon was infiltrated in a vacuum of No"miHg to generate SiC, and a test piece A for measuring physical properties was prepared.

なお、切削加工で整えた試験片は、金属けい素浸透後で
も、ノギス測定による寸法上の差異が認められなかった
It should be noted that no dimensional difference was observed in the test pieces prepared by cutting, even after infiltration with metallic silicon, as measured with calipers.

また別に、同一配合の混合物を金型プレスとラバプレス
で同様に成型し、切削加工しない試験片Bを作成し、さ
らにポリシランの代りにメチルセルロース、ヘキサンの
代りにメタノールを配合した他は試験片Bと同じ条件で
試験片Cを作成した。
Separately, a mixture with the same composition was molded in the same way using a mold press and a rubber press to create a test specimen B that was not cut. Test piece C was created under the same conditions.

なお、この試験片Cは二次成型体の段階では切削加工は
不可能であった。
Note that this test piece C could not be cut when it was a secondary molded product.

各試験片A、B、Cについて測定した物性値は表−Hの
とおりであった。
The physical property values measured for each test piece A, B, and C are shown in Table-H.

各々試f43点について測定、曲げ強さはスパン4Qm
mで測定、弾性率は共鳴振動法による。
Measured at 43 test points for each test, bending strength is span 4Qm
Measured at m, elastic modulus is based on resonance vibration method.

実施例 5 実施例1と同じα−8iCと黒鉛粉末に の連鎖からポリメチルポリカルボシラン(25℃におけ
る粘度440センチストークス、平均分子量1500)
を56.24.20重量%の割合で混合し、1トン/d
の成型圧で8CrfL×8篩×4ぼの板状体に成形し、
これをさらにラバプレスを用いて4トン/dの圧力で加
圧して一次成形体とした。
Example 5 Polymethylpolycarbosilane (viscosity 440 centistokes at 25°C, average molecular weight 1500) was produced from the same chain of α-8iC and graphite powder as in Example 1.
were mixed at a ratio of 56.24.20% by weight, and 1 ton/d
Formed into a plate-like body of 8CrfL x 8 sieves x 4 pieces at a forming pressure of
This was further pressed at a pressure of 4 tons/d using a rubber press to form a primary molded product.

この一次成形体を10″?f17WHgの真空度に保た
れた真空炉内で1.5時間を要して500°Cまで昇温
し、同温度に1時間保持後、室温まで冷却して炉外に取
り出した。
This primary molded body was heated to 500°C over 1.5 hours in a vacuum furnace maintained at a vacuum level of 10″?f17WHg, maintained at the same temperature for 1 hour, cooled to room temperature, and then heated in a vacuum furnace. I took it outside.

この二次成形体から35mmX8mm×4mmの曲げ強
さ試験片を切り出すとともに残りの部分を超硬バイトと
GC砥石を使用して加工し、多段付きの長さ5cIrL
、直径3CrfLの円柱体を作成した。
A bending strength test piece of 35 mm x 8 mm x 4 mm was cut out from this secondary molded body, and the remaining part was processed using a carbide cutting tool and a GC grindstone to a multi-stage length of 5 cIrL.
, a cylindrical body with a diameter of 3CrfL was created.

これらの試験片および円柱体に実施例1と同じ条件で溶
融金属けい素を浸透させて炭化けい素成形体とし、それ
ぞれの比重を測定したところ前者では3.01〜3.1
6の範囲内にあり、後者では3.05であった。
These test pieces and cylindrical bodies were infiltrated with molten metal silicon under the same conditions as in Example 1 to form silicon carbide molded bodies, and the specific gravity of each was measured.
6, and the latter was 3.05.

これらの試験片について室温、500℃、800℃およ
び1200°Cにおいて曲げ強さを測定したところ、い
ずれも5.6〜6.7トン/dの範囲内にあり、曲げ強
さの温度変化はほとんど認められなかった。
The bending strength of these specimens was measured at room temperature, 500°C, 800°C, and 1200°C, and all were within the range of 5.6 to 6.7 tons/d, and the temperature change in bending strength was It was hardly recognized.

実施例 6 ポリメチルカルボシラン(25°Cにおける粘度420
センチストークス、平均分子量1400のもの)および
実施例5と同じα−8iCおよび黒鉛粉末を30.50
,20重量%の割合で混合し、実施例5と同じ条件で一
次成形体とした。
Example 6 Polymethylcarbosilane (viscosity 420 at 25°C
centistokes, with an average molecular weight of 1400) and the same α-8iC and graphite powder as in Example 5 at 30.50%
, 20% by weight, and a primary molded body was prepared under the same conditions as in Example 5.

ついでこれをアルゴンガスふん囲気中で2時間を要して
800℃まで昇温し、同温度に1時間保持してから室温
まで冷却し炉外に取り出し、実施例5と同様に試験片の
切り出しおよび溶融金属けい素の浸透を行って炭化けい
素成形体とした。
This was then heated to 800°C over 2 hours in an argon gas atmosphere, maintained at the same temperature for 1 hour, cooled to room temperature, taken out of the furnace, and cut into test pieces in the same manner as in Example 5. Then, a silicon carbide molded body was obtained by infiltrating the molded body with molten metal silicon.

これらの比重は3.05〜3.12の範囲内にあり、ま
た曲げ強さは5.6〜6.2トン/dの範囲であった。
Their specific gravity was in the range of 3.05 to 3.12, and their bending strength was in the range of 5.6 to 6.2 tons/d.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化けい素粉末10〜80重量%、炭素粉末10〜
70重量翫およびポリオルガノポリシランおよび/また
はポリオルガノカルボシラン0.5〜60重量%からな
る混合物を成型して成型体となし、ついでこの成型体を
ポリオルガノポリシラン、ポリオルガノカルボシランの
熱分解が生じる温度にまで加熱し、熱分解後の成型体に
切削加工を施こしてのち、溶融金属けい素を浸透させる
ことを特徴とする炭化けい素成型体の製造方法。
1 Silicon carbide powder 10-80% by weight, carbon powder 10-80% by weight
A mixture of 70% by weight and 0.5 to 60% by weight of polyorganopolysilane and/or polyorganocarbosilane is molded into a molded body, and this molded body is then subjected to thermal decomposition of polyorganopolysilane and polyorganocarbosilane. 1. A method for producing a silicon carbide molded body, which comprises heating the molded body to a temperature at which it occurs, cutting the pyrolyzed molded body, and then impregnating the molded body with molten metal silicon.
JP52081222A 1977-07-07 1977-07-07 Method for manufacturing silicon carbide molded body Expired JPS5924754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52081222A JPS5924754B2 (en) 1977-07-07 1977-07-07 Method for manufacturing silicon carbide molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52081222A JPS5924754B2 (en) 1977-07-07 1977-07-07 Method for manufacturing silicon carbide molded body

Publications (2)

Publication Number Publication Date
JPS5416521A JPS5416521A (en) 1979-02-07
JPS5924754B2 true JPS5924754B2 (en) 1984-06-12

Family

ID=13740444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52081222A Expired JPS5924754B2 (en) 1977-07-07 1977-07-07 Method for manufacturing silicon carbide molded body

Country Status (1)

Country Link
JP (1) JPS5924754B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1158259A (en) * 1980-07-17 1983-12-06 Francis J. Frechette Composite material of silicon carbide and silicon and methods of producing
WO1982001545A1 (en) * 1980-10-27 1982-05-13 North Bernard Silicon carbide bodies
JPS5832070A (en) * 1981-08-21 1983-02-24 信越化学工業株式会社 Manufacture of high density silicon carbide sintered body
JPS6016868A (en) * 1983-07-02 1985-01-28 黒崎窯業株式会社 Manufacture of silicon carbide sintered body
GB8324166D0 (en) * 1983-09-09 1983-10-12 Atomic Energy Authority Uk Reaction-bonded silicon carbide bodies
JPS61163180A (en) * 1985-01-11 1986-07-23 イビデン株式会社 High size precision and anti-abrasivity silicon carbide composite body and manufacture
JPH0736381B2 (en) * 1985-03-19 1995-04-19 イビデン株式会社 Heat resistant jig and its manufacturing method
EP1445243B1 (en) * 2001-10-16 2014-11-26 Bridgestone Corporation Process for producing silicon carbide sinter

Also Published As

Publication number Publication date
JPS5416521A (en) 1979-02-07

Similar Documents

Publication Publication Date Title
US4745091A (en) Novel compositions for oxide ceramics
US5698485A (en) Process for producing ceramic microstructures from polymeric precursors
EP0145496B1 (en) Sintered silicon carbide/graphite/carbon composite ceramic body having ultrafine grain microstructure
EP1456149B1 (en) Carbide and nitride ternary ceramic glove and condom formers
EP0107349B1 (en) Manufacturing method for fiber reinforced silicon ceramics sintered body
EP1761475B1 (en) A process for the manufacturing of dense silicon carbide
JPH04243973A (en) Sintered ceramic product
KR890002888B1 (en) Sliding materials
EP0368535B1 (en) Highly densified bodies from preceramic polysilazanes filled with silicon carbide powders
JPS6128627B2 (en)
JPS5924754B2 (en) Method for manufacturing silicon carbide molded body
US5545687A (en) Preparation of high density boron carbide ceramics with preceramic polymer binders
EP0178753B1 (en) Process for producing a sintered silicon carbide/carbon composite ceramic body having ultrafine grain microstructure
JPH0379306B2 (en)
JP2000154062A (en) Boron carbide sintered compact and its production
US3549402A (en) Silicon nitride composition and articles thereof
AU689270B2 (en) Preparation of high density zirconium carbide ceramics with preceramic polymer binders
JP4285971B2 (en) Manufacturing method of ceramic bearing parts
JPS5957964A (en) Manufacture of fiber reinforced silicon nitride sintered bo-dy
JP2005146392A (en) Metal-based composite material, and its production method
JPH0585504B2 (en)
JPH07138075A (en) Production of silicon nitride having high strength and high thermal expansion
WO1991012350A1 (en) Method for the preparation of articles of composite materials
KR940007373B1 (en) Method of manufacturing metal-ceramics composite
JP2974534B2 (en) Refractory manufacturing method and refractory