JPS5924621B2 - synchronous motor - Google Patents

synchronous motor

Info

Publication number
JPS5924621B2
JPS5924621B2 JP48136589A JP13658973A JPS5924621B2 JP S5924621 B2 JPS5924621 B2 JP S5924621B2 JP 48136589 A JP48136589 A JP 48136589A JP 13658973 A JP13658973 A JP 13658973A JP S5924621 B2 JPS5924621 B2 JP S5924621B2
Authority
JP
Japan
Prior art keywords
magnetic pole
pole teeth
rotor
stator
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48136589A
Other languages
Japanese (ja)
Other versions
JPS5084824A (en
Inventor
康夫 鈴木
泰慶 亀山
久人 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP48136589A priority Critical patent/JPS5924621B2/en
Publication of JPS5084824A publication Critical patent/JPS5084824A/ja
Publication of JPS5924621B2 publication Critical patent/JPS5924621B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【発明の詳細な説明】 この発明は同期電動機に関するもので、その目的はくま
取りコイル等の付属部品なしで永久磁石回転子を一方向
へ自起動させることができ、製造容易でし刀・も効率の
よい同期電動機を提供することである。
[Detailed Description of the Invention] This invention relates to a synchronous motor, and its purpose is to be able to automatically start a permanent magnet rotor in one direction without the need for accessory parts such as a shade coil, and to be easy to manufacture. The object of the present invention is to provide an efficient synchronous motor.

この発明の基礎となる同期電動機1断面図を第1図に示
す。
FIG. 1 shows a cross-sectional view of a synchronous motor that forms the basis of this invention.

図において、1は面対向型の回転子ブロフク、2は回転
子ブロフク1の主要部である円板状の多極に着磁された
永久磁石回転子、3は電動機軸、4は軸受機構、5(/
′i磁性材鉄板により絞り加工で作られた固定子ヨーク
、6は主励磁コイル、γは固定子ヨーク5の中心磁路、
8は固定子磁極歯板で鉄板力・ら打ち抜きにより作られ
た円板状で多極の磁極歯をもつものである。
In the figure, 1 is a surface-facing rotor block, 2 is a disc-shaped multi-pole magnetized permanent magnet rotor which is the main part of the rotor block 1, 3 is a motor shaft, 4 is a bearing mechanism, 5(/
'i Stator yoke made by drawing from a magnetic iron plate, 6 is the main excitation coil, γ is the center magnetic path of the stator yoke 5,
Reference numeral 8 denotes a stator magnetic pole tooth plate, which is a disk-shaped plate made by punching an iron plate and has multi-pole magnetic pole teeth.

この固定子磁極歯板8は多極永久磁石回転子2の面と面
対向して多極同期電動機を構成する。
This stator magnetic pole tooth plate 8 faces the surface of the multipolar permanent magnet rotor 2 to constitute a multipolar synchronous motor.

固定子磁極歯板8は36極のもので第2図に示すように
1枚の磁性鉄板力・ら写真腐食法あるいは打ち抜きによ
って製造されたもので、固定子磁極歯板外枠9カ・ら中
心に向って放射状に等間隔に18本の固定子磁極歯10
〜27を突設し、各々の磁極歯10〜27の先端の一部
は固定子磁極歯板内枠28と一体に連結している。
The stator magnetic pole tooth plate 8 has 36 poles, and as shown in Fig. 2, it is manufactured from a single magnetic iron plate by the photographic corrosion method or by punching.The stator magnetic pole tooth plate outer frame has 9 pieces. 18 stator magnetic pole teeth 10 radially equidistantly spaced toward the center
27 are provided in a protruding manner, and a portion of the tip of each of the magnetic pole teeth 10 to 27 is integrally connected to the inner frame 28 of the stator magnetic pole tooth plate.

また固定子内枠287)−らは固定子外枠9の方向へ等
間隔に固定子磁極歯10〜27の磁極歯幅より磁極歯幅
の広い18本の磁極歯29〜46を磁極歯10〜27と
交互に入り込むように放射状に突設し、磁極歯29〜4
6の先端の一部は固定子外枠9と部分的に一体に連結し
ている。
In addition, the stator inner frame 287) is arranged such that 18 magnetic pole teeth 29 to 46 having a magnetic pole tooth width wider than the magnetic pole tooth width of the stator magnetic pole teeth 10 to 27 are arranged at equal intervals in the direction of the stator outer frame 9. The magnetic pole teeth 29 to 4 are protruded radially so as to alternately enter the magnetic pole teeth 29 to 27.
A portion of the tip of the stator 6 is partially integrally connected to the stator outer frame 9.

そして磁極歯幅の狭い固定子磁極歯10〜27の中心線
と、固定子磁極歯10〜2Tにとって回転子回転方向(
反時計方向)に各々隣り合う磁極歯幅の広い固定子磁極
歯29〜46の中心線とは角度αを隔てて配設している
The rotor rotation direction (
The stator magnetic pole teeth 29 to 46, which are adjacent to each other in the counterclockwise direction, are spaced apart by an angle α from the center lines of the stator magnetic pole teeth 29 to 46, each having a wide magnetic pole tooth width.

また、固定子磁極歯10〜27の中心線と、固定子磁極
歯10〜21にとって反対回転方向に各々隣り合う幅の
広い固定子磁極歯29〜46の中心線とは角度β全島て
て配設されている。
Further, the center line of the stator magnetic pole teeth 10 to 27 and the center line of the wide stator magnetic pole teeth 29 to 46, which are adjacent to each other in the opposite rotational direction to the stator magnetic pole teeth 10 to 21, are arranged at an angle β. It is set up.

そしてαはβより刀・なり小さく設計され、し力・も固
定子磁極歯29〜46の幅は固定子磁極歯10〜2γの
各々約2倍あり、αおよびβは電気角度でα〈180°
、β)18CP。
α is designed to be slightly smaller than β, and the width of stator magnetic pole teeth 29 to 46 is approximately twice the width of stator magnetic pole teeth 10 to 2γ, and α and β are electrical angles α<180 °
, β) 18CP.

」丈L=1800となるような配列になっている。” The arrangement is such that the length L=1800.

つぎに、第2図に示される構造の固定子磁極歯板8に面
対向して使用される円板状回転子2の磁極面は第3図に
示すように、円板状硬質磁性体に電動機極数と同数の合
計36極の磁極がN、S交互にa+1i の角度をもっ
て等間隔に着磁されている。
Next, as shown in FIG. 3, the magnetic pole surface of the disc-shaped rotor 2 used to face the stator magnetic pole tooth plate 8 having the structure shown in FIG. 2 is made of a disc-shaped hard magnetic material. A total of 36 magnetic poles, the same number as the number of motor poles, are magnetized alternately N and S at equal intervals at an angle of a+1i.

この回転子2は固定子外枠9および固定子内枠28力・
ら各々形成されている計36本の固定子磁極歯と適度の
空隙(例えば0.3 rmn )をもって面対向してお
り、従って回転子2の永久磁石の磁力によって常に回転
子2と固定子磁極歯板8との間に吸引力が働き、回転子
2と固定子磁極歯板8との間の空隙はシ定に保たれる構
造になっている(第1図参照)。
This rotor 2 has a stator outer frame 9 and a stator inner frame 28.
The rotor 2 and the stator magnetic poles are always connected by the magnetic force of the permanent magnets of the rotor 2. The structure is such that an attractive force acts between the rotor 2 and the toothed plate 8, and the gap between the rotor 2 and the stator magnetic pole toothed plate 8 is kept constant (see FIG. 1).

つぎに、回転子の起動時の動作を第4図a −eに示す
ように固定子磁極歯および回転子磁極歯を一列に展開し
た図によって説明する。
Next, the operation of the rotor when starting up will be explained with reference to figures in which the stator magnetic pole teeth and the rotor magnetic pole teeth are developed in a line as shown in FIGS. 4a-e.

第4図において、35,36.37は幅の広い方の固定
子磁極歯の代表全示し、16.17.18は幅の狭い方
の固定子磁極歯の代表を示しており、前述の通りαとβ
の角度関係をもって配列されており、実験において白側
の鴨合αは電気角で130度ないし150度、したがっ
てβは210度ないし230度の範囲が特性上最良であ
った。
In Fig. 4, 35, 36, and 37 indicate all representative stator magnetic pole teeth with wide width, and 16, 17, and 18 indicate representative stator magnetic pole teeth with narrow width. α and β
In experiments, it was found that the angle α of the white side was 130 to 150 degrees in electrical angle, and therefore β was in the range of 210 to 230 degrees in terms of characteristics.

なお、回転子2の隣り合う反対極性のN、S磁極間の間
隔は免税(である。
Note that the distance between adjacent N and S magnetic poles of opposite polarity on the rotor 2 is exempt from tax.

まず最初励磁コイル6(第1図)に励磁電流を流さない
状態においては、固定子磁極歯10〜27および29〜
46も無励磁状態にあるので磁束は発生せず、力・っ固
定子磁極歯10〜2γの磁極幅が固定子磁極歯29〜4
6の磁極幅より小さく、固定子磁極歯10〜2Tの各々
の中心線と固定子磁極歯10〜27の各々にとって回転
子20回転方向側に隣り合う固定子磁極歯29〜46の
中心線との角度αがp子孫極歯10〜27の各々の中心
線と固定子磁極歯10〜21の各々にとって回転子2の
反対回転方向側に隣り合う固定子磁極歯29〜46の中
心線との角度βより小さいために、回転子2の隣り合う
反対極性の磁極の磁束は、第4図aおよびbに示すよう
に角度αの間隔をもって隣り合っている固定子磁極歯2
9〜46と10〜27とを通るようにすなわち回転子2
の隣り合う反対極性の磁極の磁束が磁気抵抗が最も小さ
くなるような経路を収ろうとするために回転子2に固定
子磁極歯の各々にほぼ対向して第4図aまたubに示す
ような位置で静止する。
First, in a state where no excitation current is passed through the excitation coil 6 (Fig. 1), stator magnetic pole teeth 10 to 27 and 29 to
Since 46 is also in a non-excited state, no magnetic flux is generated, and the magnetic pole width of the stator magnetic pole teeth 10 to 2γ is the same as the stator magnetic pole teeth 29 to 4.
The center line of each of the stator magnetic pole teeth 10 to 2T and the center line of the stator magnetic pole teeth 29 to 46 that are adjacent to each other in the rotation direction of the rotor 20 for each of the stator magnetic pole teeth 10 to 27. An angle α between the center line of each of the descendant pole teeth 10 to 27 and the center line of the stator magnetic pole teeth 29 to 46 adjacent to each of the stator magnetic pole teeth 10 to 21 on the opposite rotation direction side of the rotor 2 Since the angle β is smaller than the angle β, the magnetic flux of the adjacent magnetic poles of opposite polarity of the rotor 2 is smaller than the angle β, so that the magnetic flux of the adjacent magnetic poles of opposite polarity of the rotor 2 is smaller than the magnetic flux of the adjacent stator magnetic pole teeth 2 with an angle α interval, as shown in FIG.
9 to 46 and 10 to 27, that is, the rotor 2
In order for the magnetic flux of adjacent magnetic poles of opposite polarity to take a path such that the magnetic resistance is minimized, the rotor 2 is provided with the stator magnetic pole teeth substantially opposite to each other as shown in FIG. Stop in position.

そして回転子2tri第4図a’Eだubに示す位置関
係力・らずれると、回転子2の磁極の各各の磁束と固定
子磁極歯の各々との間にトルク(静的磁力による)が返
生じて、第4図a’Eたはbに示す位置関係に自動的に
戻る。
When the rotor 2tri is shifted, the positional forces shown in Figure 4 a'E and ub create a torque (due to static magnetic force) between each magnetic flux of the magnetic poles of the rotor 2 and each of the stator magnetic pole teeth. is automatically returned to the positional relationship shown in FIG. 4 a'E or b.

なおこの静的磁力に励磁コイルに電流が流れて固定子磁
極歯が励磁されている際でも常に働し・ている。
Note that this static magnetic force always works even when current flows through the exciting coil and the stator magnetic pole teeth are excited.

つぎに、励磁コイルに交流電圧を印加すると固定子磁極
歯29〜46と10〜27とは常に反対磁性に励磁され
るので、箇ず固定子磁極歯29〜46が第4図aにおい
て交流電圧の印加時にN極に励磁されると仮定すると、
回転子2のS極の各各は第4図aに示すように固定子磁
極歯10〜27にほとんど正面に対向して固定子磁極歯
10〜27にS極であるために回転トルクは生じないが
、回転子2ON極の各々は固定子磁極歯29〜46に対
して図中矢印Pで示す回転子20回転方向側に変位して
対向しており、固定子磁極歯29〜46がN極であるた
め上記回転子のN極の各々とN極である固定子磁極歯2
9〜46とは反発し、1だ回転子2のS極の各々は角度
αがβより小さいためN極の中で回転子回転方向側にあ
る距離的に近い固定子磁極歯29〜46に各々吸引され
て回転トルクを生じ、回転子2は回転方向側である矢印
Pの方向へ回転し、回転子2が回転することにより回転
子2のS極の各々はS極である固定子磁極歯10〜27
に対して回転方向側に変位して対向すると共に固定子磁
極歯29〜46に対して反回転方向側に変位して対向す
るため、回転子2のS極の各々は固定子磁極歯10〜2
7に反発されると共に固定子磁極歯29〜46に吸引さ
れる回転トルクが生じ、回転子2(/′i回転回転側向
側に回転トルクを生じて回転し、第4図Cに示すような
位置関係唸で回転する。
Next, when an AC voltage is applied to the excitation coil, the stator magnetic pole teeth 29 to 46 and 10 to 27 are always excited with opposite magnetism. Assuming that it is excited to the north pole when applying ,
Since each of the S poles of the rotor 2 is S pole almost directly opposite the stator magnetic pole teeth 10 to 27 as shown in FIG. 4a, rotational torque is generated. However, each of the rotor 2 ON poles is opposed to the stator magnetic pole teeth 29 to 46 by being displaced in the rotation direction of the rotor 20 as indicated by the arrow P in the figure, and the stator magnetic pole teeth 29 to 46 are opposed to the stator magnetic pole teeth 29 to 46. Since each of the north poles of the rotor is a pole, the stator magnetic pole tooth 2 is a north pole.
9 to 46, each of the S poles of the rotor 2 has an angle α smaller than β, so the stator magnetic pole teeth 29 to 46, which are close to each other in the direction of rotor rotation among the N poles, Each is attracted and generates rotational torque, and the rotor 2 rotates in the direction of arrow P, which is the rotation direction side. As the rotor 2 rotates, each of the S poles of the rotor 2 becomes a stator magnetic pole, which is an S pole. Teeth 10-27
Each of the S poles of the rotor 2 is displaced in the rotational direction and opposed to the stator magnetic pole teeth 29-46, and is also displaced in the counter-rotational direction to the stator magnetic pole teeth 29-46. 2
A rotational torque is generated which is repelled by the stator magnetic pole teeth 29 to 46 and is attracted to the stator magnetic pole teeth 29 to 46, and the rotor 2 (/'i rotation generates rotational torque in the lateral direction and rotates as shown in FIG. 4C). It rotates with a certain positional relationship.

その時の回転子2の位置は回転子2のN極の各々が固定
子磁極歯10〜27に対して少し反対回転方向側に変位
して対向すると共に回転子2のS極の各々が固定子磁極
歯29〜46に対して回転方向側に対向しており、した
がって励磁コイル6に電流電流さないいわゆる無励磁時
の回転子2の静止位置とほぼ同じである。
At that time, the position of the rotor 2 is such that each of the N poles of the rotor 2 faces the stator magnetic pole teeth 10 to 27 with a slight displacement in the opposite rotation direction, and each of the S poles of the rotor 2 faces the stator magnetic pole teeth 10 to 27. It faces the magnetic pole teeth 29 to 46 in the rotational direction, and is therefore substantially the same as the resting position of the rotor 2 during so-called non-excitation, when no current flows through the exciting coil 6.

したがって、回転子2のN極の各々がS極である固定子
磁極歯10〜2Tに回転方向側へ吸引される力と、回転
子2のS極の各々がN極である固定子磁極歯29〜46
に反対回転方向側へ吸引される力と、前述の静的磁力の
3つの力が釣り合った位置で、回転子2は第4図Cに示
す位置関係で静止されるようになる。
Therefore, the force attracted in the rotational direction by the stator magnetic pole teeth 10 to 2T in which each of the north poles of the rotor 2 is an south pole, and the stator magnetic pole teeth in which each of the south poles of the rotor 2 is a north pole. 29-46
The rotor 2 comes to rest in the positional relationship shown in FIG. 4C at a position where the three forces, the force attracted in the opposite rotational direction and the static magnetic force described above, are balanced.

その後、励磁コイル6に印加する交流電圧によりコイル
6に流れる電流の方向が反転する際、固定子磁極歯の各
々の磁束はほとんどなくなるため、前述した様に回転子
2の磁極の各々の磁束と固定子磁極歯の各々との間に静
的磁力によるトルクが生じて、回転子2は回転方向側へ
少し回転して第4図すに示す位置に動く。
After that, when the direction of the current flowing through the coil 6 is reversed by the AC voltage applied to the excitation coil 6, the magnetic flux of each of the stator magnetic pole teeth almost disappears, so as described above, the magnetic flux of each of the magnetic poles of the rotor 2 and A torque is generated between each of the stator magnetic pole teeth due to the static magnetic force, and the rotor 2 rotates a little in the direction of rotation and moves to the position shown in FIG. 4.

その後、交流電圧によりコイルに流れる電流の方向が反
転すると、固定子磁極歯29〜46はS極となると共に
固定子磁極歯10〜27(/′iN極となり、回転子2
のS極の各々はS極である固定子磁極歯29〜46に反
発し、また回転子2のN極の各々にαがβより小さいた
め回転方向側に近いS極の固定子磁極歯29〜46に吸
引されて回転子2は回転方向に回転すると共に回転子2
が回転することにより回転子2のN極の各々はN極であ
る固定子磁極歯10〜21に反発されて更に回転し、第
4図dに示す位置まで回転する。
Thereafter, when the direction of the current flowing through the coil is reversed by the alternating current voltage, stator magnetic pole teeth 29 to 46 become S poles, stator magnetic pole teeth 10 to 27 (/'iN poles), and rotor 2
Each of the S poles of the rotor 2 repels the stator magnetic pole teeth 29 to 46, which are S poles, and each of the N poles of the rotor 2 has an S pole stator magnetic pole tooth 29 that is closer to the rotating direction side because α is smaller than β. ~ 46, the rotor 2 rotates in the rotational direction, and the rotor 2
As the rotor 2 rotates, each of the north poles of the rotor 2 is repelled by the stator magnetic pole teeth 10 to 21, which are north poles, and rotates further to the position shown in FIG. 4d.

この第4図dに示される位置で回転子2ON極の各々は
S極である固定子磁極歯29〜46に反対回転方向側に
吸引される力と、回転子2のS極の各々がN極である固
定子磁極歯10〜27に回転方向側に吸引される力と、
前述の静的磁力の3者の力が釣り合っている。
At the position shown in FIG. 4d, each of the ON poles of the rotor 2 is attracted by the stator magnetic pole teeth 29 to 46, which are S poles, in the opposite rotation direction, and each of the S poles of the rotor 2 is N A force that is attracted to the stator magnetic pole teeth 10 to 27, which are poles, in the rotation direction,
The three static magnetic forces mentioned above are balanced.

その後、励磁コイル6に印加する交流電圧によりコイル
6に流れる電流の方向が再び反転する際、固定子磁極歯
の各々の磁束はほとんどなくなるため前述のように回転
子2の磁極の各々の磁束と固定子磁極歯の各々との間に
静的磁力によるトルクが生じて回転子2は回転方向側へ
少し回転して再び第4図aに示す位置関係位置で止する
After that, when the direction of the current flowing through the coil 6 is reversed again by the AC voltage applied to the excitation coil 6, the magnetic flux of each of the stator magnetic pole teeth almost disappears, so that the magnetic flux of each of the magnetic poles of the rotor 2 and A torque is generated between each of the stator magnetic pole teeth due to the static magnetic force, and the rotor 2 rotates a little in the direction of rotation and stops again at the position shown in FIG. 4a.

よって励磁コイル6に印加する交流電圧の1ヘルツ毎に
回転子2は回転子2の互いに隣り合う反対極性の磁極間
のピンチの2倍すなわちα+βに相当する角度だけ回転
方向側へ回転する。
Therefore, for every 1 Hz of the AC voltage applied to the excitation coil 6, the rotor 2 rotates in the rotation direction by an angle corresponding to twice the pinch between adjacent magnetic poles of opposite polarity, that is, α+β.

つぎに、固定子磁極歯29〜46が第4図aにおいて交
流電圧を励磁コイル6に印加したときS極に励磁された
とすると、回転子2のS極の各々(/′iN極である固
定子磁極歯10〜27にほとんど正面に対向しているた
め回転トルクが生じないが、回転子2ON極の各々はS
極である固定子磁極歯29〜46に対して回転方向側に
変位して対向しているため回転トルクが生じ、回転子2
は反回転方向に力を受は第4図eに示す位置まで回転す
るが、回転子2が回転することにより回転子2のS極の
各々は固定子磁極歯10〜27に対して反回転方向側に
変位して対向するため、回転子2のN極の各々がS極で
ある固定子磁極歯29〜46に反回転方向側に吸引され
る力と、回転子2のS極の各々がN極である固定子磁極
歯10〜27に回転方向側さ吸引される力と、前述の静
的磁力の3つの力が釣り合っているため、回転子2はそ
れ以上反対回転方向に回転せず、回転子2は第4図eに
示す相互位置関係で静止されるようになる。
Next, if the stator magnetic pole teeth 29 to 46 are excited to the S pole when AC voltage is applied to the excitation coil 6 in FIG. 4a, each of the S poles of the rotor 2 (/'i Since the child magnetic pole teeth 10 to 27 are almost directly opposed to each other, no rotational torque is generated, but each of the rotor 2ON poles is S
Since the stator magnetic pole teeth 29 to 46, which are poles, are displaced in the direction of rotation and are opposed to each other, rotational torque is generated, and the rotor 2
receives a force in the counter-rotation direction and rotates to the position shown in Fig. 4e, but as the rotor 2 rotates, each of the S poles of the rotor 2 rotates counter-rotated with respect to the stator magnetic pole teeth 10 to 27. Since they are displaced in the opposite rotational direction, each of the north poles of the rotor 2 is an south pole, and the force attracted to the stator magnetic pole teeth 29 to 46 in the counter-rotation direction, and each of the south poles of the rotor 2 is The rotor 2 cannot rotate any further in the opposite rotational direction because the force that is attracted to the stator magnetic pole teeth 10 to 27, which is the N pole, in the rotational direction and the static magnetic force described above are balanced. First, the rotors 2 come to rest in the mutual positional relationship shown in FIG. 4e.

その後、励磁コイル6に印加する交流電圧によりコイル
6に流れる電流の方向が反転する際、固定子磁極歯の各
々の磁束はほとんど無くなるため前述したように回転子
2の磁極の各々の磁束と固定子磁極歯の各々とにより静
的磁力によるトルクが生じて回転子2は第4図eに示す
相互位置関係力・ら少し回転方向側へ回転して第4図a
に示す相互位置関係で止まる。
After that, when the direction of the current flowing through the coil 6 is reversed by the AC voltage applied to the excitation coil 6, the magnetic flux of each of the stator magnetic pole teeth almost disappears, so as mentioned above, the magnetic flux of each of the magnetic poles of the rotor 2 is fixed. Torque is generated by each of the child magnetic pole teeth due to the static magnetic force, and the rotor 2 rotates slightly in the rotational direction due to the mutual positional relationship force shown in FIG. 4e, as shown in FIG. 4a.
It stops at the mutual positional relationship shown in .

その後、交流電圧によりコイルに流れる電流の方向が反
転すると固定子磁極歯29〜46がN極に励磁されるの
で固定子磁極歯29〜46が第4図aにおいて交流電圧
の印加時にN極に励磁されたときとまったく同様に回転
子2は交流電圧の1ヘルツ毎に回転子2の互いに隣り合
った磁極間のピンチの2倍すなわちα+βに相当する角
度だけ回転方向側に回転する。
Thereafter, when the direction of the current flowing through the coil is reversed by the alternating current voltage, the stator magnetic pole teeth 29 to 46 are excited to the north pole, so that the stator magnetic pole teeth 29 to 46 become the north pole when the alternating current voltage is applied in FIG. Exactly as when the rotor 2 is excited, the rotor 2 rotates in the direction of rotation by an angle corresponding to twice the pinch between adjacent magnetic poles of the rotor 2, that is, α+β, for every 1 Hz of the alternating voltage.

また、第4図すに示す相互位置関係に回転子2が静止し
たときにおいても同様に交流電圧の印加時に固定子磁極
歯29〜46がN極あるいはS極のどちらに励磁されて
も回転子2/ri自動的に起動し、交流電圧の1ヘルツ
毎に回転子2の互いに隣り合う反対極性の磁極間のピン
チの2倍すなわちα+βに相当する角度だけ回転方向側
に回転する。
Furthermore, even when the rotor 2 is stationary in the mutual positional relationship shown in FIG. 2/ri is automatically activated and rotates in the rotation direction by an angle corresponding to twice the pinch between adjacent magnetic poles of opposite polarity of the rotor 2, that is, α+β, for every 1 Hz of the AC voltage.

このようにして回転子2の一方向自起動特性および同期
回転が得られる。
In this way, one-way self-starting characteristics and synchronous rotation of the rotor 2 are obtained.

上記のような構成の同期電動機においては、回転子磁極
と固定子磁極の間の空隙の長さにより多少は異なるが固
定子磁極歯10〜27の各々の磁極幅を固定子磁極歯2
9〜46の各々の磁砿幅の大略2分の1にすると共に前
記角度βをαの大略1.6倍程度におくのが起動性が良
いことが、運動方程式オヨび実験力・ら明ら刀・になっ
た。
In the synchronous motor having the above configuration, the width of each of the stator magnetic pole teeth 10 to 27 is set to the width of the stator magnetic pole teeth 2, although it varies somewhat depending on the length of the air gap between the rotor magnetic poles and the stator magnetic poles.
Based on the equation of motion and experimental power, it is clear from the equation of motion and experimental power that the starting performance is good if the width of each of the magnetic rods 9 to 46 is approximately half, and the angle β is approximately 1.6 times as large as α. It became a sword.

このように一方の極性の固定子磁極歯10〜27の磁極
幅を他方の極性の固定子磁極歯29〜46の磁極幅より
小さくすると共に上記磁極幅の小さい固定子磁極歯10
〜27を回転子20回転方向側に変位することによって
磁極幅の小さい固定子磁極歯10〜27とこれら磁極歯
幅の小さい磁極歯10〜27に対して回転子回転方向側
に隣り合う幅の広い磁極歯29〜46との間隔αを磁極
幅の小さい固定子磁極歯10〜27とこれら磁極歯幅の
小さい磁極歯10〜21に対して回転子回転方向と反対
側に隣り合う幅の広い磁極歯29〜46との間隔βより
小さくしたので、回転子の隣り合った反対極性の磁極の
出来が磁極幅の小さい固定子磁極歯10〜21と固定子
磁極歯10〜27の各々にとって回転子回転方向側に隣
り合う磁極幅の広い固定子磁極歯29〜46とを通るよ
うに回転子2は固定子磁極歯の各々にほぼ対向するよう
にでき、そのため回転子2全自動的に起動できると共に
その起動方向を一定にできるのである。
In this way, the magnetic pole width of the stator magnetic pole teeth 10 to 27 of one polarity is made smaller than the magnetic pole width of the stator magnetic pole teeth 29 to 46 of the other polarity, and the stator magnetic pole teeth 10 having the small magnetic pole width are
27 in the rotor 20 rotation direction side, the stator magnetic pole teeth 10 to 27 having a small magnetic pole width and the widths adjacent to the stator magnetic pole teeth 10 to 27 in the rotor rotation direction side having a small magnetic pole width. The distance α between the wide magnetic pole teeth 29 to 46 is set to the stator magnetic pole teeth 10 to 27 having a small magnetic pole width and the wide adjacent magnetic pole teeth 10 to 21 having a small magnetic pole width on the side opposite to the rotor rotation direction. Since the spacing between the magnetic pole teeth 29 to 46 is smaller than β, the rotation of the adjacent magnetic poles of opposite polarity on the rotor is caused by each of the stator magnetic pole teeth 10 to 21 and the stator magnetic pole teeth 10 to 27, each having a small magnetic pole width. The rotor 2 can be made to almost face each of the stator magnetic pole teeth so as to pass through the stator magnetic pole teeth 29 to 46, which have wide magnetic pole widths adjacent to each other in the child rotation direction, so that the rotor 2 is fully automatically started. At the same time, the starting direction can be made constant.

ところが、第2図に見られるように、磁極歯板8は多極
になるほど磁極歯が密となるため、打ち抜き加工の困難
をともなってぐる。
However, as shown in FIG. 2, the more the number of poles in the magnetic pole tooth plate 8, the denser the magnetic pole teeth become, making it difficult to punch out.

ちなみに実施例のものは第2図の外径が25mmと云う
小型のため特に困難全極めた。
By the way, it was particularly difficult to master the example because it was small with an outer diameter of 25 mm as shown in FIG.

このような問題を解決するために、磁石回転子を面対向
させた場合に内外各磁極歯が回転子磁極面と面対向する
面積比率を保ち、シカ・もおたがいの磁極歯が第2図の
ように交互にはめ合わないように、外側磁極歯を短力・
〈シた新しい磁極歯配列の固定子を提案した。
In order to solve this problem, when the magnet rotor is placed face-to-face, the area ratio of each inner and outer magnetic pole tooth facing the rotor magnetic pole face is maintained, and the magnetic pole teeth of each deer and the other are as shown in Figure 2. To prevent them from fitting together alternately, press the outer magnetic pole teeth with short force.
We proposed a stator with a new magnetic pole tooth arrangement.

このような固定子の一例を第5図に示す。An example of such a stator is shown in FIG.

この磁極歯配列の固定子においても回転原理は第2図の
ものと同じであるが、打ち抜き加工妙珈・なり容易とな
った。
The rotation principle of the stator with this magnetic pole tooth arrangement is the same as that shown in Fig. 2, but the punching process has become easier.

しかし第5図の配列では外側磁極歯先端41と内側磁極
歯先端48との間には抜き加工に充分な距離をとってい
るので、この両磁極歯先端47,48の間にある空隙の
ため、磁極歯の磁気抵抗が第2図の場合に比し大きくな
り、電動機とした場合の起動励磁電流が犬きくなり、効
率が低いと云う欠点があることが判明した。
However, in the arrangement shown in FIG. 5, there is a sufficient distance between the outer magnetic pole tooth tip 41 and the inner magnetic pole tooth tip 48 for punching, so the air gap between the two magnetic pole tooth tips 47 and 48 It has been found that the magnetic resistance of the magnetic pole teeth is larger than in the case shown in FIG. 2, and when used as an electric motor, the starting excitation current becomes too strong, resulting in low efficiency.

そこでこれを改善するために第6図に示すような磁極歯
配列の固定子磁極歯板金発明した。
In order to improve this problem, we invented a stator magnetic pole tooth plate having a magnetic pole tooth arrangement as shown in FIG.

これも基本的には第5図の磁極歯と変わることはないが
、外側磁極歯49と内側磁極歯50の先端は図示のよう
に若干の傾斜金もたせ、この角θ1 およびθ2が25
度以上となるようにし、外側磁極歯49の内側磁極歯5
0の間隔全磁極歯板の板厚と同程度とすることにより、
電動機喀動励磁電流が第5図の磁極歯板金使用したもの
に比し20%以下とし、第2図の磁極歯板金用いたのと
同じ起動励磁電流を得た。
This is also basically the same as the magnetic pole teeth shown in FIG.
the inner magnetic pole tooth 5 of the outer magnetic pole tooth 49
By making the pitch of 0 equal to the thickness of the entire magnetic pole tooth plate,
The motor excitation current was set to 20% or less of that using the magnetic pole tooth sheet metal shown in FIG. 5, and the same starting excitation current as that using the magnetic pole tooth sheet metal shown in FIG. 2 was obtained.

結局第2図の磁極歯板力・らその原理を保ち、第5図の
磁極歯配列を提案し、これより第6図のように再改良を
加えたことにより、電動機効率は第2図のものを使用し
たのと変りはなく、し力・も加工は容易となり、多極化
も容易なものが得られた。
In the end, by keeping the principle of the magnetic pole tooth plate force and the like shown in Fig. 2, and proposing the magnetic pole tooth arrangement shown in Fig. 5, and then reimproving it as shown in Fig. 6, the motor efficiency was as shown in Fig. 2. It is no different from using a conventional material, but it is easier to process the force and material, and it is also easier to make multi-poles.

ちなみに第5図、第6図では48極のものを示している
Incidentally, FIGS. 5 and 6 show a structure with 48 poles.

し刀・し、この際α′、β′の最適値は第2図で説明し
たα、β値とは異なり、α′=95〜105電気角度で
β’=255〜265電気角度にとることにより、本発
明電動機の起動電圧を第1図力・ら第4図で述べた電動
機と同じにできる。
In this case, the optimal values of α' and β' are different from the α and β values explained in Figure 2, and should be set at α' = 95 to 105 electrical angles and β' = 255 to 265 electrical angles. As a result, the starting voltage of the motor of the present invention can be made the same as that of the motors described in Figures 1 and 4.

し力・も安定同期回転できる電圧範囲も充分実用に耐え
るものとなる事が実験より判明した。
Experiments have revealed that the voltage range that allows for stable synchronous rotation is sufficient for practical use.

し〃・も各磁極歯の幅は180電気角度を5〜IO電気
角度程度超え、すなわち190電気角度程度とする方が
電動機の回転性がより安定化することが実験力・ら判明
した。
It has been experimentally found that the rotation of the motor becomes more stable when the width of each magnetic pole tooth exceeds 180 electrical degrees by about 5 to 10 electrical degrees, that is, about 190 electrical degrees.

コノヨうに第5図の磁極歯力・ら第6図のものへと改良
していく過程で特性は第2図の場合よりむしろ向上し、
シカ・もより多極化が容易となり、加工容易な磁極配列
に改良できた。
In the process of improving the magnetic pole tooth force shown in Figure 5 to that shown in Figure 6, the characteristics improved more than in the case of Figure 2.
It has become easier to make the magnetic poles multiplier, and the magnetic pole arrangement has been improved to make it easier to process.

なお、外側磁極歯49と内側磁極歯50の先端の傾斜は
第6図では内側磁極歯50の最先端が回転方向P側にあ
るように傾斜しているが、回転方向の反対側にあるよう
に傾斜しても磁極歯の磁気抵抗の低減になるため作用効
果はおなしである。
Note that the tips of the outer magnetic pole teeth 49 and the inner magnetic pole teeth 50 are inclined so that the tips of the inner magnetic pole teeth 50 are on the rotation direction P side in FIG. Even if the angle is tilted to , there is no effect because the magnetic resistance of the magnetic pole teeth is reduced.

以上のように、この発明によれば、くま取りコイル等の
付属部品を用いることなく自起動でき、製造容易でし力
・も効率のよい同期電動機を実現することができる。
As described above, according to the present invention, it is possible to realize a synchronous motor that can be started automatically without using accessory parts such as a shade coil, is easy to manufacture, and has high power and efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の基礎となる同期電動機の縦断面図、
第2図はその固定子磁極歯板の平面図、第3図は同じく
回転子の平面図、第4図は第1図の同期電動機の動作原
理説明図、第5図はこの発明の基礎となる磁極歯板の部
分平面図、第6図はこの発明の同期電動機に用いられる
磁極歯板の一例の部分平面図である。 49・・・・・・外側磁極歯、50・・・・・・内側磁
極歯。
FIG. 1 is a longitudinal cross-sectional view of a synchronous motor that is the basis of this invention.
Fig. 2 is a plan view of the stator magnetic pole tooth plate, Fig. 3 is a plan view of the rotor, Fig. 4 is an explanatory diagram of the operating principle of the synchronous motor of Fig. 1, and Fig. 5 is the basis of this invention. FIG. 6 is a partial plan view of an example of the magnetic pole tooth plate used in the synchronous motor of the present invention. 49...Outer magnetic pole tooth, 50...Inner magnetic pole tooth.

Claims (1)

【特許請求の範囲】[Claims] 1 内方力・ら外方へ放射状にのびる複数個の内側磁極
歯と、前記内側磁極歯に対して所定の角度だけずれた位
置に配列されるように外方力・ら内方へのびる複数個の
外側磁極歯と、前記内側および外側磁極歯の近接する先
端部が円周方向に対して一定の角度で対面するように前
記内側および外側磁極歯の先端部に形成された傾斜対面
部とを有する磁極歯板を備えた同期電動機において、前
記内側磁極歯の中心とこれに隣接する前記外側磁極歯の
中心とのなす角度がそれぞれ95ないし105電気角度
および225ないし265電気角度に設定され、前記内
側および外側磁極歯の傾斜対面部の円周方向に対する角
度が25度以上に設定された同期電動機。
1 A plurality of inner magnetic pole teeth extending radially outward from the inner magnetic pole teeth, and a plurality of inner magnetic pole teeth extending inward from the outer force so as to be arranged at positions shifted by a predetermined angle with respect to the inner magnetic pole teeth. and inclined facing portions formed at the tips of the inner and outer magnetic pole teeth such that adjacent tips of the inner and outer magnetic pole teeth face each other at a constant angle with respect to the circumferential direction. In a synchronous motor having a magnetic pole tooth plate, the angles formed between the center of the inner magnetic pole tooth and the center of the outer magnetic pole tooth adjacent thereto are set to 95 to 105 electrical degrees and 225 to 265 electrical degrees, respectively, A synchronous motor, wherein the angle of the inclined facing portions of the inner and outer magnetic pole teeth with respect to the circumferential direction is set to 25 degrees or more.
JP48136589A 1973-11-30 1973-11-30 synchronous motor Expired JPS5924621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP48136589A JPS5924621B2 (en) 1973-11-30 1973-11-30 synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48136589A JPS5924621B2 (en) 1973-11-30 1973-11-30 synchronous motor

Publications (2)

Publication Number Publication Date
JPS5084824A JPS5084824A (en) 1975-07-09
JPS5924621B2 true JPS5924621B2 (en) 1984-06-11

Family

ID=15178806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48136589A Expired JPS5924621B2 (en) 1973-11-30 1973-11-30 synchronous motor

Country Status (1)

Country Link
JP (1) JPS5924621B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3025844U (en) * 1995-07-04 1996-06-25 秀直 高橋 Garage-covered car cover and simple garage using the cover

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736468A (en) * 1971-06-30 1973-05-29 Westinghouse Electric Corp Ground fault interrupter apparatus
JPS5717673Y2 (en) * 1971-12-08 1982-04-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3025844U (en) * 1995-07-04 1996-06-25 秀直 高橋 Garage-covered car cover and simple garage using the cover

Also Published As

Publication number Publication date
JPS5084824A (en) 1975-07-09

Similar Documents

Publication Publication Date Title
KR20160137436A (en) Single phase brushless motor and electric apparatus
JPH08182281A (en) Spindle motor
JPH1023690A (en) Motor
US2677776A (en) Synchronous motor of the selfstarting type
JPS5924621B2 (en) synchronous motor
WO2019187205A1 (en) Rotary electric machine
US3088044A (en) Subsynchronous timing motor
JP3897567B2 (en) Outer rotor motor
JPS5925564A (en) Brushless motor
JPH048154A (en) Single-phase cored brushless motor
JPS6091858A (en) Electromagnetic drive device using permanent magnet
JPH03235654A (en) Single-phase synchronous motor
JPH0649104Y2 (en) Carrying drive step motor
JPH0720361B2 (en) Rotating electric machine
JPH0456543B2 (en)
JPS60241758A (en) Synchronous motor
JPH027270B2 (en)
JPS60241759A (en) Synchronous motor
JP2583638Y2 (en) Inner rotor type brushless motor
JPS60229658A (en) Synchronous motor
JP2005237152A (en) Single-phase ac synchronous motor
KR20090125309A (en) Stator of a pole change type synchronous motor
JPH0127422Y2 (en)
JPS6010503B2 (en) multipole synchronous motor
JPS6059828B2 (en) step motor