JPS5924183B2 - Heat-resistant ferritic stainless steel with excellent stretch flangeability and its manufacturing method - Google Patents

Heat-resistant ferritic stainless steel with excellent stretch flangeability and its manufacturing method

Info

Publication number
JPS5924183B2
JPS5924183B2 JP2047278A JP2047278A JPS5924183B2 JP S5924183 B2 JPS5924183 B2 JP S5924183B2 JP 2047278 A JP2047278 A JP 2047278A JP 2047278 A JP2047278 A JP 2047278A JP S5924183 B2 JPS5924183 B2 JP S5924183B2
Authority
JP
Japan
Prior art keywords
annealing
stretch flangeability
stainless steel
steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2047278A
Other languages
Japanese (ja)
Other versions
JPS54112320A (en
Inventor
忠三 須藤
尚男 富士川
美智雄 高木
雄次 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2047278A priority Critical patent/JPS5924183B2/en
Publication of JPS54112320A publication Critical patent/JPS54112320A/en
Publication of JPS5924183B2 publication Critical patent/JPS5924183B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 本発明は、プレス成形性のすぐれた耐熱フェライト系
ステンレス鋼、特に自動車排気ガス浄化装置や各種燃焼
装置のように高温度における耐酸化性、耐食性とともζ
こ、すぐれたプレス成形性、就中、伸びフランジ性を要
求される部品に適するステンレス鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a heat-resistant ferritic stainless steel with excellent press formability, and particularly with high oxidation resistance and corrosion resistance at high temperatures such as automobile exhaust gas purification devices and various combustion devices.
This invention relates to a stainless steel suitable for parts requiring excellent press formability, especially stretch flangeability.

JIS?こ規定されるSUS430はフェライト系ス
テンレス鋼の内でも最も広く使用されるが、8500C
〜1000℃のような高温度では耐酸化性が十分でなく
、また8000C〜850℃の温度でも加熱一冷却の繰
返しを受ける場合にはスケールの剥離が多く、自動車排
気ガス浄化装置のようCこ目詰まりが問題となる用途に
は不適当である。
JIS? This specified SUS430 is the most widely used ferritic stainless steel, but 8500C
Oxidation resistance is not sufficient at high temperatures such as ~1,000°C, and even at temperatures of 8,000°C to 850°C, scaling often peels off when subjected to repeated heating and cooling. It is unsuitable for applications where clogging is a problem.

また、プレス成形性が劣るので、複雑な形状の部品を製
造するのは困難である。 また、SUS304のような
オーステナイト系ステンレス鋼は、耐熱性、プレス成形
性は良好であるが、高価であるだけでなく熱膨張が大き
いために普通鋼、低合金鋼と組合せて使用すると熱膨張
の差によって装置の変形、破壊を生じる危険性がある。
Furthermore, since press moldability is poor, it is difficult to manufacture parts with complicated shapes. In addition, austenitic stainless steels such as SUS304 have good heat resistance and press formability, but are not only expensive but also have large thermal expansion. There is a risk that the difference may cause deformation or destruction of the device.

以上のような理由により、本発明者等は先に適量のZ
rを添加した耐熱フェライト系ステンレス鋼を開発した
(特開昭50〜146512号)。
For the reasons mentioned above, the present inventors first added an appropriate amount of Z.
A heat-resistant ferritic stainless steel containing r was developed (Japanese Patent Application Laid-Open No. 146512/1983).

このZr添加フェライト系ステンレス鋼は、耐酸化性だ
けでなく、溶接性も改善され、冷間加工性もある程度向
上するのであるが、上記発明においては冷間加工性を引
張試験の全伸ひだけで評価しているに過ぎず、またその
値もプレス成形用として必ずしも十分なものではない。
ところで、特に自動車排気ガス浄化装置のように複雑な
形状を有し、かつプレス成形によって製造される部品で
は、極めて高度のプレス成形性が要求され、先に提案し
たZr添加鋼では必ずしも十分な性能を発揮し得ない。
This Zr-added ferritic stainless steel has improved not only oxidation resistance but also weldability and cold workability to some extent. However, the value is not necessarily sufficient for press molding.
By the way, especially for parts that have complex shapes and are manufactured by press forming, such as automobile exhaust gas purification devices, an extremely high degree of press formability is required, and the previously proposed Zr-added steel does not necessarily have sufficient performance. cannot demonstrate.

プレス成形性は成形様式によって、深絞り性、張出し性
、伸びフランジ性などに分類され、またこれらの性質は
引張試験によって測定される種々の諸性質と相関がある
ことが知られている。また、プレス成形によって表面に
肌荒れが生じない、いわゆる耐肌荒れ性も具備すべき条
件である。ところで、自動車排気ガス浄化装置等ではガ
スの通路を作るために、ルーバ一加工とよばれる伸びフ
ランジ成形が重要な成形要素となっている。このため、
各種の成形性がある程度のレベルにあると同時に、特に
伸びフランジ性にすぐれた材料は利用価値が高い。本発
明者は、この点に着目して研究を進めてきた結果、Zr
%、C%+N%の成分バランスを適切に調整することに
よって、特に伸びフランジ性を向上させることに成功し
た。
Press formability is classified into deep drawability, stretchability, stretch flangeability, etc. depending on the forming method, and it is known that these properties are correlated with various properties measured by tensile tests. In addition, it is also necessary to have so-called roughness resistance, which means that the surface does not become rough due to press molding. By the way, stretch flange forming called louver processing has become an important forming element in automobile exhaust gas purification devices and the like in order to create gas passages. For this reason,
Materials that have a certain level of moldability and particularly excellent stretch flangeability have high utility value. As a result of conducting research focusing on this point, the present inventor discovered that Zr
By appropriately adjusting the component balance of % and C%+N%, we succeeded in particularly improving stretch flangeability.

本発明鋼はCrll.O〜20.0%、Sil.O%未
満、Mnl.5%以下で、力りZrとC十Nの含有量の
バランスを後に述べるように調整することを特徴とする
The steel of the present invention is Crll. O~20.0%, Sil. Less than 0%, Mnl. It is characterized in that the balance between the stress Zr and the C+N content is adjusted as described later, so that the content is 5% or less.

本発明鋼において、成分含有量を上記のように定めた理
由は次の通りである。Crは基本的な耐酸化性、耐食性
を確保するために11係以上が必要である。しかし、2
0係をこえるとプレス成形性が劣化する。Siは製鋼時
の脱酸剤として含有させることは有効であるが、1.0
%以上ではプレス成形性が劣化する。
The reason why the component contents in the steel of the present invention are determined as described above is as follows. Cr must have a coefficient of 11 or higher to ensure basic oxidation resistance and corrosion resistance. However, 2
When the ratio exceeds 0, press formability deteriorates. It is effective to include Si as a deoxidizing agent during steel manufacturing, but at 1.0
% or more, press formability deteriorates.

MnはSiの脱酸作用を促進し、かつSiとの組合せで
非金属介在物の形態を変える。
Mn promotes the deoxidizing effect of Si, and changes the form of nonmetallic inclusions in combination with Si.

しかし、15係以上になると鋼の硬化が著しくなり、冷
間加工が困難となる。次に、本発明の特徴であるZr%
とC%+N%のバランスについて述べる。
However, when the modulus exceeds 15, the hardening of the steel becomes significant and cold working becomes difficult. Next, Zr%, which is a feature of the present invention
The balance between C% and N% will be described.

本発明者の研究の結果によれば、伸びフランジ性を向上
させるにはC%+N’%を0.02%未満で、かつZr
%=4(C%十N係)〜〔4(C係十N%)+0.20
係)の範囲内に調整する必要がある。(C%十N%)が
0.02%未満ではZrの炭窒化物が少ないため結晶粒
が粗大化して肌荒れが生じやすくなり、また集合組織に
も影響を与えるため深絞り性、張出し性がやや劣化する
が、伸びフランジ性はかなり向上する。ただし、深絞り
性、張出し性等が劣化すると言っても、SUS43O等
に比して劣るものではなく、特に高度の成形性を要求し
なければ実用上差支えない場合が多い。
According to the research results of the present inventor, in order to improve stretch flangeability, C%+N'% must be less than 0.02% and Zr
% = 4 (C% 10N%) ~ [4 (C% 10N%) + 0.20
It is necessary to adjust it within the range of If (C%-N%) is less than 0.02%, there are few Zr carbonitrides, so the crystal grains become coarse and roughness tends to occur, and the texture is also affected, resulting in poor deep drawability and stretchability. Although it deteriorates slightly, the stretch flangeability improves considerably. However, even if deep drawability, stretchability, etc. are deteriorated, it is not inferior to SUS43O, etc., and there are many cases in which there is no problem in practical use unless particularly high formability is required.

Zr%が上記の量より多ければ、Zrの炭窒化物の他に
ZrとCr.Feとの金属間化合物が生じて延性を阻害
し、伸びフランジ性を劣化させる。
If Zr% is greater than the above amount, Zr and Cr. An intermetallic compound with Fe is formed, inhibiting ductility and deteriorating stretch flangeability.

また、Zr%が少なすぎれば、Zrの炭窒化物の他にC
rの炭窒化物が生じ、これが延性を低下させる作用が大
きいために伸びフランジ性が劣化する。したがって、Z
r%およびC % 十N %は上記の範囲が適当である
In addition, if Zr% is too small, carbonitrides as well as Zr carbonitrides
Carbonitrides of r are formed, and this has a large effect of reducing ductility, resulting in deterioration of stretch flangeability. Therefore, Z
The above ranges are appropriate for r% and C%10N%.

なお、C % 十N %を0.02%未満にするにはC
%、N%とも極めて低いレベル(例えば0.01%以下
)にする必要があるが、これは真空溶解法、アルゴン一
酸素脱炭法(AOD法)等により工業的に可能である。
次に、以上述べた成分を有する鋼の製造方法について述
べる。
In addition, to make C%10N% less than 0.02%, C
% and N% both need to be at extremely low levels (for example, 0.01% or less), which can be achieved industrially by vacuum melting, argon-oxygen decarburization (AOD), and the like.
Next, a method for manufacturing steel having the above-mentioned components will be described.

溶解から熱間圧延までは、特に成形性に影響をおよぼす
要因はないので、通常の方法によって十分である。プレ
ス成形性に対して最も大きな影響のあるのは焼鈍工程で
ある。
From melting to hot rolling, there are no factors that particularly affect formability, so normal methods are sufficient. The annealing process has the greatest effect on press formability.

焼鈍には熱間圧延後、冷間圧延前に行なう焼鈍と冷間圧
延後の焼鈍がある。まず熱間圧延後の焼鈍について述べ
る。この焼鈍工程は本発明鋼のように高成形性を目的と
する場合には必要不可欠のものである。実際の製造工程
において、熱延板がコイル状態となつ いる場合とシー
ト状態になっている場合とで異なる。コイル状態の場合
には焼鈍方法は2種類ある。一つはコイルのままバッチ
焼鈍により770。C〜1000℃の温度範囲に数時間
以上保持する方法である。もう一つはコイルをほどきつ
つ連続焼鈍炉を通しながら、770ルC〜1000℃の
温度範囲で焼鈍する方法である。この場合は、材料は焼
鈍炉ではいわばシート状になっているため材料の温度上
昇は速やかである。したがって加熱時間はバッチ焼鈍法
に比して格段に短かくてよい。シート状態の場合はバッ
チ炉中で770℃〜1000゜Cに保持して焼鈍するが
、保持時間は上記連続炉方式と同様短かくてよい。温度
範囲を上記のように限定した理由は次の通りである。
Annealing includes annealing performed after hot rolling and before cold rolling, and annealing performed after cold rolling. First, annealing after hot rolling will be described. This annealing step is indispensable when high formability is desired, such as in the steel of the present invention. In the actual manufacturing process, there are differences between when the hot-rolled sheet is in a coil state and when it is in a sheet state. In the case of a coil state, there are two types of annealing methods. One is 770 by batch annealing as a coil. This is a method in which the temperature is maintained in a temperature range of C to 1000 C for several hours or more. The other method is to unwind the coil and pass it through a continuous annealing furnace, annealing it at a temperature in the range of 770°C to 1000°C. In this case, since the material is in a so-called sheet form in the annealing furnace, the temperature of the material increases quickly. Therefore, the heating time may be much shorter than in the batch annealing method. In the case of a sheet state, it is annealed in a batch furnace while being maintained at 770° C. to 1000° C., but the holding time may be short as in the continuous furnace method described above. The reason for limiting the temperature range as described above is as follows.

通常のフエライト系ステンレス鋼では、焼鈍温度が83
0℃より高温になるとオーステナイトの析出により冷却
時にマルテンサイトが析出し、冷間圧延が困難となり、
またオーステナイトの析出しない鋼でも結晶粒が粗大化
し、冷開成形性を劣化あせる。しかるに本発明鋼のZr
含有フエライト系ステンレス鋼では高温においてもフエ
ライト相であり、かつ結晶粒の粗大化が起りにくいので
、かえって高温焼鈍により成形性のすぐれた鋼が得られ
る特徴を有する。しかし1000゜Cを越えると、Zr
の炭窒化物の分解、凝集が起り結晶粒が粗大化するので
好ましくない。また770℃より低温では熱延時のZr
の炭窒化物の分散形態が十分改善されないため、冷間圧
延後の焼鈍で再結晶を阻害し成形性が劣化する。次に冷
間圧延後の焼鈍について述べる。
For normal ferritic stainless steel, the annealing temperature is 83
At temperatures higher than 0°C, austenite precipitates and martensite precipitates during cooling, making cold rolling difficult.
Furthermore, even in steels in which austenite does not precipitate, the crystal grains become coarse and the cold-opening formability deteriorates. However, Zr of the steel of the present invention
Ferrite-based stainless steel containing ferrite remains in a ferrite phase even at high temperatures, and coarsening of crystal grains is less likely to occur, so it has the characteristic that a steel with excellent formability can be obtained by high-temperature annealing. However, when the temperature exceeds 1000°C, Zr
This is not preferable because decomposition and aggregation of carbonitrides occur and crystal grains become coarse. In addition, at temperatures lower than 770°C, Zr during hot rolling
Since the dispersion form of carbonitrides is not sufficiently improved, recrystallization is inhibited during annealing after cold rolling, resulting in deterioration of formability. Next, annealing after cold rolling will be described.

この焼鈍は、770後C〜1000てCの温度範囲で行
なう必要がある。温度が1000℃を越えると結晶粒が
粗大化し好ましくない。770℃未満では圧延組織を十
分再結晶させることができず、成形性が著しく劣化する
This annealing needs to be carried out at a temperature range of 770°C to 1000°C. If the temperature exceeds 1000°C, crystal grains will become coarse, which is not preferable. If the temperature is lower than 770°C, the rolled structure cannot be sufficiently recrystallized, resulting in marked deterioration of formability.

以上のような成分並びに製造法により、板更1.2mm
の薄板にした鋼の代表的な成形性は第1表に示すとおり
である。
With the above ingredients and manufacturing method, itasara 1.2mm
Typical formability of steel made into thin plates is shown in Table 1.

図は本発明の基礎となる試験結果を示したもので、伸び
フランジ性は(C十N)%を極く低くし、かつZr%と
のバランスをとることにより向上することがわかる実施
例 1 第2表に示す成分を有する鋼を溶製し、熱間圧延で板更
3.2龍の板を作り、830’CXl5分の焼鈍を行な
い、次いで冷間圧延により板厚1.2mmの薄板とし、
850℃×5分の焼鈍を行なった。
The figure shows the test results that form the basis of the present invention. Example 1 shows that stretch flangeability can be improved by keeping (C + N)% extremely low and maintaining a balance with Zr%. Steel having the components shown in Table 2 is melted, hot-rolled to make a plate with a thickness of 3.2mm, annealed with 830'CXl for 5 minutes, and then cold-rolled into a thin plate with a thickness of 1.2mm. year,
Annealing was performed at 850°C for 5 minutes.

次いで酸洗により表面スケールを除去し、板状試験片を
作成し、第1表に示した各種の成形性を調べた。その結
果を第3表に示した。この結果より本発明鋼の成分の範
囲外では、伸びフランジ性が劣化することが明らかであ
る。
Next, surface scale was removed by pickling, a plate-shaped test piece was prepared, and the various formability shown in Table 1 was examined. The results are shown in Table 3. From this result, it is clear that stretch flangeability deteriorates when the composition of the steel of the present invention is outside the range.

実施例 2第4表ζこ示すような本発明鋼の範囲内にあ
る成分を有する鋼を溶製し、熱間圧延にて板厚32間の
板を作り、その後の焼鈍を行なわない場合と、830℃
×15分の焼鈍を行なった場合についてさらに冷間圧延
で1.2mmの厚みの薄板とし、 ゜2850℃×
5分の焼鈍を行なった後、板状試験片を作成した。
Example 2 Table 4 ζ A case in which a steel having a composition within the range of the steel of the present invention as shown in the table is melted, a plate with a thickness of 32 mm is produced by hot rolling, and subsequent annealing is not performed. ,830℃
× For the case where annealing was performed for 15 minutes, a thin plate with a thickness of 1.2 mm was further cold-rolled at ゜2850℃ ×
After annealing for 5 minutes, a plate-shaped test piece was created.

この鋼の成形性は第5表に示す通りで、熱間圧延後の焼
鈍がないと伸びフランジ性が著しく劣化することが明ら
かである。
The formability of this steel is as shown in Table 5, and it is clear that the stretch flangeability deteriorates significantly without annealing after hot rolling.

実施例 3 実施例2の成分を有する鋼を熱間圧延により板厚32關
の板上と成し、830℃×15分の焼鈍を行なった後冷
間圧延にて板厚1.2朋の薄板を作り、一つに730℃
×5分、もう一つに850×15分の焼鈍を行ない、板
状試験片を作成した。
Example 3 A steel having the composition of Example 2 was hot rolled into a plate with a thickness of 32mm, annealed at 830°C for 15 minutes, and then cold rolled into a plate with a thickness of 1.2mm. Make thin plates and heat them to 730℃
Annealing was performed for 5 minutes and then for 850 minutes to prepare a plate-shaped test piece.

この鋼の成形性は第6表に示す通りで、冷間圧゛延後の
焼鈍温度が低過ぎると伸びフランジ性が著しく劣化する
ことが明らかである。
The formability of this steel is shown in Table 6, and it is clear that if the annealing temperature after cold rolling is too low, the stretch flangeability will be significantly degraded.

【図面の簡単な説明】[Brief explanation of the drawing]

図はフエライト系ステンレス鋼における伸びフランジ性
とZrおよびCfN量との関係を示す図表である。
The figure is a chart showing the relationship between stretch flangeability and the amount of Zr and CfN in ferritic stainless steel.

Claims (1)

【特許請求の範囲】 1 Cr11.0〜20.0%、Si1.0未満、Mn
1.5%以下、C%+N%0.02%未満で、かつZr
%=4(C%+N%)〜〔4(C%+N%)+0.20
%〕の範囲内のZr含み、残部が実質的にFeより成る
伸びフランジ性にすぐれた耐熱フェライト系ステンレス
鋼。 2 Cr1.10〜20.0%、Si1.0%未満、C
%+N%0.02%未満で、かつZr=4(C%+N%
)〜4(C%+N%)+0.20%の範囲のZrを含み
、残部が実質的にFeより成る鋼を熱間圧延した後77
0℃〜1000℃の温度範囲で焼鈍し、次いで冷間圧延
した後770℃〜1000℃温度範囲で焼鈍することを
特徴とする伸びフランジ性にすぐれた耐熱フェライト系
ステンレス鋼の製造法。
[Claims] 1 Cr11.0-20.0%, Si less than 1.0, Mn
1.5% or less, C%+N% less than 0.02%, and Zr
%=4(C%+N%) ~ [4(C%+N%)+0.20
A heat-resistant ferritic stainless steel with excellent stretch flangeability, containing Zr within a range of %] and the remainder being substantially Fe. 2 Cr1.10-20.0%, Si less than 1.0%, C
%+N% less than 0.02%, and Zr=4(C%+N%
) ~ 4 (C% + N%) + 0.20% of Zr after hot rolling steel with the balance essentially consisting of Fe77
A method for producing heat-resistant ferritic stainless steel with excellent stretch flangeability, characterized by annealing at a temperature range of 0°C to 1000°C, then cold rolling, and then annealing at a temperature range of 770°C to 1000°C.
JP2047278A 1978-02-23 1978-02-23 Heat-resistant ferritic stainless steel with excellent stretch flangeability and its manufacturing method Expired JPS5924183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2047278A JPS5924183B2 (en) 1978-02-23 1978-02-23 Heat-resistant ferritic stainless steel with excellent stretch flangeability and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2047278A JPS5924183B2 (en) 1978-02-23 1978-02-23 Heat-resistant ferritic stainless steel with excellent stretch flangeability and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS54112320A JPS54112320A (en) 1979-09-03
JPS5924183B2 true JPS5924183B2 (en) 1984-06-07

Family

ID=12028034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2047278A Expired JPS5924183B2 (en) 1978-02-23 1978-02-23 Heat-resistant ferritic stainless steel with excellent stretch flangeability and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5924183B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148368U (en) * 1986-03-12 1987-09-19
JPH0123585Y2 (en) * 1984-09-18 1989-07-19

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0123585Y2 (en) * 1984-09-18 1989-07-19
JPS62148368U (en) * 1986-03-12 1987-09-19

Also Published As

Publication number Publication date
JPS54112320A (en) 1979-09-03

Similar Documents

Publication Publication Date Title
JP5779303B2 (en) High permeability directional electrical steel
EP1571227B1 (en) Cr-CONTAINING HEAT-RESISTANT STEEL SHEET EXCELLENT IN WORKABILITY AND METHOD FOR PRODUCTION THEREOF
JP3152576B2 (en) Method for producing Nb-containing ferrite steel sheet
JP4849731B2 (en) Mo-containing high Cr high Ni austenitic stainless steel sheet excellent in ductility and manufacturing method
JP4185425B2 (en) Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time
JP3347582B2 (en) Austenitic stainless steel for metal gasket and method for producing the same
JP3606200B2 (en) Chromium-based stainless steel foil and method for producing the same
JP2001262234A (en) Method for producing ferritic stainless steel sheet for automotive exhaust system excellent in deep drawability
JP2001271148A (en) HIGH Al STEEL SHEET EXCELLENT IN HIGH TEMPERATURE OXIDATION RESISTANCE
JPH08199237A (en) Production of hot rolled ferritic stainless steel strip excellent in toughness at low temperature
JPS5924183B2 (en) Heat-resistant ferritic stainless steel with excellent stretch flangeability and its manufacturing method
JPS63213619A (en) Manufacture of high strength stainless steel material having superior workability and causing no softening due to welding
KR102463485B1 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
KR870000703B1 (en) Process for producing strip of corrosion resistant alloy steel
JPS63210234A (en) Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding
JPS5924182B2 (en) Heat-resistant ferritic stainless steel with excellent press formability and its manufacturing method
JP4167166B2 (en) High Al content ferritic stainless steel hot rolled steel strip with excellent toughness and method for producing the same
JP2000178693A (en) Ferritic stainless steel sheet having high temperature strength at intermittent heating and oxide scale practically free from peeling
JP4562281B2 (en) Ferritic stainless steel sheet with excellent workability and method for producing the same
JPH0353026A (en) Manufacture of ferritic stainless steel sheet having excellent heat resistance and corrosion resistance
JP3608636B2 (en) Ferritic stainless steel with excellent workability
JPH0353025A (en) Manufacture of high heat-resistant and high-corrosion resistant ferritic stainless steel sheet
JPH0372053A (en) Ferritic stainless steel excellent in thermal fatigue resistance
JPH05179357A (en) Production of cold rolled ferritic stainless steel sheet
JP3260057B2 (en) Method for producing steel with excellent sour resistance and hot workability