JPS5924654B2 - Pressure difference adsorption gas purification method - Google Patents

Pressure difference adsorption gas purification method

Info

Publication number
JPS5924654B2
JPS5924654B2 JP54155656A JP15565679A JPS5924654B2 JP S5924654 B2 JPS5924654 B2 JP S5924654B2 JP 54155656 A JP54155656 A JP 54155656A JP 15565679 A JP15565679 A JP 15565679A JP S5924654 B2 JPS5924654 B2 JP S5924654B2
Authority
JP
Japan
Prior art keywords
adsorption
gas
desorption
flow path
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54155656A
Other languages
Japanese (ja)
Other versions
JPS5678615A (en
Inventor
耕二 大谷
舜介 野北
伊久夫 下河辺
潔 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP54155656A priority Critical patent/JPS5924654B2/en
Priority to DE3045451A priority patent/DE3045451C2/en
Publication of JPS5678615A publication Critical patent/JPS5678615A/en
Publication of JPS5924654B2 publication Critical patent/JPS5924654B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40052Recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4145Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
    • B01D2259/4148Multiple layers positioned apart from each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Drying Of Gases (AREA)

Description

【発明の詳細な説明】 本発明は圧力吸着式ガス精製方法に係り、特に空気中か
ら炭酸ガスや水分を分離除去するのに好適な圧力差吸着
式ガス精製方法とその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure adsorption gas purification method, and more particularly to a pressure difference adsorption gas purification method and apparatus suitable for separating and removing carbon dioxide and moisture from the air.

空気あるいは窒素等のガスを制御用、パージ用あるいは
深冷分離用等に利用する場合や、空気を原料として酸素
富化ガスや窒素富化ガスを製造する場合には、原料ガス
中に不純物として含有される炭酸ガス(以下、Co 2
と記す。
When using gases such as air or nitrogen for control, purging, or cryogenic separation, or when producing oxygen-enriched gas or nitrogen-enriched gas using air as a raw material, impurities may be present in the raw material gas. Contained carbon dioxide gas (hereinafter referred to as Co2
It is written as

)及び水分(以下、H2Oと記す。) and moisture (hereinafter referred to as H2O).

)を空気等力)ら除去することが重要で、一般に吸着処
理が行わnている。
) is important to remove from air, etc., and adsorption treatment is generally performed.

吸゛看処理によるガス精製方法は、被吸着物質を吸着し
た吸着剤の再生そげ)加熱ガスのパージによって行うT
SA(温度差吸着T he rma l Sw i n
gAdsorptionの略。
The gas purification method by absorption and monitoring treatment involves regeneration of the adsorbent that has adsorbed the adsorbed substance, and purging of heated gas.
SA (temperature difference adsorption
Abbreviation for gAdsorption.

以下同じ。)式と、E”plj、8時より〕低い圧力で
加熱を伴なわないガスのパージによって行うPSA(圧
力差吸!PressureSwing Adsorpt
ion の略。
same as below. ) formula and E"plj, from 8 o'clock] PSA (pressure differential suction! PressureSwing Adsorpt) performed by gas purge without heating at low pressure
Abbreviation for ion.

以下同じ。)式とに大別される。same as below. ) expressions.

従来は吸着剤としてCaA型又はNaX型の合成ゼオラ
イトを用いたTSA法が採用されてきたが、この方法は
加熱や冷却を必要とし、その為に吸着・脱着の切換時間
が4時間から8時間と長くなるという欠点があった。
Conventionally, the TSA method using CaA type or NaX type synthetic zeolite as an adsorbent has been adopted, but this method requires heating and cooling, and therefore the switching time between adsorption and desorption is 4 to 8 hours. It had the disadvantage of being long.

そこで近年になって、TSAiに比べて加熱手段や冷却
手段が不要で、力)つ吸着塔の切替時間の短縮による吸
着剤充填容量の削減が可能なPSA法が適用されるよう
になってきた。
Therefore, in recent years, the PSA method has been applied, which, compared to TSAi, does not require heating means or cooling means and can reduce the adsorbent filling capacity by shortening the switching time of the adsorption tower. .

PSA法は原料ガス中の特定成分を選択的に吸着除去し
て精製ガスを得る吸着操作と、この吸着操作に便用した
吸着剤から吸着物を前記吸着操作よりも低圧の雰囲気下
で脱着して前記吸着剤を再生する脱着操作とを交互に行
うカス精製方法である。
The PSA method involves an adsorption operation that selectively adsorbs and removes specific components in the raw material gas to obtain a purified gas, and an adsorbent is desorbed from the adsorbent used for this adsorption operation in an atmosphere at a lower pressure than the adsorption operation. This is a waste purification method in which a desorption operation for regenerating the adsorbent and a desorption operation are performed alternately.

モしてpsA2を行う為の装置は、吸着層を収納した吸
着塔と、この塔の一端に連通して原料ガスの供給と排出
ガスの排気とに交互に使用する第1のガス流路系と、や
はり前記基の他端に連通して精製ガスの排気と脱着用ガ
スの供給とに交互に使用する第2のガス流路系と、この
第1若しくは第2のガス流路系に設けた差圧発生手段例
えば圧縮機や真空ポンプとを有する。
The apparatus for performing psA2 consists of an adsorption tower containing an adsorption layer, and a first gas passage system that communicates with one end of this tower and is used alternately for supplying raw material gas and exhausting exhaust gas. and a second gas passage system that also communicates with the other end of the base and is used alternately for exhausting purified gas and supplying desorption gas, and a second gas passage system provided in the first or second gas passage system. It has a differential pressure generating means such as a compressor or a vacuum pump.

精製ガスを連続的に得るには各々上記2種の流路系を備
え1こ複数の吸着塔を使用する。
In order to continuously obtain purified gas, one or more adsorption towers each equipped with the above two types of flow path systems are used.

ところでPSA法はTSA法に比べ、吸着・脱着を交互
に繰り返す内に精製ガス中の吸着除去されるべき特定成
分の濃度が上昇するという新1こな問題が生じた。
However, compared to the TSA method, the PSA method has a new problem in that the concentration of a specific component to be adsorbed and removed in the purified gas increases as adsorption and desorption are alternately repeated.

本発明者等の検討によれば、この問題は、原料ガスから
吸着除去せんとする特定成分に対して強い選択的吸着性
を示す吸着層が必然的に原料ガス中の他の共存成分をも
吸着してしまう点に原因がある。
According to the studies of the present inventors, this problem is caused by the fact that an adsorption layer that exhibits strong selective adsorption for a specific component that is to be adsorbed and removed from the source gas inevitably absorbs other coexisting components in the source gas. The reason is that it gets absorbed.

吸着剤の選択的吸着性は後記するように細孔径に依ると
ころが大きい。
The selective adsorption ability of an adsorbent largely depends on the pore diameter, as will be described later.

モして細孔径が小さくなる程(勿論、被吸着物の分子径
以上は必要であるが)、被吸着物が吸着除去すべき特定
成分であるか精製ガスの主成分とすべき共存成分である
The smaller the pore diameter (of course, it must be larger than the molecular diameter of the adsorbed material), the more likely it is that the adsorbed material is a specific component to be adsorbed and removed or a coexisting component that should be the main component of the purified gas. be.

かに力)かわらず一般に吸着力は犬である。特定成分に
対して強い選択的吸着性を示す吸着層を原料ガスが流れ
る過程で、該層中に、第1のガス流路系側の特定成分高
濃度領域と、第2流路系側の特定成分低濃度領域とが生
ずる。
Regardless of the crab force, the adsorption force is generally a dog. In the process in which the raw material gas flows through an adsorption layer that exhibits strong selective adsorption for specific components, a region with a high concentration of the specific component on the first gas flow path system side and a region with high concentration of the specific component on the second gas flow path system side are formed in the layer. A specific component low concentration region is generated.

高濃度領域では特定成分が選択的に活発に吸着されるの
で共存成分はほとんど吸着されない。
In the high concentration region, specific components are selectively and actively adsorbed, so coexisting components are hardly adsorbed.

しかし、低濃度領域では特定成分の吸着量が少ないので
共存成分が相対的に多量に吸着される。
However, in a low concentration region, the adsorption amount of a specific component is small, so a relatively large amount of coexisting components is adsorbed.

特に吸着時は脱着時よりも高圧の雰囲気下にある為、共
存成分の共吸着は活発に行われる。
In particular, co-adsorption of coexisting components takes place actively during adsorption, since the atmosphere is at a higher pressure than during desorption.

次に脱着時の減圧下では各吸着成分は徐々に吸着剤から
剥離されるが、この際、先ず最初に、吸着剤が選択性を
示さない共存成分が脱着される。
Next, each adsorbed component is gradually separated from the adsorbent under reduced pressure during desorption, but at this time, coexisting components for which the adsorbent does not exhibit selectivity are first desorbed.

よく知られているように、脱着時には脱着熱が生ずる。As is well known, desorption heat is generated during desorption.

そこで共存成分の脱着熱によって吸着剤の温度が低下し
てしまう。
Therefore, the temperature of the adsorbent decreases due to the heat of desorption of the coexisting components.

これもよく知らnていることであるが吸着時には吸着熱
が生ずるので、低温になる程吸着力は強まる。
As is well known, heat of adsorption is generated during adsorption, so the lower the temperature, the stronger the adsorption force becomes.

そこで共有成分の脱着により低温化した吸着剤への特定
成分の吸着力が強くなる。
Therefore, due to the desorption of the covalent component, the adsorption power of the specific component to the cooled adsorbent becomes stronger.

それ故、脱着性能は低下し、特定成分の禾脱着分が吸着
剤中に蓄積されることになる。
Therefore, the desorption performance deteriorates, and the desorbed portion of the specific component is accumulated in the adsorbent.

こうして吸着・脱着を繰り返す内に、前記の如きPSA
法特有の新たな問題が生ずるのである。
While repeating adsorption and desorption in this way, the above-mentioned PSA
New legal problems arise.

本発明の目的は、吸着剤充填容量の節減を図れるPSA
法を採用するに当り、吸着・脱Nを交互に繰り返して精
製ガス中に含まれる吸着除去すべきであった特定成分の
未吸着量が増加することのない圧力差吸着式ガス精製方
法を提供するにある。
The purpose of the present invention is to provide a PSA that can reduce the adsorbent filling capacity.
To provide a pressure difference adsorption gas purification method that does not increase the unadsorbed amount of specific components contained in purified gas that should have been adsorbed and removed by alternately repeating adsorption and de-N when adopting this method. There is something to do.

本発明は、脱着時の温度低下が起因して脱着不充分とな
らぬように、共存成分の共成Nf抑制するようにしたも
のである。
The present invention is designed to suppress co-formed Nf as a coexisting component so that desorption is not insufficient due to a temperature drop during desorption.

すなわち、吸着層内に生ずる特定成分の高濃度領域、低
濃度領域のそ狽ぞれに最適な吸着剤を使用して、高濃度
領域では共存成分の共吸着がほとんど生じない範囲で専
ら特定成分の吸Nを、低濃度領域では共存成分を極力吸
着せずに専ら残溜特定成分の吸着を行うようにしたもの
である。
In other words, by using the optimal adsorbent for each of the high and low concentration regions of a specific component that occurs within the adsorption layer, the specific component can be exclusively absorbed in the high concentration region to the extent that almost no co-adsorption of coexisting components occurs. In the low concentration region, the adsorption of N is made to exclusively adsorb residual specific components without adsorbing coexisting components as much as possible.

共存成分に対して吸着性を示さず、しかも特定成分に対
して強選択的吸着性を示すという吸着剤は存在しない。
There is no adsorbent that exhibits no adsorption for coexisting components and also exhibits strong selective adsorption for specific components.

それ故に若し一吸着層で成層処理を行2うとするならば
、吸着層は(1所定成芥に対して強選択的吸着性を示す
吸着剤か、(2)共存成分に対して吸着性を示さぬ吸着
剤か、(3)前記(IX2)の吸着剤の混合系かの0ず
nかで形成することになる。
Therefore, if stratification treatment is to be performed with one adsorption layer, the adsorption layer must be either (1) an adsorbent that exhibits strong selective adsorption for a given component, or (2) an adsorbent that exhibits adsorption for coexisting components. It is formed using either an adsorbent that does not exhibit the following or (3) a mixed system of the adsorbents described in (IX2) above.

(1)による吸着層は、低濃度領域では共存成分も活発
に吸着してしまうので前記問題が生ずる。
In the adsorption layer according to (1), coexisting components are also actively adsorbed in a low concentration region, which causes the above-mentioned problem.

(2)による吸着層は、特定成分に対して強選択的吸着
性を示さないので結局吸着剤充填裏が増加し、PSA法
のメリットが消失する。
Since the adsorption layer according to (2) does not exhibit strong selective adsorption for specific components, the amount of adsorbent filling increases, and the advantages of the PSA method disappear.

(3)による吸着層は、特定成分の高濃度領域では上記
(2)の問題が、そして特定成分の低濃度領域では上記
(1)の問題が生ずる。
In the adsorption layer according to (3), the above problem (2) occurs in a high concentration region of a specific component, and the above problem (1) occurs in a low concentration region of a specific component.

また特開昭52−122273号公報に見るように積層
関係を逆にすると、つまり、前記(2)による吸着層を
第1のガス流路系側に、前記(1)による吸着層を第2
のガス流路系側にすると、吸着時には高濃度領域での特
定成分の吸着は不充分となり、逆に低濃度領域での共存
成分の共吸着が起こることになる。
Furthermore, as seen in JP-A-52-122273, if the lamination relationship is reversed, that is, the adsorption layer according to (2) above is placed on the first gas flow path system side, and the adsorption layer according to above (1) is placed on the second side.
If it is placed on the gas flow path system side, adsorption of a specific component in a high concentration region will be insufficient during adsorption, and conversely, co-adsorption of coexisting components will occur in a low concentration region.

加えて再成層時には第2のガス流路系側の吸着層内に残
溜する特定成分をガス流が追し出して精製ガス純度を低
下させる可能性すらある。
In addition, at the time of re-stratification, the gas flow may drive out specific components remaining in the adsorption layer on the second gas flow path system side, which may even reduce the purified gas purity.

本発明者等はこれらの香事実を確認した上で本発明に到
達しfこ。
The present inventors arrived at the present invention after confirming these facts.

以下に本発明の一実施例を図面に従って説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を説明するものである。FIG. 1 explains one embodiment of the present invention.

空気の流入する圧縮機1の後段にはガス流路系2を設け
る。
A gas passage system 2 is provided downstream of the compressor 1 into which air flows.

ガス流路系2は、切俣弁3を斤してガス流路系4を、ま
た切換弁5を介してガス流路系6を接続させる。
The gas flow path system 2 is connected to a gas flow path system 4 through a Kirimata valve 3, and to a gas flow path system 6 through a switching valve 5.

ガス流路系4はガス流路系2とは別に切換弁7を介して
ガス流路系8と接続させる。
The gas flow path system 4 is connected to a gas flow path system 8 via a switching valve 7 separately from the gas flow path system 2.

同様にガス流路系5は切換弁9を介してガス流路系8に
接続させる。
Similarly, the gas flow path system 5 is connected to the gas flow path system 8 via a switching valve 9.

ガス流路系aは最終的に大気に開放されている。The gas passage system a is finally open to the atmosphere.

ガス流路塔4は吸着塔10の底部に、ガス流路系6は吸
着塔11の底部に開口している。
The gas passage column 4 opens at the bottom of the adsorption tower 10, and the gas passage system 6 opens at the bottom of the adsorption tower 11.

吸着塔10と吸着塔11とは同一構造を採り、各基の内
部には半径方向に吸着剤粒子に関して不透過性で多孔質
の仕切板12゜13を設ける。
The adsorption tower 10 and the adsorption tower 11 have the same structure, and inside each group are provided radially porous partition plates 12 and 13 that are impermeable to adsorbent particles.

吸着塔10は仕切板12で仕切られて、ガス流路系4側
に吸着層14を、反対側に吸着層15を設ける。
The adsorption tower 10 is partitioned by a partition plate 12, and an adsorption layer 14 is provided on the gas flow path system 4 side, and an adsorption layer 15 is provided on the opposite side.

一方吸着塔11は仕切板13で仕切らnて、ガス流路系
6側に吸着層16を、反対側に吸着層17を設ける。
On the other hand, the adsorption tower 11 is partitioned by a partition plate 13, and an adsorption layer 16 is provided on the gas flow path system 6 side, and an adsorption layer 17 is provided on the opposite side.

吸着層14゜16を形成する吸着剤は平均細孔径5〜1
0人の合成ゼオライトである。
The adsorbent forming the adsorption layer 14°16 has an average pore diameter of 5 to 1
0 people's synthetic zeolite.

一方、吸着層15.17を形成する吸着剤は平均細孔径
30〜70Aの酸洗調製による活性アルミナである。
On the other hand, the adsorbent forming the adsorption layer 15.17 is activated alumina prepared by pickling and having an average pore diameter of 30 to 70A.

各吸着塔内で活性アルミナの充填率は全吸着層の50%
である。
The filling rate of activated alumina in each adsorption tower is 50% of the total adsorption bed.
It is.

吸着塔10の頂部にはガス流路系18が、吸着塔110
頂部にはガス流路系19が開口している。
A gas passage system 18 is provided at the top of the adsorption tower 10, and an adsorption tower 110
A gas passage system 19 opens at the top.

ガス流路系18の他端は切換弁20を介してガス流路系
21に、また切換弁22を介してガス流路系23に接続
している。
The other end of the gas passage system 18 is connected to a gas passage system 21 via a switching valve 20 and to a gas passage system 23 via a switching valve 22.

同じくガス流路系19の他端は切換弁24を介してガス
流路系21に、また切換弁25を介してガス流路系23
に接続している。
Similarly, the other end of the gas flow path system 19 is connected to the gas flow path system 21 via the switching valve 24 and to the gas flow path system 23 via the switching valve 25.
is connected to.

そしてガス流路系21とガス流路系23とは切換弁26
.27を介して通じている。
The gas flow path system 21 and the gas flow path system 23 are connected to a switching valve 26.
.. It is connected via 27.

上記構成を採ることにより、−塔が吸着にたずされって
いる間、他塔は脱着にたずされるようにする。
By adopting the above configuration, while one column is engaged in adsorption, the other columns are engaged in desorption.

先ず空気は圧縮機1を経て加圧さ眉、ガス流路系2、切
換弁3、ガス流路系4を順次介して吸着塔10の底部に
至る。
First, air passes through the compressor 1, is pressurized, passes through the gas flow path system 2, the switching valve 3, and the gas flow path system 4 in this order and reaches the bottom of the adsorption tower 10.

この時切換弁7は閉じられていて、ガス流路系8との流
通は遮断されている。
At this time, the switching valve 7 is closed and communication with the gas flow path system 8 is cut off.

また切換弁5も閉じられていて吸着塔11へは加圧空気
は流入できない。
Further, the switching valve 5 is also closed, and pressurized air cannot flow into the adsorption tower 11.

しかし後記するように吸着塔11とガス流路系8とは流
通状態にある。
However, as will be described later, the adsorption tower 11 and the gas passage system 8 are in communication with each other.

吸着塔10の座部から導入された加圧空気は先ず吸着層
14を通過しこの過程で空気中のC02とN20の大部
分が吸着除去される。
Pressurized air introduced from the seat of the adsorption tower 10 first passes through the adsorption layer 14, and in this process most of the C02 and N20 in the air are adsorbed and removed.

次いで仕切板12を介して吸着層15を通過する。Then, it passes through the adsorption layer 15 via the partition plate 12.

吸着層14を通過する過程で過程で、空気中のCO2と
N20の残部分が共存成分の窒素(以下、N2と記す。
During the process of passing through the adsorption layer 14, the remainder of CO2 and N20 in the air is replaced with nitrogen (hereinafter referred to as N2), which is a coexisting component.

)や窒素(以下、0□ と記す。)の共吸着なしに吸着
除去される。
) and nitrogen (hereinafter referred to as 0□) are adsorbed and removed without co-adsorption.

得られた精製ガスは一;流路系18、切換弁20、ガス
流路系21を 介して回収される。
The obtained purified gas is recovered via a flow path system 18, a switching valve 20, and a gas flow path system 21.

この時切換弁22は閉じられていて、ガス流路系23と
の流通は遮断されている。
At this time, the switching valve 22 is closed and communication with the gas flow path system 23 is cut off.

精製ガスの一部は切換弁26.27を介してガス流路系
23に流入する。
A portion of the purified gas flows into the gas flow system 23 via the switching valves 26,27.

ガス流路系23は脱着用ガスの流路系であり、後記する
ようにガス流路系8をもって大気に開放さnている。
The gas flow path system 23 is a flow path system for desorption gas, and is opened to the atmosphere through a gas flow path system 8, as will be described later.

ガス流路系23は切換弁25、ガス流路系19を順次介
して吸着塔110頂部に至る。
The gas flow path system 23 reaches the top of the adsorption tower 110 via the switching valve 25 and the gas flow path system 19 in this order.

この時切換弁24は閉じられていて、ガス流路系19と
ガス流路系21との流路は遮断されている。
At this time, the switching valve 24 is closed, and the flow paths between the gas flow path system 19 and the gas flow path system 21 are cut off.

また切換弁22も閉じられていて脱着用ガスは吸着操作
中の吸着塔10には流入できない。
Further, the switching valve 22 is also closed, so that the desorption gas cannot flow into the adsorption tower 10 during adsorption operation.

吸着塔110頂部から導入された減圧精製ガスは先ず吸
着層17を通過し、この過程で少量しか吸着されていな
い吸着物を脱着する。
The vacuum purified gas introduced from the top of the adsorption tower 110 first passes through the adsorption layer 17, and in this process, only a small amount of adsorbed matter is desorbed.

ガス流は更に仕切板&3、吸着層16を順次介しながら
脱着作用をなして吸着塔11の底部に至る。
The gas flow further passes through the partition plate &3 and the adsorption layer 16 in order, performs a desorption action, and reaches the bottom of the adsorption tower 11.

吸着塔11の底部から出た排気ガスはガス流路系6、切
換弁9、ガス流路系8を順次介して排気される。
The exhaust gas discharged from the bottom of the adsorption tower 11 is exhausted through the gas passage system 6, the switching valve 9, and the gas passage system 8 in this order.

この時切換弁5は閉じられていて加圧空気は流入できな
い。
At this time, the switching valve 5 is closed and pressurized air cannot flow in.

また切換弁7は閉じらnていて、ガス流路系4とガス流
路系8との流通は遮断されている。
Further, the switching valve 7 is closed, and the communication between the gas flow path system 4 and the gas flow path system 8 is cut off.

上記の通り、切換弁3,9゜20.25を開の状態に、
そして切換弁5,7゜22.24を閉の状態にすると吸
着塔10内は吸着操作中、吸着塔11内は脱着操作中と
なる。
As mentioned above, the switching valve 3,9°20.25 is in the open state,
Then, when the switching valves 5, 7, 22, 24 are closed, the interior of the adsorption tower 10 is in an adsorption operation, and the interior of the adsorption tower 11 is in a desorption operation.

この関係を適宜逆転させれば連続的に精製ガスが得られ
る。
By appropriately reversing this relationship, purified gas can be obtained continuously.

つまり吸着塔10内を脱着操作中に、吸着塔11内を吸
着操作中にするには切換弁3,9゜20.25を閉の状
態に、そして切換弁5,7゜22.24を開の状態にす
る。
In other words, to make the inside of the adsorption tower 10 during the desorption operation and the inside of the adsorption tower 11 during the adsorption operation, the switching valves 3 and 9° 20.25 are closed, and the switching valves 5 and 7° 22.24 are opened. state.

上記構成・作用を採る為に本実施例によれば次の効果が
生ずる。
By employing the above configuration and operation, the present embodiment provides the following effects.

合成ゼオライナの層では専らCO2やN20の吸着を、
活性アルミナの層ではN2や02を極力吸着せずに残溜
CO2や残溜H20の吸着を行うので、N2の共吸着は
防止できる。
The synthetic zeolin layer exclusively adsorbs CO2 and N20.
Since the activated alumina layer adsorbs residual CO2 and residual H20 while minimizing adsorption of N2 and O2, co-adsorption of N2 can be prevented.

しかもCO2やN20を高度に除去できる。Furthermore, CO2 and N20 can be removed to a high degree.

そして脱着゛し易く脱着熱の発生源となり易いN2 の
吸着量が少ない為、脱着時の温度低下は抑制できる。
In addition, since the amount of N2 adsorbed, which is easily desorbed and becomes a source of desorption heat, is small, the temperature drop during desorption can be suppressed.

従って、吸着・脱Nを交互に繰り返しても、本来吸着除
去すべきであるにもかかわらず精製ガス中に含まれるC
O2やN20の未収着量が増加することを防止できると
という効果がある。
Therefore, even if adsorption and deN removal are repeated alternately, the C contained in the purified gas, although it should be removed by adsorption, remains
This has the effect of preventing an increase in the amount of unsorbed O2 and N20.

第2図に加圧空気を吸着層に導入した時の吸着層を構成
する吸着剤の細孔径に対する吸着強度の傾向を示す。
FIG. 2 shows the tendency of adsorption strength with respect to the pore diameter of the adsorbent constituting the adsorption layer when pressurized air is introduced into the adsorption layer.

曲線1はN20に関、する傾向を、曲線11はCO□に
関する傾向を、そして曲線ii1はN2に関する傾向を
示す。
Curve 1 shows the trend for N20, curve 11 for CO□, and curve ii1 for N2.

他の線分は説明の為の操作線であり、上記各曲線と各操
作線との支点が、吸着塔内の当該成分吸着強度を示す。
The other line segments are operating lines for explanation, and the fulcrum of each of the above-mentioned curves and each operating line indicates the adsorption strength of the component in the adsorption tower.

操作線aは細孔径1ONの合成ゼオライトに、操作線す
は細孔径50Aの記法調製活性アルミナに、操作線Cは
100Aのアルカリ法調製活性アルミナに関するもので
ある。
The operating line a relates to a synthetic zeolite with a pore diameter of 1ON, the operating line A relates to a method-prepared activated alumina with a pore diameter of 50A, and the operating line C relates to an alkaline method-prepared activated alumina with a pore diameter of 50A.

本実施例の2層式吸着層は操作線dで示される。The two-layer adsorption layer of this example is indicated by the operating line d.

比較の為に示した操作線eは逆2層式吸着層つまり細孔
径50大の活性アルミナ層を第1の流路系側に設けた場
合に関するものであり、操作線fは細孔径10Aの合成
ゼオライトと細孔径50人の活性アルミナとを比率1:
1で混合した平均細孔径201の混合吸着剤に関するも
のである。
The operating line e shown for comparison relates to the case where an inverted two-layer adsorption layer, that is, an activated alumina layer with a pore diameter of 50 mm, is provided on the first channel system side, and the operating line f relates to the case where an activated alumina layer with a pore diameter of 50 mm is provided on the first flow path system side. The ratio of synthetic zeolite and activated alumina with a pore size of 50:1:
This relates to a mixed adsorbent having an average pore diameter of 201 mixed in Example 1.

本図でも示される通り、本実施例の方法は、N20やC
O2の吸着除去力に非常に優れているにもかかわらず、
N2 の共成着力は非常に少なく、本図に示される吸着
層構成の中で最も優れていることが明らかである。
As shown in this figure, the method of this example applies to N20 and C
Despite its excellent O2 adsorption and removal ability,
It is clear that the co-formed adhesion force of N2 is very small and is the best among the adsorption layer configurations shown in this figure.

尚、第3図は上記合成ゼオライトと記法調製活性アルミ
ナとを各単独に使用した場合の、吸着・脱着切換時の吸
着層内温度変化を示す。
Incidentally, FIG. 3 shows the change in temperature within the adsorption layer at the time of switching between adsorption and desorption when the above-mentioned synthetic zeolite and the method-prepared activated alumina are used individually.

図中、曲線1■は合成ゼオライトの傾向を、■は活性ア
ルミナの傾向を示す。
In the figure, curve 1 ■ shows the tendency of synthetic zeolite, and curve 1 shows the tendency of activated alumina.

本図から明らかなように、合成ゼオライトの温度変化は
活性アルミナのそれに比べて非常に激しい。
As is clear from this figure, the temperature change of synthetic zeolite is much more drastic than that of activated alumina.

従って、合成ゼオライt−に単独で使用すれば、脱着時
に脱着不光分の結果が生ずることは明らかである。
It is therefore clear that when used alone in synthetic zeolite t-, a desorption loss occurs upon desorption.

ところで本実施例では、全吸着層の中に占める活性アル
ミナの体積を50%にしているが、活性アルミナの充填
割合と精製ガス中のCO2濃度との関係を示した第4図
から明らかのように、これは空気中からのCO2除去の
点では最も優れた充填割合である。
By the way, in this example, the volume of activated alumina that occupies 50% of the total adsorption layer is clear from Figure 4, which shows the relationship between the filling ratio of activated alumina and the CO2 concentration in purified gas. Moreover, this is the best filling ratio in terms of removing CO2 from the air.

本発明者等の検討によれば、空気からCO2を除去する
際、精製カス中のCO2濃度f20 ppm以下に抑え
るには活性アルミナの充填割合を25%から80%&こ
することが望ましい。
According to the studies of the present inventors, when removing CO2 from the air, it is desirable to reduce the filling ratio of activated alumina from 25% to 80% in order to suppress the CO2 concentration in the refining scum to f20 ppm or less.

更に本実施例では一旦吸着処略で得らnた精製ガスの一
部を脱着用ガスとして使用しているので、別途脱着用ガ
スの使用量を無くし得るという効果もある。
Furthermore, in this embodiment, since a part of the purified gas obtained by the adsorption treatment is used as the desorption gas, there is an effect that the amount of the separate desorption gas used can be eliminated.

尚、本実施例では空気からCO2及びN20を分離除去
するガス精製を対象にしたが、本発明は勿論これに限定
されるものではない。
Although this embodiment deals with gas purification to separate and remove CO2 and N20 from air, the present invention is of course not limited to this.

以下に、吸着塔内の吸着層を除き、上記実施例と同一の
装置を使用して、空気若しくは窒素富化ガスを精製する
具体類を示す。
Specific examples of purifying air or nitrogen-enriched gas using the same apparatus as in the above embodiment except for the adsorption layer in the adsorption tower will be shown below.

各吸着塔共、内径は200朋、高さは1000mmであ
る。
Each adsorption tower has an inner diameter of 200mm and a height of 1000mm.

具体例1;N20及びCO2の除去による空気の鞘部1
) 吸着層15,17には細孔径50ckの製法調製活性ア
ルミナを、吸着層14.16には細孔径10Xの合成ゼ
オライトを充填した。
Example 1: Air sheath 1 by removing N20 and CO2
) Adsorption layers 15 and 17 were filled with manufactured activated alumina having a pore diameter of 50 ck, and adsorption layers 14 and 16 were filled with synthetic zeolite having a pore diameter of 10X.

活性アルミナの充填割合は60%にした。The filling ratio of activated alumina was 60%.

運転条件は吸着圧力8 kg/crA Q、脱着圧力大
気圧、空気流量100Ni/h−Fl)主用の、精製ガ
ス流量4ONd/hとした。
The operating conditions were an adsorption pressure of 8 kg/crAQ, a desorption pressure of atmospheric pressure, an air flow rate of 100 Ni/h-Fl), and a purified gas flow rate of 4 ONd/h.

加圧空気中のN20及びCO2濃度はそれぞれ1600
及び330 ppmであった。
The N20 and CO2 concentrations in pressurized air are each 1600
and 330 ppm.

吸着塔の切替時間は半サイクルで15而ぽある。The switching time of the adsorption tower is 15 times per half cycle.

その結果、精製ガス中のN20及びC02濃度はいずれ
も1 ppm以下となつ1こ。
As a result, the N20 and CO2 concentrations in the purified gas were both below 1 ppm.

具体例2 N20及びC02の除去による空気の精R2
) 活性アルミナの充填割合を30%とし1こ他は、具体例
1と同一装置、同一条件で操作しf島その結果、精製ガ
ス中のN20及びCO2濃度はそれぞれ2 ppm及び
5 pI)mとなつfこ。
Specific example 2 Air quality R2 by removing N20 and C02
) The filling ratio of activated alumina was set to 30%, and the operation was performed using the same equipment and the same conditions as in Example 1. As a result, the N20 and CO2 concentrations in the purified gas were 2 ppm and 5 pI)m, respectively. Natsu fko.

比較例1:N20及びCO2の除去による空気の精製(
1) 吸着塔内に上記合成ゼオライ1−+単独で充填し、他は
具体例1と同一装置、同一条件で運転し1こ結果、精製
ガス中のN20及びCO□濃度はそれぞれ5及び30
ppmとなつ1こ。
Comparative Example 1: Purification of air by removal of N20 and CO2 (
1) The above synthetic zeolite 1-+ was filled alone in the adsorption tower, and the other equipment was the same as in Example 1, and the operation was carried out under the same conditions.1 As a result, the N20 and CO□ concentrations in the purified gas were 5 and 30, respectively.
ppm and one summer.

比較fI12:H20及びCO2の除去による空気の精
製(2) 吸着塔内に上記活性アルミナを単独で充填し、他は具体
例1と同一装置、同一条件で運転し1こ結果、精製ガス
中のN20及びCO2濃度はそれぞれ4及び25 pp
mとなつ1こ。
Comparison fI12: Purification of air by removing H20 and CO2 (2) The above activated alumina was filled alone in the adsorption tower, and the other equipment was the same as that of Example 1, and was operated under the same conditions. N20 and CO2 concentrations were 4 and 25 pp, respectively.
M and Natsu 1 child.

具体例3;N20及びCO2の除去によるN2 ガスの
精製 N20及びCO2濃度がそれぞれ1600 ppm及び
1200叩ハ圧力8kg/crA GのN2富化カスを
原料ガスとして使用し、N20及びco2evがそれぞ
れ10 ppm及び0.lppmのN2 ガスを脱着用
ガスとして使用し、他は具体例1と同一装置、同一条件
で運転したところ、精製N2富化ガス中のN20及びC
O2濃度はそnぞれ3 pI)m及び5 ppmとなっ
た。
Specific example 3: Purification of N2 gas by removing N20 and CO2 N20 and CO2 concentrations are 1600 ppm and 1200, respectively. N2 enriched gas with a beating pressure of 8 kg/cr A G is used as the raw material gas, and N20 and CO2 ev are 10 ppm each. and 0. 1ppm of N2 gas was used as the desorption gas, and the other equipment was the same as in Example 1, and the operation was carried out under the same conditions.
The O2 concentrations were 3 pI)m and 5 ppm, respectively.

具体例4;NH3の除去によるN2ガスの精製吸着層1
5.17には細孔径50Xの活性アルミナを、吸着層1
4,16には細孔径10′Aの合成上オライドを充填し
1こ。
Specific example 4: Purification adsorption layer 1 of N2 gas by removing NH3
In 5.17, activated alumina with a pore diameter of 50X was added to the adsorption layer 1.
4 and 16 are filled with synthetic olide having a pore diameter of 10'A.

活性アルミナの充填割合は50%にし1こ。The filling ratio of activated alumina is 50%.

運転条件は吸着圧力5 kg/cat G、脱着圧力大
気圧、原料ガス流量15ON靜/h、再生用の精製ガス
流量3ON扉/hとした。
The operating conditions were an adsorption pressure of 5 kg/cat G, a desorption pressure of atmospheric pressure, a raw material gas flow rate of 15 on/h, and a regeneration purified gas flow rate of 3 on/h.

原料ガスはNH3f 1000 ppm含有するN2富
化ガスであった。
The source gas was a N2-enriched gas containing 1000 ppm of NH3f.

吸着塔の切替時間は半サイクルで15mmである。The switching time of the adsorption tower is 15 mm per half cycle.

その結果、精製ガス中のNH3濃度は5 ppm、以下
となった。
As a result, the NH3 concentration in the purified gas was 5 ppm or less.

比較例3;NH3の除去によるN2ガスの精製吸着塔内
に上記合成ゼオライトを単独で充填し、他は具体例4と
同一装置、同一条件で運転した結果、精製ガス中のNH
3濃度は45 ppmとなつ1こ。
Comparative Example 3: Purification of N2 gas by removal of NH3 The above synthetic zeolite was filled alone in the adsorption tower, and as a result of operation using the same equipment and under the same conditions as in Specific Example 4, NH3 in the purified gas was
3 concentration is 45 ppm and Natsu 1.

具体例5;N20、CO2及びNOの除去によるN2ガ
スの精製 原料ガスkH201600ppm、 CO21200
ppm。
Specific example 5: Purification of N2 gas by removing N20, CO2 and NO Raw material gas kH201600ppm, CO21200
ppm.

NNO300pp含有するN2富化ガスとした他は具体
例1と同一装置、同一条件で運転したところ、精製N2
富化ガス中のN20、CO2及びNO濃度はそnぞれ3
ppm、 15 ppmとなった。
The same apparatus and operation as in Example 1 were performed under the same conditions except that the N2-enriched gas containing 300pp of NNO was used.
The N20, CO2 and NO concentrations in the enriched gas are each 3
ppm, 15 ppm.

比較例4;N20、CO2及びNOが除去によるN2ガ
スの精製 吸着塔内に上記合成ゼオライトf単独で充填し、他は具
体例6と同一装置、同一条件で運転した結果、精製N2
富化ガス中のN20、CO2及びNO濃度はそれぞれ5
ppm、 41 ppm、 120 ppmとな
った。
Comparative Example 4: Purification of N2 gas by removal of N20, CO2 and NO. The above synthetic zeolite f was filled alone in the adsorption tower, and as a result of operation using the same apparatus and the same conditions as in Specific Example 6, purified N2
The N20, CO2 and NO concentrations in the enriched gas are each 5
ppm, 41 ppm, and 120 ppm.

具体例6;空気の乾燥 吸着層15.17には細孔径100Xのアルカリ法調製
活性アルミナを、吸着層14,16には細孔径10X、
の合成ゼオライトを充填した。
Specific example 6: Air dry adsorption layers 15 and 17 contain activated alumina prepared by alkaline method with a pore diameter of 100X, adsorption layers 14 and 16 contain pore diameter of 10X,
filled with synthetic zeolite.

活性アルミナの充填割合は60%にした。The filling ratio of activated alumina was 60%.

運転条件は吸着圧力8kg/crAG、脱着圧力大気圧
、空気流量100Ni/h、再生用乾燥空気量4ON靜
/hとした。
The operating conditions were an adsorption pressure of 8 kg/crAG, a desorption pressure of atmospheric pressure, an air flow rate of 100 Ni/h, and an amount of drying air for regeneration of 4 ON/h.

加圧空気中のN20濃2 0 5 0 ppmであつ1
こ。
N20 concentration in pressurized air is 2050 ppm and 1
child.

吸着塔の切換時間は半サイクルで15mmである。The switching time of the adsorption tower is 15 mm per half cycle.

その結果、乾燥空気中のN20濃 以上説明したようζこ、本発明によれば、吸着・脱着を
交互に繰り返しても、本来吸着除去すべきであるにもか
かわらず精製ガス中に含すれる特定成分の未吸着量が増
加することを防止できるという効果がある。
As a result, as explained above, according to the present invention, even if adsorption and desorption are repeated alternately, N20 in dry air is contained in purified gas even though it should be adsorbed and removed. This has the effect of preventing an increase in the amount of unadsorbed specific components.

従って本発明を採用すれは、吸着剤量が少量でも高度な
ガス精製が可能となる。
Therefore, by adopting the present invention, high-level gas purification is possible even with a small amount of adsorbent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るガス精製装置の説明図
、第2図は吸着剤の細孔径と加圧吸着時の吸着強度との
関係を示す特性図、第3図は吸着脱着切換時の吸着剤の
温度変化を示す特性図、第4図は第1図の実施例に関し
、活性アルミナの充填割合と精製ガス中のCO2濃度と
の関係を示す特性図である。 1・・・・・・圧縮機、2,4,6,18,19,21
。 23・・・・・・ガス流路系、3,5,7,9,20。 22 、24 、25,26 、27・・・・・・切換
弁、10。 11・・・・・・吸着塔、12,13・・・・・・切換
板、14。 15、15.17・・・・・・吸着層。
Fig. 1 is an explanatory diagram of a gas purification device according to an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the relationship between the pore diameter of the adsorbent and the adsorption strength during pressurized adsorption, and Fig. 3 is an adsorption/desorption diagram. FIG. 4 is a characteristic diagram showing the temperature change of the adsorbent at the time of switching. FIG. 4 is a characteristic diagram showing the relationship between the filling ratio of activated alumina and the CO2 concentration in the purified gas for the embodiment shown in FIG. 1... Compressor, 2, 4, 6, 18, 19, 21
. 23... Gas flow path system, 3, 5, 7, 9, 20. 22, 24, 25, 26, 27... switching valve, 10. 11... Adsorption tower, 12, 13... Switching plate, 14. 15, 15.17... Adsorption layer.

Claims (1)

【特許請求の範囲】[Claims] 1 合成ゼオライトよりなる第1の吸着層と全吸着剤の
25〜80%の容量を占める活性アルミナよりなる第2
の吸着層とを直列に配置して前記第1の吸着層側から原
料カスを供給し窒素又は酸素富化カスを得る吸着工程と
、前記吸着工程時のガス圧力よりも低圧の脱着用ガスを
前記第2の吸着層側から流して吸着物を脱着する脱着工
程とを交互に行うことを特徴とする圧力差吸着式ガス精
製方法。
1 A first adsorption layer made of synthetic zeolite and a second adsorption layer made of activated alumina, which accounts for 25-80% of the total adsorbent capacity.
an adsorption step of arranging adsorption layers in series and supplying the raw material sludge from the side of the first adsorption layer to obtain a nitrogen- or oxygen-enriched sludge, and a desorption gas having a lower pressure than the gas pressure during the adsorption step. A pressure difference adsorption type gas purification method, characterized in that a desorption step of desorbing the adsorbate by flowing from the second adsorption layer side is performed alternately.
JP54155656A 1979-12-03 1979-12-03 Pressure difference adsorption gas purification method Expired JPS5924654B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP54155656A JPS5924654B2 (en) 1979-12-03 1979-12-03 Pressure difference adsorption gas purification method
DE3045451A DE3045451C2 (en) 1979-12-03 1980-12-02 Method and device for gas processing using pressure swing adsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54155656A JPS5924654B2 (en) 1979-12-03 1979-12-03 Pressure difference adsorption gas purification method

Publications (2)

Publication Number Publication Date
JPS5678615A JPS5678615A (en) 1981-06-27
JPS5924654B2 true JPS5924654B2 (en) 1984-06-11

Family

ID=15610728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54155656A Expired JPS5924654B2 (en) 1979-12-03 1979-12-03 Pressure difference adsorption gas purification method

Country Status (2)

Country Link
JP (1) JPS5924654B2 (en)
DE (1) DE3045451C2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156657A (en) * 1990-03-29 1992-10-20 The Boc Group, Inc. Process for pre-purification of air for separation
ZA912508B (en) * 1990-04-20 1992-04-29 Boc Group Inc Pre-purification of air for separation
GB9303844D0 (en) * 1993-02-25 1993-04-14 Boc Group Plc Purification method and apparatus
US5593475A (en) * 1995-04-13 1997-01-14 Liquid Air Engineering Corporation Mixed bed adsorber
US5614000A (en) * 1995-10-04 1997-03-25 Air Products And Chemicals, Inc. Purification of gases using solid adsorbents
US5769928A (en) * 1996-12-12 1998-06-23 Praxair Technology, Inc. PSA gas purifier and purification process
US5846295A (en) * 1997-03-07 1998-12-08 Air Products And Chemicals, Inc. Temperature swing adsorption
US5919286A (en) * 1997-03-06 1999-07-06 Air Products And Chemicals, Inc. PSA process for removel of nitrogen oxides from gas
US5779767A (en) * 1997-03-07 1998-07-14 Air Products And Chemicals, Inc. Use of zeolites and alumina in adsorption processes
US6638340B1 (en) 2002-03-27 2003-10-28 Uop Llc Composite adsorbents for air purification
WO2005035100A1 (en) * 2003-09-24 2005-04-21 Donaldson Company, Inc. High purity air and gas fractionation system
US8573831B2 (en) 2007-05-01 2013-11-05 Praxair Technology, Inc. Methods and systems for mixing materials
WO2018217713A1 (en) 2017-05-24 2018-11-29 Basf Corporation Gas dehydration with mixed adsorbent/desiccant beds
US10765991B2 (en) 2017-08-10 2020-09-08 Air Products And Chemicals, Inc. Rapid cycle pressure swing adsorption process and adsorbent laminates for use therein

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2627327C2 (en) * 1976-06-18 1983-02-17 Basf Ag, 6700 Ludwigshafen Process for drying gases

Also Published As

Publication number Publication date
DE3045451A1 (en) 1981-07-02
DE3045451C2 (en) 1986-08-21
JPS5678615A (en) 1981-06-27

Similar Documents

Publication Publication Date Title
US7189280B2 (en) Adsorptive separation of gas streams
US3594983A (en) Gas-treating process and system
KR100254295B1 (en) Pressure swing adsorption process with a single adsorbent bed
US5232474A (en) Pre-purification of air for separation
JP4315666B2 (en) Syngas purification method
JP2744596B2 (en) Method for selectively separating relatively strong adsorbent components from relatively weak adsorbent components of feed gas mixture
FI85953C (en) FOERFARANDE FOER FRAMSTAELLNING AV EN SYREPRODUKT MED EN RENHETSGRAD AV 95% FRAON OMGIVANDE LUFT.
KR100353673B1 (en) Oxygen generation process and system using single adsorber and single blower
JPS6137968B2 (en)
US5415682A (en) Process for the removal of volatile organic compounds from a fluid stream
JPS5924654B2 (en) Pressure difference adsorption gas purification method
EP1175934A2 (en) Improved oxygen production
US5840099A (en) Process for the removal of water, CO2, ethane and C3 + hydrocarbons from a gas stream
KR101781256B1 (en) Purification of air
JP2994843B2 (en) Recovery method of low concentration carbon dioxide
CN1315563C (en) Adsorption stripping method for removing ethene and carbon dioxide from mixed gas
JPS63107720A (en) Method for separating and removing water content and carbon dioxide gas in air
JP2551903B2 (en) Method and device for separating and recovering CO2 from combustion exhaust gas
JPS60819A (en) Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method
JPS621767B2 (en)
KR19980016382A (en) Pressure swing adsorption method for producing high purity carbon dioxide
JPH10194708A (en) Oxygen enricher
KR102439733B1 (en) Method of Separating and Purifying Deuterium from Gas Mixture of Deuterium and Nitrogen
JPS5932922A (en) Adsorbing bed for purifying gas containing sulfur compound
JP2013017930A (en) Method for improving voc recovery rate in low-temperature liquefied voc recovery method by moisture removal and cold heat recovery using adsorbent